Exploring Performance Characteristics of ZNS
SSDs: Observation and Implication

Hojin Shin
Dept. of Computer Science
Dankook University
Youngin, Korea
ghwls03s@dankook.ac.kr

Myounghoon Oh
Dept. of Computer Science
Dankook University
Youngin, Korea
snt2426 @dankook.ac.kr

Abstract—ZNS SSDs (Zoned NameSpace Solid State Drives)
are a new type of SSD that provides various features such as
zone concept and host-level flash management. In this paper, we
explore how these features affect performance characteristics of
ZNS SSDs. To this end, we design an analysis tool based on a real
ZNS SSD prototype that allows to evaluate performance under
different workloads. Then, we investigate diverse characteristics
in terms of parallelism, isolation and predictability. Our observa-
tions reveal that 1) requesting I/Os in a large unit is indispensable
in ZNS SSDs to obtain parallelism, 2) workloads can be isolated
more effectively compared with traditional SSDs, 3) unexpected
performance drop is not monitored, and 4) performance differs
based on LBAs (Logical Block Addresses), which can be exploited
usefully when we devise a new algorithm for ZNS SSDs.

Index Terms—ZNS SSD, Tool, Performance, Analysis

I. INTRODUCTION

These days, many researches have been proposed that
uncover SSD internals to enhance performance and I/O de-
terminism [1], [2]. ZNS SSDs are one of these efforts, under
standardization by the NVM Express, that expose their address
space using the concept of zone [3]. By distributing diverse
workloads into different zones, they give an opportunity to re-
duce WAF (Write Amplification Factor), eventually improving
performance and lifespan [4].

Another feature of ZNS SSDs is that flash managements
such as mapping and garbage collection are conducted at a
host-level. Traditional SSDs deal with flash memory idiosyn-
crasies such as erase-before-write requirement and limited
endurance using FTL (Flash Translation Layer) at a device-
level [5]. However, ZNS SSDs move most FTL functionalities
into a host, which allows to reduce DRAM usage and over-
provisioning area in SSDs. To obtain these merits, many
vendors actively announce to launch their ZNS SSDs solu-
tions [6]-[8].

However, ZNS SSDs raise several new issues. One issue
is how to manage zones including zone reset and garbage
collection at a host-level. In addition, ZNS SSDs have the
unique constraint, called sequential write constraint, meaning
that data must be written sequentially in a zone [4]. To design

978-1-7281-8482-1/20/$31.00 ©2020 IEEE

Gunhee Choi
Dept. of Computer Science
Dankook University
Youngin, Korea
choi_gunhee @dankook.ac.kr

Jongmoo Choi
Dept. of Computer Science
Dankook University
Youngin, Korea
choijm @dankook.ac.kr

an algorithm that manages ZNS SSDs appropriately, we need
to understand performance characteristics of ZNS SSDs.

In this paper, we investigate performance characteristics
of ZNS SSDs under various workloads. We first secure an
ZNS SSD prototype, which is built for research purpose by a
company. Then, we design an analysis tool that can configure
workloads such as total I/Os, request size, number of threads
and access patterns. We also implement software modules that
control ZNS SSDs directly at a user layer. Besides, we make
our tool run on traditional SSDs so that we can compare
characteristics of ZNS SSDs with those of traditional SSDs.

Using the tool, we make the following observations. First,
we find that requesting I/Os with a large unit provides con-
siderable performance enhancement in ZNS SSDs. This is be-
cause a zone consists of multiple flash chips in general, which
enables a large size request to be processed in an interleaved
manner. The second observation is that, even though ZNS
SSDs show better isolation, interference still exists among
zones. This implies that not only the zone concept but also
zone hints are useful for boosting I/O determinism. Finally, we
observe that unexpected performance drops are not monitored
in ZNS SSDs which is a good property to provide predictable
services.

The rest of this paper is organized as follows. In Section II,
we compare ZNS SSDs with Traditional SSDs and survey
related work. Our proposed tool is explained in Section III.
Analysis results are discussed in Section IV. Finally, we
summarize conclusion and future work in Section V.

