

SRS

GYM KING Codebusters Demo 4 – 29/09/2022

1

Contents
1. Requirements Specification ... 4

1.1. Introduction ... 4

1.2. User Characteristics ... 4

1.2.1. Gym Owners .. 4

1.2.2. Gym Employees... 4

1.2.3. Gym Members .. 4

1.3. User Stories .. 5

1. Creating a GYM ... 5

2. Creating a USER /Registering a USER .. 5

3. Creating a BADGE .. 5

4. Editing/Deleting a BADGE ... 5

5. Uploading a BADGE CLAIM ... 5

6. Accepting/Rejecting a BADGE CLAIM.. 5

7. Editing/Deleting a GYM ... 6

8. Log In ... 6

9. Using the MAP ... 6

10. The LEADER BOARDS ... 6

11. PROFILE PAGE ... 6

12. Viewing the PENDING BADGES ... 6

13. Finding FRIENDS .. 6

14. Accepting/Rejecting FRIEND REQUESTS ... 7

15. Viewing the PROFILE of FRIENDS .. 7

16. FORGOT Password .. 7

17. Viewing BADGE in Augmented Reality (AR) .. 7

2. Functional Requirements ... 8

2. 1. Subsystems .. 9

S1 – Map ... 9

S2 – Leader boards .. 9

S3 - Gym Management ... 9

S4 – Users .. 9

S5 – AR (Augmented Reality) .. 9

S6 – AI (Artificial Intelligence) ... 9

S7 – Friends ... 9

2.2. Use Cases ... 10

GYM KING Codebusters Demo 4 – 29/09/2022

2

2.2.1. U1 - Adding Gym to Map .. 10

2.2.2. U2 - Uploading Exercise Record .. 10

2.2.3. U3 - Accepting/Rejecting Exercise Record .. 11

2.2.4 U4 – Creating a Badge .. 11

2.2.5 U5 – Editing a Badge .. 12

2.2.6 U6 – Deleting a Badge .. 12

2.2.7 U7 – Viewing Badges .. 13

2.2.8 U8 – Viewing Leader boards .. 13

2.2.9 U9 – Registering a User .. 14

2.2.10 U10 – Logging In ... 14

2.2.11 U11 – Reset a Forgotten Password .. 15

2.2.12 U12 – Accepting/Rejecting Friend Requests .. 15

3. Service Contracts .. 16

3.1. Users .. 16

3.1.1. GETs... 16

3.1.2. POSTs .. 17

3.1.3. PUTs .. 22

3.1.4. DELETEs ... 24

3. 2. Employees ... 25

3.2.1. GETs... 25

3.2.2. POSTs .. 25

3.2.3. PUTs .. 27

3.2.4. DELETEs ... 30

3.3. Owners ... 31

3.3.1. GETs... 31

3.3.2. POSTs .. 31

3.3.3. PUTs .. 33

3.3.4. DELETEs ... 35

4. Class Diagram ... 36

5. Quality Requirements .. 37

6. Trace-ability Matrix .. 38

7. Architecture Design .. 40

7.1. Architectural Design Strategy .. 40

7.2. Architectural Styles .. 40

7.2.1. Client-Server Architecture (multi-tier) .. 40

7.2.2. Component-based Architecture ... 40

GYM KING Codebusters Demo 4 – 29/09/2022

3

7.2.3. Cloud Computing Architecture ... 40

7.3. Architectural Quality Requirements .. 40

7.3.1. Availability ... 40

7.3.2. Deploy-ability .. 40

7.3.3. Maintainability .. 41

7.3.4. Security ... 41

7.3.5. Scalability .. 41

7.4. Architectural Design and Pattern ... 41

7.5. Architectural Constraints ... 43

7.6. Technology Choices.. 43

7.6.1. Heroku ... 43

7.6.2. Ionic React ... 43

7.6.3. ARCore and ARKit .. 44

8. Deployment Diagram ... 45

GYM KING Codebusters Demo 4 – 29/09/2022

4

1. Requirements Specification
1.1. Introduction
Gym King is a product designed to offer a unique motivational tool for gym users. Gym King takes
the concept of gamification and combines it with working out. Gyms will be able to create a
collection of badges that gym users can earn by achieving their workout goals.

