
 Exploring

Self-Sovereign Identity

Literature Review

Index
1. Introduction ... 1

2. Review of Sources .. 2

3. Conclusion .. 8

4. References... 9

1

 Introduction

The Code of Duty “Exploring Self-

Sovereign Identity” project required

extensive research and insight into

a variety of topics that are still

relatively new and experimental,

both to group members and in the

technology field itself.

To bridge the gap in understanding

and ensure successful, optimized

implementation of the project, the

group undertook research into the

required fields, throughout the

project.

This literature review will highlight

the research and knowledge

acquired to complete the project.

Further research into topics not

specified in the initial requirements,

is also included, to show the

possible routes for expansion of

the project and technologies

therein.

2

Review of Sources

[1] An introduction to Blockchain technology is provided. The focus of the source is to

establish a basic understanding of Blockchain and how it works. It also provides a

guide on how to implement a private blockchain or “test chain” to perform transactions

in a safe environment that simulates the functioning of an actual blockchain. The test

chain in the source mimics the Ethereum blockchain and implementing the test chain

privately would simulate using the actual Ethereum blockchain. General concepts

relating to the blockchain is discussed. Terminology includes:

chainId: The private chain’s identifier used in replay protection.

homesteadBlock, eip155Block, eip158Block, byzantiumBlock: Relate to chain

forking and versioning

difficulty: This dictates how difficult it is to mine a block. Setting this value low (~10–

10000) is helpful in a private blockchain as it lets you mine blocks quickly, which equals

fast transactions, and plenty of ETH to test with. For comparison, the Ethereum

mainnet Genesis file defines a difficulty of 17179869184.

gasLimit: The total amount of gas that can be used in each block.

alloc: Allocates ETH to specific addresses.

[2] This source deals with states and transactions, how they are stored in Ethereum

and how it is different from Bitcoin. More exploration of Ethereum’s data storage layer

is done. The concept of blockchain “state” is introduced. The theory behind the Patricia

Trie data structure is discussed and Ethereum’s concrete implementation of tries using

Google’s leveldb database, is demonstrated. Bitcoin’s “state” is represented by its

global collection of Unspent Transaction Outputs (UTXOs). The transfer of value in

bitcoin is actioned through transactions. More specifically, a bitcoin user can spend

one or more of their UTXOs by creating a transaction and adding one or more of their

UTXOs as the transaction’s input. This model of UTXO makes Bitcoin different from

Ethereum. Firstly, bitcoin UTXOs cannot be partially spent. If a bitcoin user spends 0.5

bitcoin (using their only UTXO which is worth 1 bitcoin) they have to deliberately self-

address (send themselves) 0.5 bitcoin in return change. If they don’t send themselves

change, they will lose the 0.5 bitcoin change to the bitcoin miner who mines their

transaction. Secondly, at the most fundamental level, bitcoin does not maintain user

account balances. With bitcoin, a user simply holds the private keys to one or more

UTXO at any given point in time. Digital wallets make it seem like the bitcoin blockchain

automatically stores and organizes user account balances and so forth. This is not the

case. In contrast to the information above, the Ethereum world state is able to manage

account balances, and more. The state of Ethereum is not an abstract concept. It is

part of Ethereum’s base layer protocol. As the yellow paper mentions, Ethereum is a

transaction-based “state” machine; a technology on which all transaction-based state

machine concepts may be built. There are two vastly different types of data in

3

Ethereum; permanent data and ephemeral data. An example of permanent data would

be a transaction. Once a transaction has been fully confirmed, it is recorded in the

transaction trie; it is never altered. An example of ephemeral data would be the

balance of a particular Ethereum account address. The balance of an account address

is stored in the state trie and is altered whenever transactions against that particular

account occur. It makes sense that permanent data, like mined transactions, and

ephemeral data, like account balances, should be stored separately. Ethereum uses

trie data structures to manage data.