II. BACKGROUND

In this section, we first examine the features of ZNS SSDs.
Then, we discuss previous works related to ours.

A. Features of ZNS SSDs

Figure 1 illustrates the differences between ZNS SSDs and
Traditional SSDs. SSDs are composed of flash memory, which
has several features such as overwrite limitation and limited
endurance. To overcome these limitations, various functionali-
ties such as out-place update and mapping, garbage collection,
wear-leveling and bad block handling are developed. Now, the
question is where these functionalities are deployed.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 18,2020 at 03:28:12 UTC from IEEE Xplore. Restrictions apply.

| Application | | Application |

ZNS SSD control module
Read Write . Garbage Sequential
sector sector | Mapeing | |collection verite
Host
FTL (Flash Translation Layer) Device
- Garbage Wear Read Write Zone
‘ Mapping | |Gn|lediun| | Leveling page page Reset
| read Write Erase
page page block

Flash memory | Flash memory

(a) Traditional SSD

Fig. 1: Comparison between Traditional SSDs and ZNS SSDs.

(b) ZNS SSD

Conceptually, a computer system can be divided into two
levels, a host and device. In traditional SSDs, these functional-
ities are deployed at a device-level, commonly known as FTL
(Flash Translation Layer). The benefit of this approach is that
it hides the idiosyncrasy of flash memory and abstracts SSDs
as a general block device like disks that can be accessed via
sector interfaces. However, the downside is that it may cause a
semantic gap, due to the unawareness and redundant software
modules between two levels [9]-[11].

ZNS SSDs take an opposite approach, deploying the func-
tionalities at a host-level. They are a kind of OCSSDs (Open
Channel SSDs) that expose SSD internals and allow host-level
software to control flash memory directly [12]. Compared with
OCSSDs, ZNS SSDs have some distinctions in that 1) they
divide their address spaces into multiple zones, 2) they require
host-level zone managements such as zone reset and garbage
collection and 3) data must be written sequentially in a zone.

ZNS SSDs have several merits. First, they can reduce WAF
by distributing different workloads into different zones, even-
tually contributing to enhance performance and lifespan. Also,
they give a chance to boost I/O determinism by allocating
different users (e.g. dockers) into separated zones. In addition,
they decrease DRAM usage and media over-provisioning by
moving most FTL functionalities into a host. In general,
mapping and garbage collection are moved into a host while
device-specific functions such as ECC (Error Correction code)
and bad block handling remain at a device-level.

B. Related Work

Previous studies related to our work can be grouped into two
categories. The first category is exploiting internal information
of SSDs to enhance performance and reliability. Ouyang et al.
propose SDF (Software Defined Flash) where host software
manages raw flash chips in SSDs directly and flexibly so that
it can realize the SSDs raw performance potential [13]. Kim
et al. design an automatic stream identification scheme based
on program contexts on Multi-Streamed SSDs [14].

Zhang et al. devise a new key-value store, named FlashKYV,
based on OCSSDs that provides a flash-aware parallel data lay-
out, compaction, caching and I/O scheduling mechanisms [15].
Bjorling et al. introduce LightNVM, a Linux subsystem that
supports host-level FTL functionalities for OCSSDs [12]. Lee
et al. suggest an interesting approach, application-managed

flash, where a file system and FTL incorporate for better
performance and for reducing DRAM in SSDs [11].

The second category is investigating ZNS SSDs. ZNS SSDs
gain attention recently [2], [3], so studies about them are in an
initial stage. Chung introduces several ZNS SSD prototypes
and demonstrates their benefits in data center [16]. Choi et
al. design a new LSM (Log-Structure Merge) style garbage
collection scheme for reclaiming a zone in ZNS SSDs [17].
Linux communities announce new facilities such as ZNS-
aware file system, device mapper, block layer and utilities for
ZNS SSDs [4].