As an added motivation for people to push themselves harder in their workouts is the Gym Leader
boards. The more badges a user has achieved, the higher ranking they would have on the Gym’s
leader board.

Using open-source technology, with a dash of Augmented Reality (AR), Gym King plans to
revolutionise the Gym Community.

1.2. User Characteristics
There will be three types of users – Gym Owner, Gym Employee and Gym Member. Each user will be
able to view the leader boards and badges available for the gym, as well as the details of the gym,
such as its location on the map, and the facilities it has.

1.2.1. Gym Owners
Gym Owners are the owners of the gym. A Gym Owner can manage a single gym or multiple gyms.
This user will be adding/updating information about the gym, such as its name, its location, and
what facilities the gym has available. This user will also be creating, editing, and deleting the badges
that the gym offers. Gym Owners will also be able to manage the employee profiles for each gym’s
employees.

1.2.2. Gym Employees
Gym Employees will primarily be focusing on the assisting Gym Members workout. Gym Employees
will be able to verify that a Gym Member has done enough to achieve a badge that the gym offers –
such as running 10 kilometres. Whilst an Artificial Intelligence component will go the majority of the
verification for the badge claims from Gym members, the Gym Employees will occasionally need to
accept or reject claims that are disputed.

1.2.3. Gym Members
Gym Members will be the members and users of the gym. They will mainly be focusing on the actual
workouts and earning badges for working out. They will submit evidence that they have workout,
such as a photo of treadmill display that says that the user has run 10 kilometres that session and
will then wait for their claim to be accepted or rejected. If their claim has been accepted, then they
would earn a badge. The more badges a Gym Member has, the higher their ranking will be on the
Gym’s leader board. Gym Members will also be able to communicate with other gym members and
their friends to compete in their workouts.

GYM KING Codebusters Demo 4 – 29/09/2022

5

1.3. User Stories

1. Creating a GYM
User Story: As an owner of a Gym, I want to be able to create a gym on the application. I want to
be able to name my gym, give details about my gym, and mark the location of my gym on the
app’s map.

Acceptance Criteria: Given the information provided, create a gym, saving the name of the gym,
details of the gym, and save the location of the Gym on the Application’s built-in map feature.

2. Creating a USER /Registering a USER
User Story: As a user, I want to be able to register a new account with the app.

Acceptance Criteria: The system should allow all users to register a new account, and update the
database in the back-end accordingly.

3. Creating a BADGE
User Story: As a gym owner, I want to be able to create a wide variety of badges that members of
my gym can earn. I want to be able to specify the name of the badge, the requirements that need
to be completed to earn the badge, etc.

Acceptance Criteria: The system should allow a user to input the desired information to create a
badge that gym members can earn.

4. Editing/Deleting a BADGE
User Story: As a gym owner, I want to be able to delete or edit a badge that I have already
created. Sometimes, I want to change details about the badge, or I no longer want that badge to
be available.

Acceptance Criteria: The system should allow gym owners to be able to edit and/or delete any
existing badges that they have.

5. Uploading a BADGE CLAIM
User Story: As a gym member, I need to be able to create a claim to earn a badge.

Acceptance Criteria: The user should be able to input the necessary information, such as the
workout activity they completed and proof of the activity (e.g., a picture of a treadmill readout) to
confirm that the user has completed the workout and the claim must be submitted.

6. Accepting/Rejecting a BADGE CLAIM
User Story: As a gym employee I want to be able to verify that a gym member actually did the
workout activity that they claimed that they did, and accept or reject the claim, however, I don’t
want to have a lot of additional administrative work added to my workload.

Acceptance Criteria: The system should use the AI component to do basic verification of badge
claims, and accept or reject the easily identifiable claims, so that only the edge cases of the badge
claims need to be manually accepted or rejected by the gym employee.

GYM KING Codebusters Demo 4 – 29/09/2022

6

7. Editing/Deleting a GYM
User Story: As an owner of a gym, I want to be able to edit the details of my gym, for example, if
the location of the gym changes, I want to be able to change the address of the gym on the app. I
also might want to delete a gym, if the gym closes down.