[3] Smart contracts integration with Nethereum is discussed in the source. The

purpose of this sample is the following: Understanding how to create contract

deployment, function and event definitions to interact with a smart contract, creating

an account object using a private key, allowing to sign transactions “offline”, deploying

a smart contract (the sample provided is the standard ERC20 token contract), making

a call to a smart contract (in this scenario get the balance of an account), sending a

transaction to the smart contract (in this scenario transferring balance), estimating the

gas cost of a contract transaction, Gas Price, Nonces and Sending Ether to smart

contracts, signing online / offline transaction function messages and deployment

messages, extension methods for Deployment and Function messages, retrieving the

state of a smart contract from a previous block. Pre-Conditions: The ERC20 standard

token contract is interacted with. The smart contract provides a standard way to create

a new token, transfer it to another account and query the balance of any account. This

standard interface allows the interoperability of smart contracts providing the same

signature and applications that integrate with it. To deploy a contract one must create

a class inheriting from the ContractDeploymentMessage, here compiled byte code and

other constructor parameters can be included.The StandardToken deployment

message includes the compiled bytecode of the ERC20 smart contract and the

constructor parameter with the “totalSupply” of tokens. Each parameter is described

with an attribute Parameter, including its name “totalSupply”, type “uint256” and order.

Making a transfer will change the state of the blockchain, so in this scenario we will

need to create a TransactionHandler using the TransferFunction definition. In the

transfer message, one must include the receiver address “To”, and the “TokenAmount”

to transfer. The final step is to send the request and wait for the receipt to be “mined”

and included in the blockchain. Another option will be not to wait (poll) for the

transaction to mined and just retrieve the transaction hash.

[4] Ganache is a personal blockchain for rapid Ethereum and Corda distributed

application development. You can use Ganache across the entire development cycle;

enabling you to develop, deploy, and test your dApps in a safe and deterministic

environment. Ganache comes in two flavors: a UI and CLI. Ganache UI is a desktop

application supporting both Ethereum and Corda technology. Our more robust

command-line tool, ganache, is available for Ethereum development. It offers:

console.log in Solidity, Zero-config Mainnet and testnet forking, Fork any Ethereum

network without waiting to sync, Ethereum JSON-RPC support, Snapshot/revert state,

4

Mine blocks instantly, on demand, or at an interval, Fast-forward time, Impersonate

any account (no private keys required!), Listens for JSON-RPC 2.0 requests over

HTTP/WebSockets, Programmatic use in Node.js, Pending Transactions. All versions

of Ganache are available for Windows, Mac, and Linux.

[5] Nethereum is the .Net integration library for Ethereum, simplifying smart contract

management and interaction with Ethereum nodes whether they are public, like Geth

Parity or private, like Quorum and Besu. Nethereum is being developed targeting

netstandard 1.1, net451 and also as a portable library, hence it is compatible with all

major operating systems (Windows, Linux, MacOS, Android and OSX) and has been

tested on cloud, mobile, desktop, Xbox, hololens and windows IoT. Upcoming releases

will be Ethereum 2.0 compliant (when Ethereum 2.0 is released) and include

functionalities such as DevP2P, Plasma and Micro-Payments. Features: JSON RPC /

IPC Ethereum core methods, Geth management API (admin, personal, debugging,

miner), Parity management API, Quorum integration,Besu. Simplified smart contract

interaction for deployment, function calling, transaction and event filtering and

decoding of topics, Unity 3d Unity integration, Blockchain processing, ABI to .Net type

encoding and decoding, including attribute-based for complex object deserialisation

(nethereum-abi-encoding.md), Hd Wallet creation and management, Rules engine,

HD Wallet integration, Transaction, RLP and message signing, verification and

recovery of accounts, Libraries for standard contracts Token, ENS and Uport,

Integrated TestRPC testing to simplify TDD and BDD (Specflow) development, Key

storage using Web3 storage standard, compatible with Geth and Parity, Simplified

account life cycle for both managed by third party client (personal) or stand-alone

(signed transactions), Low level Interception of RPC calls, Code generation of smart

contracts services.