Note that there are different types of zoned storage devices
that also provide the zone concept. ZNS SSDs are one example
of zoned storage and another well-known example is SMR
(Shingled Magnetic Recording) HDDs [18], [19]. Since SMR
HDDs and ZNS SSDs have comparable features such as zone
management and sequential write constraint, schemes designed
for SMR HDDs are also applicable to ZNS SSDs. For instance,
the idea, called Gear compaction, proposed in [20] that merges
all SSTables in a zone at once can be used for zone reclaiming
in ZNS SSDs.

III. METHODOLOGY

To evaluate performance characteristics of ZNS SSDs quan-
titatively, we design an analysis tool, presented in Figure 2. It
consists of three key software components, namely, workload
generator, performance monitor and generic SSD manager.

‘Workload generator
(threads, request size, total size,
synthetic/real benchmarks ...)

Performance monitor
(bandwidth, latency, WAF, ...)

] Traditional S5D]ZNS SSD

l Workload Report Report

Generic SSD manager
(device open/write/read, zone open/write/read/reset ...)

Performance
Report

l read fwrite]Perfnrmance

l read/write Report

Traditional SSD ZNS SSD

Fig. 2: Details of Analysis Tool.

The workload generator creates I/O requests with diverse
patterns such as sequential and random using synthetic and
real benchmarks (e.g. fio benchmark [21]). It also allows to
configure several control parameters including the number of
threads, total I/O size, each request size and LBAs. The perfor-
mance monitor measures metrics such as latency, bandwidth
and WAF while executing workloads. In addition, it supports
a tracing function that shows how each I/O request is handled
in a time and space dimension.

The generic SSD manager manipulates ZNS SSDs directly
and supports interfaces for zone reset/open/close and page
read/write. In this study, we use a real ZNS SSD prototype
that is offered by a ZNS SSD vendor. The capacity of this
prototype is 1TB, which is divided into 1024 zones whose
size is 1GB, as summarized in Table I. In fact, details of
this prototype such as flash type (e.g. MLC or TLC) and

Authorized licensed use limited to: University of Minnesota. Downloaded on September 18,2020 at 03:28:12 UTC from IEEE Xplore. Restrictions apply.

TABLE I: ZNS SSD prototype specification

[Ttem [[Specification |
SSD Capacity 1TB
Size of a Zone 1GB
Number of Zones 1024
Interface PCIe Gen3
Protocol NVMe 1.2.1

the number of channels and ways are unknown since they
are proprietary information of the vendor. In other words, our
study is a kind of blackbox approach, inferring characteristics
from input and output relations. In addition to ZNS SSDs, the
tool also supports management interfaces for traditional SSDs
for comparison purpose, this is why we refer to it as a generic
manager.

IV. ANALYSIS

In this section, we present analysis results with an aspect of
parallelism, isolation and predictability. In addition, we discuss
implication of our observations for both host software and ZNS
SSD developers.

A. Parallelism

Figure 3 displays the write and read latency when we
change the request size ranging from 4KB to 128KB. For this
experiment, we implement a worker thread that writes or reads
a 1GB file sequentially with different I/O request sizes given
as an argument, denoted in the X-axis. Note that the Y-axis
corresponds to values relative to that of 4KB, while the actual
measured latency is given in Table II. Since the ZNS SSD
and traditional SSD device used in this study have different
specifications, comparing them using actual measured values is
unfair. Besides, the goal of this study is analyzing performance
characteristics of ZNS SSDs, not comparing directly with
traditional SSDs, that leads us to draw this figure with relative
values to reveal characteristics more clearly.

ney(relative

Late

‘ w25 550

T ssD

e 6@ e -
Request size

(a) Write

' I I I n

(b) Read

Fig. 3: Latency results according to different request sizes
(Relative to 4KB).