Acceptance Criteria: The system should allow a gym owner to edit the details of the gym that they
manage and update this information in the database. If a gym is deleted, the gym should be
completely removed from the system and the database.

8. Log In
User Story: As a User of the Gym King application, I want to be able to log in to the application
using my credentials.

Acceptance Criteria: When the user inputs their log in details, the system should confirm that the
details are correct, and then should log the user into their account.

9. Using the MAP
User Story: As a user of the product, I want to be able to use the built-in map function to find
gyms near me, and to be able to find specific gyms in an area.

Acceptance Criteria: The system should allow all users to use the map function, and the map
function should be able to display the locations of the registered gyms, and the user’s current
location.

10. The LEADER BOARDS
User Story: As a gym member, I want to be able to view the leader boards for my gym, so that I
can see what ranking I have, and try to rank higher.

Acceptance Criteria: All users should be able to view the leader boards.

11. PROFILE PAGE
User Story: As a user, I want to be able to view my account profile page, and I also want to be able
to view the profile pages of other users.

Acceptance Criteria: The system should allow users to view their profile pages, as well as the
profile pages of other registered users, whilst still maintaining privacy and information security –
e.g., not displaying information that the user does not want displayed on the profile page.

12. Viewing the PENDING BADGES
User Story: As a gym employee, I want to be able to see what claims are still outstanding. As a
gym member, I want to be able to see the status of the badges that I have claimed for.

Acceptance Criteria: The system should allow the user to view the badge claims that are still
outstanding.

13. Finding FRIENDS
User Story: As a user, I want to be able to find friends through the app so that we could work out
together.

Acceptance Criteria: The system should allow users to be able to find other users of the
application.

GYM KING Codebusters Demo 4 – 29/09/2022

7

14. Accepting/Rejecting FRIEND REQUESTS
User Story: As a user, I want to be able to accept friend requests, but I also want to be able to
reject friend requests from people I don’t know.

Acceptance Criteria: Users should be able to both accept and/or reject friend requests from other
users, and the system should update according to the accept/reject selection.

15. Viewing the PROFILE of FRIENDS
User Story: I want to be able to see what my friends are doing, so I want to be able to see their
profiles.

Acceptance Criteria: The system should allow users to view the profiles of other users.

16. FORGOT Password
User Story: As a user, I sometimes might forget my password. I want to be able to access my
account if I forget my password.

Acceptance Criteria: Using an OTP system, the user should be able to reset their password, so long
as they have an existing account with the application and have access to the telephone number
and/or email address connected to the account to reset their password.

17. Viewing BADGE in Augmented Reality (AR)
User Story: As a User of the application, I want to be able to view the badges that I can earn in
Augmented Reality.

Acceptance Criteria: Badges should be able to be viewed in augmented reality, so long as the
device the app is located on has Augmented Reality capability.

GYM KING Codebusters Demo 4 – 29/09/2022

8

2. Functional Requirements
• FR1 - Gym Owners must be allowed to create, edit and delete badges.

o FR1.1 - Gym Owners must be able to create badges
o FR1.2 - Gym Owners must be able to edit badges.
o FR1.3 - Gym Owners must be able to delete badges.

• FR2 - The product’s built-in map system should allow users to view the location of all
registered Gyms, as well as being able to display details about each gym.

o FR2.1 – The Map should be able to allow users to view the details of each gym
located on the map.

o FR2.2 – The Map should be able to recentre itself to the user’s current location.
o FR2.3 – The Map should be able to display all registered gyms.
o FR2.4 – The Map should allow the Gym Owner to add a Gym to the Map.
o FR2.5 – The Map should allow the Gym Owner to edit details about the Gym on the

Map.
o FR2.6 – The Map should allow the Gym Owner to delete a gym.

• FR3 - Gym Owners and Gym Employees must be able to accept/reject the Gym Members’
badge claims.

o FR3.1 – Gym Owners and Gym Employees must be able to reject the Gym Members’
badge claims.

o FR3.2 – Gym Owners and Gym Employees must be able to accept the Gym
Members’ badge claims.