[6] The video resource explores different ways of how to actively store data into the

Ethereum blockchain using smart contracts written in solidity, with a focus on Data

Types, Functions, Mapping & Structs.

[7] Ethereum is a decentralized, open-source blockchain network with Turing-

complete smart contract functionality. Ether (ETH) is the native cryptocurrency. Users

manage the global state of the Ethereum (execution layer) with a decentralized proof-

of-work (PoW) consensus mechanism. The ETH2 (consensus layer) replaces PoW

with a proof-of-stake (PoS) consensus mechanism. The Ethereum JSON-RPC API is

a library of methods that interact with the Ethereum blockchain via JSON-RPC.

Methods include functionality for reading and writing data to the network and executing

smart contracts. Use the Ethereum JSON-RPC API on: Ethereum Mainnet, Ethereum

testnets Rinkeby, Kovan, Görli, and Ropsten, Polygon, Optimism, Arbitrum.

Transactions with type 0x0 are legacy transactions that use the transaction format

existing before typed transactions were introduced in EIP-2718. They contain the

parameters nonce, gasPrice, gasLimit, to, value, data, v, r, and s. Legacy transactions

5

don’t use access lists or incorporate EIP-1559 fee market changes. Access list

transactions: Transactions with type 0x1 are transactions introduced in EIP-2930.

They contain, along with the legacy parameters, an accessList parameter, which

specifies an array of addresses and storage keys that the transaction plans to access

(an access list). Access list transactions must specify an access list, and they don’t

incorporate EIP-1559 fee market changes. EIP-1559 transactions: Transactions with

type 0x2 are transactions introduced in EIP-1559, included in Ethereum's London fork.

EIP-1559 addresses the network congestion and overpricing of transaction fees

caused by the historical fee market, in which users send transactions specifying a gas

price bid using the gasPrice parameter, and miners choose transactions with the

highest bids. EIP-1559 transactions don’t specify gasPrice, and instead use an in-

protocol, dynamically changing base fee per gas. At each block, the base fee per gas

is adjusted to address network congestion as measured by a gas target. EIP-1559

transactions contain, along with the accessList parameter and legacy parameters

except for gasPrice, a maxPriorityFeePerGas parameter, which specifies the

maximum fee the sender is willing to pay per gas above the base fee (the maximum

priority fee per gas), and a maxFeePerGas parameter, which specifies the maximum

total fee (base fee + priority fee) the sender is willing to pay per gas. An EIP-1559

transaction always pays the base fee of the block it’s included in, and it pays a priority

fee as priced by maxPriorityFeePerGas or, if the base fee per gas +

maxPriorityFeePerGas exceeds maxFeePerGas, it pays a priority fee as priced by

maxFeePerGas minus the base fee per gas. The base fee is burned, and the priority

fee is paid to the miner that included the transaction. A transaction’s priority fee per

gas incentivizes miners to include the transaction over other transactions with lower

priority fees per gas.

[8] Introduction to Calls, Transactions, Events, Filters and Topics. The test contract:

The following smart contract is an updated version of the “multiply” contract from the

previous guide: The smart contract now includes an Event called “Multiplied”. The

event will store on the log the original parameter for multiplication “a”, the address of

the “sender” and the “result” of the multiplication. The parameter “a” and the “sender”

address are both indexed so we can create specific filters for those two values using

topics. Deploying the contract: As per the previous guide, we can deploy the contract.

The multiply transaction: When performing a call, we are either retrieving data which

is stored in the smart contract state or we are performing an action (i.e multiplication),

calls are not transactions which are verified through the blockchain consensus.