TABLE II: Write and Read latency (in seconds)

SSD Request size (KB)
4KB | 8KB | 16KB | 32KB | 64KB | 128KB
ZNS SSD (write) | 31.4 15.9 8.14 4.77 4.29 2.6
Tr SSD (write) 842 | 7.05 3.59 2.5 1.7 1.12
ZNS SSD (read) 435 22.1 11.9 8.44 5.87 3.48
Tr SSD (read) 30.6 15.8 8.13 49 3.03 1.89

From Figure 3, we can observe that the request size impact
on the write latency greatly in ZNS SSDs. For instance, when
we change the request size from 4KB to 8KB, ZNS SSDs
can reduce latency by 50%, while the reduction is 16% in
traditional SSDs. For the read case, ZNS SSDs and traditional
SSDs shows similar trends.

Larger request size accompanies several advantages. First,
it can reduce the total number of requests, which decreases the
queuing delay. In addition, it can make it possible to utilize the
channel and way interleaving in SSDs. Hence, when we double
the request size, the latency decreases a half except the write
case in traditional SSDs. We think that the exception is mainly
due to the DRAM write buffer. Another thing we observe is
that, at first, we expect that performance gain obtained by
larger request size is higher in ZNS SSDs since they usually
map a zone into multiple channels to maximize parallelism.
But, traditional SSDs also deal with larger requests efficiently,
showing similar trends as ZNS SSDs.

This observation implies that host software developers for
ZNS SSDs need to design an algorithm that triggers I/Os in
larger request size. Random reads may incur more than 10
times performance degradation. Reading in larger unit might
be better even though there exist unnecessary data partially in
the unit. Using ZNS SSDs for writing log is not a good idea.
For ZNS SSD developers, they need to design a mechanism for
amortizing write requests in smaller unit. Using DRAM write
buffer is not a good choice since it is an opposite direction
that ZNS SSDs pursue.

B. Isolation

To evaluate the isolation capability of ZNS SSDs, we
execute the worker thread with multiple other threads at the
same time. Specifically, we run all threads on different zones
and measure the IOPS of worker, as shown in Figure 4.

o8
07
06
05
0.4
03
02
oA

o

O (worker alone) 1 2
MNumber of other threads

10PS (relative value)

mZNS_SSD = Tr_SSD

Fig. 4: Effect of other threads.

Figure 4 reveals that ZNS SSDs show better isolation than
traditional SSDs. For instance, when we run two other threads
simultaneously, the performance of the worker thread drops
28% in ZNS SSDs, while that becomes 36% in traditional
SSDs. This is because traditional SSDs have more shared
resources such as FTL and overlapped address spaces.

However, the isolation capability is rather weaker than
our expectation. At first, we anticipate that the worker is
not interfered that much by other threads since they access
different zones. But our observation uncovers that zones share

Authorized licensed use limited to: University of Minnesota. Downloaded on September 18,2020 at 03:28:12 UTC from IEEE Xplore. Restrictions apply.

resources such as channels and chips in ZNS SSDs. This is
inevitable since the numbers of channels and chips are much
smaller than the number of zones. Also, there is a tradeoff
between parallelism in a zone and isolation among zones.

We carefully argue that there exist feasible solutions that
reinforce the isolation capability. We suggest ZNS SSDs devel-
opers to export information about zones that are more isolated
(e.g. zone 1 and 2 are mapped into different channels while
zone 1 and 3 are mapped into same ones). This information
will become a valuable hint for host software developers.
Another interesting solution is skewing among zones like track
skewing in HDDs [22].

C. Predictability

One notorious downside of traditional SSDs is the unex-
pected performance degradation due to the garbage collection
triggered by FTL in SSDs. To examine this phenomenon, we
conduct an experiment that writes a 10GB file from the initial
utilization of 60% and 90% in traditional SSDs and ZNS
SSDs, shown in Figure 5 and Figure 6, respectively. Each
point in figures are bandwidth values measured at every 0.5
second.

Bandwidth (IOPS)

Bandwidth (IOPS)

Virtualtime (0.5 second per point) Virtual time (0.5 second per point)

(a) 60% utilization (b) 90% utilization

Fig. 5: Unexpected performance drop while writing in Tradi-
tional SSDs.