• FR4 - Gym Members must be able to submit claims for badges.

• FR5 - The product must allow users to view the badges that the Gym has made available.

• FR6 - Users must be able to view the badges earned by other users.

• FR7 - All leader boards must be viewable by users.
o FR7.1 – Leader boards should be able to display the username of the Gym Member

and the total number of badges that they have earned.

• FR8 - The product must allow the users to be ranked on the leader boards according to the
number of badges earned

• FR9 - The product must be able to support all augmented reality (AR) components (for
example, the AR badge display for Gyms)

• FR10 – The product should allow users to register an account.
o FR10.1 – The product should allow a gym owner to register an account.
o FR10.2 – The product should allow a gym employee to register an account.
o FR10.3 – The product should allow a gym member to register an account.

• FR11 – The product should allow users to log in.
o FR11.1 – The product should allow a gym owner to log in to their account.
o FR11.2 – The product should allow a gym employee to log in to their account.
o FR11.3 – The product should allow a gym member to log in to their account.

• FR12 – The product should allow users to reset their password if the password is forgotten.
o FR12.1 – The product should allow a gym owner to reset their password if the

password is forgotten.
o FR12.2 – The product should allow a gym employee to reset their password if their

password is forgotten.
o FR12.3 – The product should allow a gym member to reset their password if their

password is forgotten.

• FR13 – The Artificial Intelligence (AI) component should be able to verify the gym member’s
badge claim.

• FR14 – The Map should allow users to search for a gym using the Map’s search bar.

• FR15 – The product should allow users to accept and/or reject friend requests.

GYM KING Codebusters Demo 4 – 29/09/2022

9

• FR16 – The product should allow users to create a friend request.

• FR17 – The product should allow users to view the profile of other users.

2. 1. Subsystems

S1 – Map
The Map subsystem allows users of the application to find registered gyms. The Map allows users to

scan their area, or specifically search for gyms using the search bar. The map uses the user’s current

location to centre the map and to render the map around them.

S2 – Leader boards
The leader boards take the number of badges and points that a user has earned and then ranks

them accordingly on the leader boards. The leader boards allow the user to view their ranking within

the gym overall and within specific categories, such as strength and cardio. The higher the number of

badges and points, the higher the ranking.

S3 - Gym Management
The Gym management subsystem allows the owner of the gym to manage the gym. This subsystem

links to the employee profiles and the ability to add new employees to gyms, as well as creating,

editing and deleting badges for a gym, as well as adding and editing gyms for the other.

S4 – Users
The user subsystem allows users to access their profiles, edit their account details, etc. Some of the

parts of the system that the user can access depends on their user role. A gym owner has access to

the gym management subsystem. The gym member users can upload claims for badges, etc. The

gym employee users can accept or reject badge claims, etc. Each user role has access to the map

subsystem.

S5 – AR (Augmented Reality)
The Augmented Reality subsystem allows the application to display the badges made in the

application to be viewed in AR through the user’s device’s camera. This subsystem is largely

dependent on whether or not the device it is being used on has AR capabilities. Whilst, most modern

mobile devices have this capability, not all do.

S6 – AI (Artificial Intelligence)
The Artificial Intelligence subsystem reduces the amount of work placed on the gym employees by

automating the verification of the badge claims and the subsequent acceptance of or rejection of

the badge claim. The gym employees will then only have to handle disputed badge claims – such as

when the AI rejects a badge claim but the gym member believes this to be inaccurate, or edge cases

that the AI is uncertain of.

S7 – Friends
The friend subsystem allows users of the application to connect with other users of the application.

Friends can be created through friend requests, which can either be accepted or rejected. Friends

can workout together and help encourage other users to improve their workouts and earn more

badges.

GYM KING Codebusters Demo 4 – 29/09/2022

10

2.2. Use Cases

2.2.1. U1 - Adding Gym to Map

A Gym Owner creates a Gym, adding the Gym Name, a basic description, and the Gym’s address. The
Address is then added to the Map, so that Gym can be displayed. The Database is also updated with
all the information gathered about the Gym.