Submitting a transaction to perform a function operation in a smart contract does not

return the result of the operation, events can be used to retrieve information or we can

inspect the state of the smart contract by using function calls. Using the contract

address from deploying the transaction we can create an instance of a contract object

and the function “multiply”. The function object simplifies submitting transactions in the

same way as calls. As per the example above we just need to include the

“senderAddress” which will be charged the gas associated with the operation together

with the parameters for the function operation. There is also the option to specify the

gas or include an Ether value as part of the transaction. On the example, we have

6

submitted 2 transactions to perform a multiplication for 7 and 8 respectively, and are

waiting for the transaction to be mined on our private test chain. Events, filters and

topics. Creating events and filters: Events are defined as part of the abi, and similarly

to the functions we can get events using our contract instance. The event object allows

to create filters in order to retrieve the information stored on the log. In the example

above we are retrieving the logs in which the multiply parameter is 7, because the

input parameter for the multiplication is marked as indexed, we can filter for that topic.

In a similar way, we can filter the sender address as it is also marked as indexed, but

if we wanted to filter for that specific topic we will use the second parameter when

creating the filter. Event DTO: Event data transfer objects allows to simply decode all

the event parameters into a transfer object, in a similar way as we will deserialise a

Json object. In the example above, the MultipliedEvent properties have been

“mapped” with custom parameter attributes to the event parameters. Each parameter

specifies the original type, name, order and if is indexed or not. As we can see, types

like address are decoded into strings and in our scenario we are safe to decode int256

to int32 but if not known, the final type BigInteger would have been a better option.

Retrieving the events and logs: Using the filters we have already created, we can

retrieve the logs and events. Above we are using GetFilterChanges, which can be

used to retrieve any logs that matches our criteria since the filter was created or since

the last time we tried to retrieve the changes. Other option would have been to use

GetAllChanges using the FilterInput.

[9] The Netherium Playground provides a test environment to simulate Blockchain

transactions and helped form the basic and understanding of the implementation of

the blockchain in the project itself.

[10] A technical guide on how to get Ethereum’s transaction details from its transaction

hash, with code examples and further exploration into the uses thereof.

[11] A look at Microsoft Azure’s “Key Vault.” Enhance data protection and compliance.

Secure key management is essential to protect data in the cloud. Use Azure Key Vault

to encrypt keys and small secrets like passwords that use keys stored in hardware

security modules (HSMs). For more assurance, import or generate keys in HSMs, and

Microsoft processes your keys in FIPS validated HSMs (hardware and firmware) -

FIPS 140-2 Level 2 for vaults and FIPS 140-2 Level 3 for HSM pools. With Key Vault,

Microsoft doesn’t see or extract your keys. Monitor and audit your key use with Azure

logging—pipe logs into Azure HDInsight or your security information and event

management (SIEM) solution for more analysis and threat detection. All of the control,

none of the work. Use Key Vault and you don’t need to provision, configure, patch,

and maintain HSMs and key management software. Provision new vaults and keys (or

import keys from your own HSMs) in minutes and centrally manage keys, secrets, and

policies. You keep control over your keys—simply grant permission for your own and

partner applications to use them as needed. Applications never have direct access to

7

keys. Developers manage keys used for Dev/Test and seamlessly migrate to

production the keys that are managed by security operations. Simplify and automate

tasks related to SSL/TLS certificates—Key Vault enables you to enroll and

automatically renew certificates from supported public Certificate Authorities. Boost

performance and achieve global scale. Improve performance and reduce the latency

of your cloud applications by storing cryptographic keys in the cloud, instead of on-

premises. Key Vault quickly scales to meet the cryptographic needs of your cloud

applications and match peak demand, without the cost of deploying dedicated HSMs.

Achieve global redundancy by provisioning vaults in Azure global datacenters—keep

a copy in your own HSMs for more durability.

[12] An introduction and documentation for Three.js, a framework used for three-

dimensional graphics and animations in JavaScript. This forms part of the research

when deciding how to implement the “Avatar” functionality of the SSI system.