Bandwidth (IOPS)

Virtual time (0.5 second per point) Virtual time (0.5 second per point)

(a) 60% utilization (b) 90% utilization

Fig. 6: Unexpected performance drop while writing in ZNS
SSDs.

Unexpected performance degradation indeed occurs in tra-
ditional SSDs, which happens more frequently in a higher
utilized condition as shown in Figure 5. On the contrary,
such degradation is not monitored in ZNS SSDs as presented
in Figure 6. This observation uncovers that ZNS SSDs are
a good basis to enhance predictability. Note that this result
does not imply that there is no garbage collection overhead
in ZNS SSDs. Instead, it implies that the overhead can be

controlled and can be hidden by employing a background
and/or preemptive mechanism at a host-level.

13800

zoneQ zonel —zone2 —zoned Zone400

13600
13400

13200

13000 %W\/\/\/\\ Y\

12800 — \/
Ve
12600

12400

Bandwidth (IOPS)

12200
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Virtual time (0.5 second per point)

Fig. 7: Performance differences among zones.

Figure 7 presents an interesting result observed by our
study. It shows that each zone provides different performance
in ZNS SSDs. Specifically in this experiment, executing the
worker thread on zone 0 provides the best performance, while
executing it on zone 9 performs the worst. This observation
indicates that, by exposing address spaces in ZNS SSDs, they
change from UMA (Uniform Memory Access) to NUMA
(Non-Uniform Memory Access) architecture. For instance,
an address range mapped with more worn flash memory
might provide longer latency due to ECC retries than other
ranges consistently. These characteristics can be utilized by
host software developers so that they place more frequently
accessed data in faster zones.

V. CONCLUSION

This paper investigates how features of ZNS SSDs affect
performance characteristics. One feature is the zone concept,
and our analysis reveals that it allows better isolation among
zones and requires larger request size to obtain parallelism in
a zone. The second feature is host-level flash management,
which enhances predictability and makes ZNS SSDs behave
like a NUMA architecture. Our observations can be exploited
usefully for both host software and ZNS SSD developers. For
instance, ZNS SSD developers can give hints about zone and
channel mapping, which can be used beneficially to reinforce
I/O determinism.

There are three directions for future research. The first
direction is making use of our observation to devise a host-
level algorithm for ZNS SSDs. We are currently developing
and verifying a new zone garbage collection scheme that reads
data in a group manner. The second direction is analyzing
I/O behavior at an application level and examining how it is
matched with the characteristics of ZNS SSDs. We actually
gather I/O traces of LevelDB and RocksDB [23] and analyze
how these traces affect ZNS SSD management modules. The
final direction is studying the effect of ZNS SSDs in distributed
storage backends [24], [25].

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
feedback. This research was supported in part by the MISP
(Ministry of Science, ICT Future Planning), Korea, under

Authorized licensed use limited to: University of Minnesota. Downloaded on September 18,2020 at 03:28:12 UTC from IEEE Xplore. Restrictions apply.

the National Program for Excellence in SW (2017-0-00091),
supervised by the IITP (Institute for Information communica-
tions Technology Planning Evaluation) and by Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education (No.
2019R1F1A1062284).

REFERENCES

[1] I. Picoli, N. Hedam, P. Bonnet, P. Tzn, “Open-Channel SSD (What is
it Good For)”, CIDR, 2020.

[2] B. Matias, “From Open-Channel SSDs to Zoned Namespaces”, USENIX
VAULT, 2019.

[3] D. Black, “The NVMe Standard: The Next Five Years”, NVMe Devel-
oper Days, Dec. 2018.

[4] NVMe Zoned Namespaces, https://zonedstorage.io/introduction/zns/.

[5]1 A. Gupta, Y. Kim and B. Urgaonkar, “DFTL: a flash translation
layer employing demand-based selective caching of page-level address
mappings”, ASPLOS, 2009.