2.2.2. U2 - Uploading Exercise Record

A Gym member creates a new Exercise record, stating the name of the activity completed (e.g.
cycling) and uploads visual (photographic) proof of the exercise and presses the upload button. The
record is then sent to the Verification Pending list, where it will be until a Gym Employee either
accepts the record or rejects it.

GYM KING Codebusters Demo 4 – 29/09/2022

11

2.2.3. U3 - Accepting/Rejecting Exercise Record

Here, a Gym Employee takes an Exercise record from the list of pending records, mentioned above,
and verifies the record by either accepting or rejecting it. If it is rejected, the record is simply
discarded, however, if the record is accepted, the Gym Member associated with the record receives
the appropriate badge, and the leader board is then updated to count this new badge.

2.2.4 U4 – Creating a Badge

A key feature of the Gym King product is for Gym Employees and Gym Owners to be able to create

new badges that their Gym Members can earn. Creating a badge is a simple task. When the Gym

Employee decides to create a new badge, they are taken to the Create Badge page. On this page, the

Gym Employee will be able to add a name and description of the badge, link the badge to a

particular activity type, such as Cardio and add a challenge, such as cycling 5km in a single session,

that needs to be completed to earn the badge. Once the Gym Employee has created the badge, the

badge is available for Gym Members to earn.

GYM KING Codebusters Demo 4 – 29/09/2022

12

2.2.5 U5 – Editing a Badge

When a Gym Employee wishes to edit a badge, they will select the badge they wish to edit, and then

select the edit option. They will then be taken to the Edit Badge page, which is similar to the Create

Badge page. Here the Gym Employee will be able to edit any of the fields that make the badge, such

as the name, description, the challenge and the activity type associated with the badge. Once they

have edited the badge, they will save it, and the changes will take effect. The badge is updated in the

database and the changes will be visible when viewing and earning the badge.

2.2.6 U6 – Deleting a Badge

When a Gym Employee wishes to delete a badge they will select the badge and then select the

delete badge option. This will delete the badge and badge will no longer be displayed with the other

badges on the View Badge page, this also means that no Gym Member can earn this badge.

GYM KING Codebusters Demo 4 – 29/09/2022

13

2.2.7 U7 – Viewing Badges

The View Badge page allows the user, whether Gym Employee or Gym Member to view all the

badges that a gym has. The page will allow the user to click on a badge, which will then take the user

to the Badge page where the user can view the details associated with the selected badge. The View

Badge Page can also display badges for different gyms.

2.2.8 U8 – Viewing Leader boards

The Leader boards is where the users can view who has the most badges. Each user has the number
of badges they have earned tallied up and ranked accordingly. The information is taken from the
database and displayed for the user to see.

GYM KING Codebusters Demo 4 – 29/09/2022

14

2.2.9 U9 – Registering a User

When the application opens, the user has two options, to register as an existing user or register as a

new user. When registering as a new user, the user as to input information needed to create their

account. Information such as their name, username, password, email address and phone number.

This information is then saved in the database and a new user is created.

2.2.10 U10 – Logging In

When the application opens, the user arrives on the Login screen. Here the user just has to enter

their log in credentials, such as their email address and password. If the Log in is successful – i.e. the

user’s log in details match that which is stored in the database – the user is logged into their

account. If the log in is unsuccessful, the user is notified via a pop-up (toast) notification that their

details are incorrect.

GYM KING Codebusters Demo 4 – 29/09/2022

15

2.2.11 U11 – Reset a Forgotten Password

In the event that a user forgets their password, they can reset their password using a small link at

the bottom of the Login page. The user will then enter the email address linked to their account. The

system will then send the user an OTP (One Time Pin) that lasts 5 minutes to their email. When the

correct OTP is inputted, the user will then be able to enter a new password, and then enter this new

password again to confirm the new password. The user’s password is then updated in the database

and the user is now logged in to their account with their new password.

2.2.12 U12 – Accepting/Rejecting Friend Requests

The application allows user to link with friends/other users that are registered with the application.

The user can link with friends using friend requests. When the user receives a friend request, they

can either accept or reject the friend request. If the friend request is accepted, the user then gains a

friend on the application, else if the application is rejected, then the friend request is removed from

the system.