[13] Remix Ethereum provides a test environment to simulate Blockchain transactions

and helped form the basic and understanding of the implementation of the blockchain

in the project itself. It serves as an online IDE for blockchain interactions.

8

Conclusion

The research detailed in this review ensured that every

group member was well-informed on the subject matter,

to the extent where we could apply concepts learned in

new and experimental ways, that fit our needs for the

Self-Sovereign Identity Project. The knowledge gained

from the research informed important project decisions

in terms of technology used and specific implementation

details. By conducting this research, we were able to

ensure that the technology used is relevant, optimal and

well-suited to all the requirements and specifications.

9

References

1. Mercury Protocol. 2017. Available from: https://medium.com/mercuryprotocol/how-to-

create-your-own-private-ethereum-blockchain-dad6af82fc9f [Accessed: 11 July 2022]

2. Vasa. 2018. Available from: https://medium.com/hackernoon/getting-deep-into-

ethereum-how-data-is-stored-in-ethereum-e3f669d96033 [Accessed: 11 July 2022]

3. Netherium Documentation. 2022. Available from:

https://docs.nethereum.com/en/latest/nethereum-smartcontrats-gettingstarted/

[Accessed: 12 July 2022]

4. Truffle Suite. 2022. Available from: https://trufflesuite.com/ganache/ [Accessed: 14

July 2022]

5. Netherium. 2022. Available from: https://nethereum.com/ [Accessed: 14 July 2022]

6. Cryptological. 2018. Available from: https://youtu.be/ZkWaAKl8npU [Accessed: 15

July 2022]

7. Infura Inc. 2022. Available from: https://infura.io/ [Accessed: 24 July 2022]

8. Netherium Documentation. 2022. Available from:

https://docs.nethereum.com/en/latest/contracts/calling-transactions-events/

[Accessed: 25 July 2022]

9. Netherium Playground. 2022. Available from:

http://playground.nethereum.com/csharp/id/1007] [Accessed: 27 July 2022]

10. Moriya, H. 2018, Available from: https://piyopiyo.medium.com/how-to-get-ethereums-

transaction-details-from-its-transaction-hash-b6a376887491 [Accessed: 28 July

2022]

11. Microsoft Azure. 2022. Available from: https://azure.microsoft.com/en-

us/services/key-vault/ [Accessed: 1 August 2022]

12. Three.js. 2022. Available from: https://threejs.org/ [Accessed: 1 August 2022]

13. Remix Ethereum. 2022. Available from: https://remix.ethereum.org/ [Accessed: 21

August 2022]

https://medium.com/mercuryprotocol/how-to-create-your-own-private-ethereum-blockchain-dad6af82fc9f
https://medium.com/mercuryprotocol/how-to-create-your-own-private-ethereum-blockchain-dad6af82fc9f
https://medium.com/hackernoon/getting-deep-into-ethereum-how-data-is-stored-in-ethereum-e3f669d96033
https://medium.com/hackernoon/getting-deep-into-ethereum-how-data-is-stored-in-ethereum-e3f669d96033
https://docs.nethereum.com/en/latest/nethereum-smartcontrats-gettingstarted/
https://trufflesuite.com/ganache/
https://nethereum.com/
https://youtu.be/ZkWaAKl8npU
https://infura.io/
https://docs.nethereum.com/en/latest/contracts/calling-transactions-events/
http://playground.nethereum.com/csharp/id/1007
https://piyopiyo.medium.com/?source=post_page-----b6a376887491--------------------------------
https://piyopiyo.medium.com/how-to-get-ethereums-transaction-details-from-its-transaction-hash-b6a376887491
https://piyopiyo.medium.com/how-to-get-ethereums-transaction-details-from-its-transaction-hash-b6a376887491
https://azure.microsoft.com/en-us/services/key-vault/
https://azure.microsoft.com/en-us/services/key-vault/
https://threejs.org/
https://remix.ethereum.org/