[6] Western Digital Champions Zoned Storage, An Open
Initiative to Redefine Data Centers for Zettabyte Scale,
https://www.westerndigital.com/company/newsroom/press-
releases/2019/2019-06-11-western-digital-champions-zoned-storage.

[7]1 SK hynix Demonstrates Industrys First ZNS-based SSD Solu-
tion for Data Centers, https://news.skhynix.com/sk-hynix-demonstrates-
industrys-first-zns-based-ssd-solution-for-data-centers-2/.

[8] J. Hwang, “Towards Even Lower Total Cost of Ownership of
Data Center IT Infrastructure”, NVRAMOS Workshop, 2019,
http://www.sigfast.or.kr/nvramos/nvramos 19/presentation/nvramos 19-
samsung.pdf.

[9]1 Z. Shen, F. Chen, Y. Jia and Z. Shao, “DIDACache: A Deep Integra-
tion of Device and Application for Flash Based Key-Value Caching”,
USENIX FAST, 2017.

[10] J. Yang, N. Plasson, G. Gillis, N. Talagala and S. Sundararaman, “Don’t
stack your Log on my Log”, USENIX INFLOW, 2014.

[11] S.Lee, M. Liu, S. Jun, S. Xu, J. Kim and Arvind, “Application-managed
flash”, USENIX FAST, 2016.

[12] M. Bjorling, J. Gonzalez and P. Bonnet, “The Linux Open-Channel SSD
Subsystem”, USENIX FAST, 2017.

[13] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang and Y. Wang, “SDF: Soft-
ware defined flash for web-scale internet storage systems”, ASPLOS,
2014.

[14] T. Kim, D. Hong, S. Hahn, M. Chun, S. Lee, J. Hwang, J. Lee and J.
Kim, “Fully Automatic Stream Management for Multi-Streamed SSDs
Using Program Contexts”, USENIX FAST, 2019.

[15] J. Zhang, Youyou Lu, J. Shu and X. Qin, “FlashKV: Accelerating
KV Performance with Open-Channel SSDs”, ACM Transactions on
Embedded Computer systems, 2017.

[16] W. Chung, “Benefits of ZNS in Datacenter Storage Systems”, Flash
memory summit, 2019.

[17] G. Choi, M. Oh, K. Lee, J. Choi, J. Jin and Y. Oh, “A New LSM-style
Garbage Collection Scheme for ZNS SSDs”, USENIX Hotstorage, 2020.

[18] F. Wu, M. Yang, Z. Fan, B. Zhang, X. Ge, and D. Du, “Evaluating Host
Aware SMR Drives”, USENIX Hotstorage, 2016.

[19] A. Aghayev and P. Desnoyers, “SkylightA Window on Shingled Disk
Operation”, USENIX FAST, 2015.

[20] T. Yao, J. Wan, P. Huang, Y. Zhang, Z. Liu, C. Xie and X. He,
“GearDB: A GC-free Key-Value Store on HM-SMR Drives with Gear
Compaction”, USENIX FAST, 2019.

[21] Flexible I/O, https://fio.readthedocs.io/en/latest/fio_doc.html.

[22] R. Arpaci-Dusseau and A. Arpaci-Dusseau, “Chapter 37 in Operating
Systems: Three Easy Pieces”, http://pages.cs.wisc.edu/ remzi/OSTEP/.

[23] Z. Cao, S. Dong, S. Vemuri and D. Du, “Characterizing, Modeling, and
Benchmarking RocksDB Key-Value Workloads at Facebook”, USENIX
FAST, 2020.

[24] S. Weil, S. Brandt, E. Miller and D. Long, “Ceph: A Scalable, High-
Performance Distributed File System”, USENIX OSDI, 2006.

[25] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. Ganger and G.
Amvrosiadis, “File Systems Unfit as Distributed Storage Backends:
Lessons from 10 Years of Ceph Evolution”, SOSP, 2019.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 18,2020 at 03:28:12 UTC from IEEE Xplore. Restrictions apply.