GYM KING Codebusters Demo 4 – 29/09/2022

16

3. Service Contracts
3.1. Users

3.1.1. GETs

Endpoints Parameters Returns

 /badges/badge/{bid} URL {string} bid - Give
badge ID for specific
badge or * for all badges.

The specified badges details or if
the input was ‘*’ you will get
every single one of the badges’
details.

/badges/gym/{gid} URL {string} gid - Input of
the gym ID to find all
badges that belong to the
gym.

A list with information on all
badges that belong to the gym.

/brands/brand/ URL no parameters Returns all gym brands with
their information

/brands/brand/{brandname} URL {string} brandname -
brand name

Returns the specific brand with
its information.

/brands/brand/logo/{brandname} URL {string} brandname -
brand name

Returns the logo of the gym
brand.

/brands/brand/badges/{brandname} URL {string} brandname -
brand name

Returns the badges that belong
to brand.

/gyms/gym/name/{gymName} URL {string} gymName -
name of the gym.

Returns the specific gym with its
information.

/badges/gym/{gid} URL {string} gid - gym’s ID List all badges that belong to
gym.

/gyms/gym/{gid} URL {string} gid - Input of
the gym ID to find a gym.

Information on the gym found
by the gym ID.

/gyms/getAllGyms URL no parameters Returns all the gyms.

/leaderboard/score/{gid} URL {string} gid - Gym ID. List of all badges, with
usernames and amount of times
they earned that badge.

/users/user/{username} URL {string} username -
gym user username

Information about the user.

/users/owned/{username} URL {string} username -
gym user username

List of badges owned by the
user.

/Model/iOS
?rank={rank}&
emblem={emblem}

URL {string} rank - Rank of
badge. g b or s.
URL {string} emblem -

{USDZ file}
Response is a download to get a
USDZ file to then be used for

GYM KING Codebusters Demo 4 – 29/09/2022

17

Emblem name of badge.
bicep,cycle etc.

the AR component of the app.
iOS only

/Model/Android
?rank={rank}&
emblem={emblem}

URL {string} rank - Rank of
badge. g b or s.
URL {string} emblem -
Emblem name of badge.
bicep,cycle etc.

{GLB file}
Response is a download to get a
GLB file to then be used for the
AR component of the app.
Android only.

/users/user/picture/{username} URL {string} username -
Gym user username

{image URL}
Response is a public URL used to
view the gym user’s profile
picture.

/leaderboard/score/{gid} URL {string} gid - Gym ID. List of all badges, with
username, number of times
they completed the badge.

/users/user/requests/getAllRequests URL no params List of all requests. to and from.

3.1.2. POSTs

Endpoints Parameters Returns

/user/badges BODY {string} email -
Input of user email

BODY {string} apikey -
Input of user apikey

A list of badges the user has earned with the
badges information.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/users/claims/ BODY {string} email -
Input of user email

BODY {string} apikey -
Input of user apikey

list of all claims, with the claim info, that the
user has made.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/claims/claim BODY {string} bid -
The badge ID of the
badge.

BODY {string} email -
The email of the user
who claims they
completed it.

Returns a json object saying {‘success’ : true}.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

18

BODY {string} apikey -
The apikey of the
user.

BODY {string} input1 -
The first input

BODY {string} input2 -
The second input

BODY {string} input3 -
The third input

BODY {string} proof -
image of proof.

/users/login BODY {string} email -
Email of the user.

BODY {string}
password - Password
of the user.

BODY {string}
usertype - Type of
user.
gym_user,
gym_employee,
gym_owner

Returns a json object saying
{ 'success': true,'profile_picture':
profile_picture,
’username’:username,’apikey’:apikey }

If authorisation of the user failed because of a
wrong email or password. Returns a json
object saying
{ 'success': false, 'results':'invalid email or
password'}

/users/user/checkIfFriends BODY {string}
user1email - Email of
the user.

BODY {string} apikey -
apikey of the user.

BODY {string}
user2email - Email of
the user.

Boolean value showing if the users are friends
or not.

/users/user/
checkIfPendingFriends

BODY {string}
user1email - Email of
the user.

