Skip to content
A tool to aggregate and load TB data to Neo4j
Python Shell Dockerfile
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
conda
images
neo4j
scripts
tb2neo
test
.gitignore
.travis.yml
Dockerfile
Jenkinsfile
LICENSE
MANIFEST.in
Pipfile
Pipfile.lock
README.md
docker-compose.yml
docker-entrypoint.sh
pytest.ini
requirements.txt
setup.cfg
setup.py

README.md

tb2neo

Build Status Coverage Status

Parses M.tuberculosis annotation (GFF file) and builds a Neo4j graph database storing the annotated features. tb2neo also aggregates and maps these annotated features to external services such as UniProt, CheMBL, DrugBank, KEGG, Reactome, QuickGo, STRING-DB etc.

Usage

Neo4j Installation

  • Instructions for a standalone Neo4j installation can be found here.

  • Using Docker:

    $ docker run -d -p 7474:7474 -p 7687:7687 --name neo -e NEO4J_AUTH=none -v=$HOME/neo4j/data:/data neo4j:3.5
    ...

tb2neo Installation

  • Using pip:

    $ pip install -i https://test.pypi.org/simple/ tb2neo
    ...
  • Using setup:

    Clone repository and create a virtual environment:

    $ git clone https://github.com/COMBAT-TB/tb2neo.git
    ...
    $ cd tb2neo
    $ virtualenv envname
    $ source envname/bin/activate
    $ pip install -r requirements.txt
    $ python setup.py install

Loading TB Data

To load TB data, we use the H37Rv GFF3 file from EnsemblBacteria.

Run the following command to see available options

$ tb2neo --help
...

Run the following command to load GFF features to Neo4j

$ tb2neo load_gff --gff_files PATH/TO/TB_GFF3_FILES
...

Exploring TB data

Point your browser to localhost:7474.

db.schema()

DB_MODEL

You can’t perform that action at this time.