Boolean value showing if the users are pending
friends or not.

GYM KING Codebusters Demo 4 – 29/09/2022

19

BODY {string} apikey -
apikey of the user.

BODY {string}
user2email - Email of
the user.

/users/user/suggestion BODY {string} email -
Email of the user.

BODY {string} apikey -
apikey of the user.

Badges that belong to the user’s gym
membership gyms that are similar to the one
the user takes part in.

/users/user BODY {string} email -
The email of the user.

BODY {string} name -
The name of the user.

BODY {string}
surname - The
surname of the user.

BODY {string} number
- The phone number
of the user.
BODY {string}
username - The
username the user
created.

BODY {string}
password - The
password the user
created (NOT
encrypted).

BODY {string}
membership - The
gym brand the user
has a membership
with.

Returns params of completed insertion.

{ 'success': true, 'results':{PARAMS}}

GYM KING Codebusters Demo 4 – 29/09/2022

20

/gyms/aroundme BODY {string}
latCoord - latitude of
user

BODY {string}
longCoord - longitude
of user

BODY {string} radius -
circle radius in KM to
check for gyms

A list of gyms and their locations

/users/user/OTP BODY {string} email -
Email of user.

message indicating creation.
{ 'success': true }

/users/user/info BODY {string} email -
User's email.

BODY {string} apikey -
User's apikey.

User’s information.

/users/user/getUser BODY {string} email -
User's email.

BODY {string} apikey -
User's apikey.

BODY {string}
username- User's
username.

Get user’s more personal information.

/users/user/
checkIfSubscribed

BODY {string} email -
User's email.

BODY {string} apikey -
User's apikey.

BODY {string} gid -
User's gym ID.

boolean value returning true or false.

/users/user/
CreateRequest

BODY {string}
fromEmail - from user

BODY {string} toEmail
- to user

Message confirming creation or not.

GYM KING Codebusters Demo 4 – 29/09/2022

21

/users/user/getFriends BODY {string}
userEmail - user email

Returns a list of friends the user has

/users/user/
getReceivedRequests

BODY {string}
userEmail - user email

returns list of requests from friends.

/users/user/
getSentRequests

BODY {string}
userEmail - user email

returns list of requests to friends.

/users/user/
createSubscription

BODY {string}
fromEmail - user
email

BODY {string} gid -
gym ID

message confirming creation of subscription.

/users/user/
getGymSubscriptions

BODY {string}
fromEmail - user
email

List of gyms the user is subscribed to.

/users/user/
getSubscribedUsers

BODY {string} gid -
gym ID

List of all users that subscribe to the gym ID.

/users/user/
SendSubscriberNotification

BODY {string} g_id -
gym ID

BODY {string}
pushMessage -
Message

BODY {string}
pushTitle - title of
notification

BODY {boolean}
isSilent- Is the
notification silent or
not

message confirming notification and the
emails that the notification is using to send to
users.

/users/user/
SendFriendsNotification

BODY {string}
userEmail - user email

BODY {string}
pushMessage -
Message

BODY {string}
pushTitle - title of

message confirming notification and the
emails that the notification is using to send to
friends.

GYM KING Codebusters Demo 4 – 29/09/2022

22

notification

BODY {boolean}
isSilent- Is the
notification silent or
not

/users/user/
SendFriendsNotification

BODY {string}
pushTarget - target

BODY {string}
pushMessage -
Message

BODY {string}
pushTitle - title of
notification

BODY {boolean}
isSilent- Is the
notification silent or
not

message confirming notification and the
emails that the notification is using to send to
users.

3.1.3. PUTs

Endpoints Parameters Returns

/users/user/info BODY {string} email - The
email of the user.

BODY {string} name -
The name of the user.

BODY {string} surname -
The surname of the
user.

BODY {string} number -
The phone number of
the user.

BODY {string} username
- The username the user.

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

23

BODY {string} apikey-
The apikey of the user.

BODY {string}
membership - The
membership of the user.

/users/user/picture BODY {string} email -
User's email.

BODY {string} apikey -
User's apikey.

BODY {string}
profilepicture - User's
profilepicture.

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/users/user/password BODY {string} email - The
email of the user.

BODY {string} otp - OTP
given by user.

BODY {string}
newpassword - New
password.

Returns a json object saying
{ 'success': true }

If invalid email is given or the OTP is incorrect.
Returns a json object saying {'message':'Invalid
email or OTP!'}

/users/user/
notificationToggle

BODY {string} email -
User's email.

BODY {string} apikey -
User's apikey.

returns message confirming toggle.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/users/user/pushToken BODY {string} email -
User's email.

message confirming push token modification

GYM KING Codebusters Demo 4 – 29/09/2022

24

BODY {string} token-
User's new token

3.1.4. DELETEs

Endpoints Parameters Returns

/users/delete BODY {string} email -
unique email used to
delete the user.

BODY {string} apikey -
User's apikey.

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object saying
{‘message’:’Invalid email or apikey!’}

/users/user/
deleteRequest

BODY {string} fromEmail
- from user

BODY {string} toEmail -
to user

Returns message confirming deletion of request.

/users/user/
deleteSubscription

BODY {string} fromEmail
- from user

BODY {string} toGym - to
gym ID

Returns message confirming deletion of
subscription.

GYM KING Codebusters Demo 4 – 29/09/2022

25

3. 2. Employees

3.2.1. GETs

Endpoints Parameters Returns

/claims/gym/{gid} URL {string} gid - gym iD Returns list of all claims

that belong to a gym.

/employees/employee/picture/{username} BODY {string} username -
employee username.

an image that corresponds
to the given username

3.2.2. POSTs

Endpoints Parameters Returns

/employees/employee/info BODY {string} email -

employee email

BODY {string} apikey -
employee api key

Returns the employee’s information.

If authorisation of the user failed

because of a wrong email or apikey.

Returns a json object saying

{‘message’:’Invalid email or apikey!’}

/claims/claim/getClaim BODY {string} empEmail -

employee email

BODY {string} email - user

email

BODY {string} bid - badge ID

used to match a claim.

BODY {string} apikey -

employee api key

all the details of a specified claim from

the claims table

If authorisation of the user failed

because of a wrong email or apikey.

Returns a json object saying

{‘message’:’Invalid email or apikey!’}

/employees/employee BODY {string} ownerEmail -
the owner’s email address.

BODY {string} apikey - the
apikey of the owner.

BODY {string} email - the
employee's email address.

 inserts an employee into the employee
table

If authorisation of the user failed
because of a wrong email or apikey.
Returns a json object saying
{‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

26

BODY {string} name - the
employee's name.

BODY {string} surname - the
employee's surname.

BODY {string} number - the
employee's phone number.

BODY {string} username -
the employee's username.

BODY {string} password -
the employee's password.

BODY {string} gid - the
employee's gym ID.

/badges/badge BODY {string} apikey - the
apikey of the owner or
employee.

BODY {string} email - the
employee or owner email
address.

BODY {string} gid - the id of
the gym the badge is being
added to.

BODY {string} badgename -
the name of the badge.

BODY {string}
badgedescription - the
description of the badge.

BODY {string}
badgechallenge - the
challenge required to
achieve the badge.

inserts a new badge into the badge
table

If authorisation of the user failed
because of a wrong email or apikey.
Returns a json object saying
{‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

27

BODY {string} badgeicon - ID
of the badge
image/ARmodel

BODY {string} requirement1-
requirement of badge

BODY {string} requirement2-
requirement of badge

BODY {string} requirement3-
requirement of badge

BODY {string} activitytype -
the type of activity
(cardio/strength)

BODY {string} tags- tags of
the badge
(“tag1,tag2,tag3”)

/employees/employee/OTP BODY {string} email - email
of employee

returns message

3.2.3. PUTs

Endpoints Parameters Returns

/employees/employee/password BODY {string} email The
email of the employee.

BODY {string} otp - OTP
given by employee.

BODY {string}
newpassword - The new
password.

changes the specified employee’s
password

/employees/employee/info BODY {string} email - The
email of the employee.

BODY {string} apikey -

changes the specified employee’s
information

if authorisation of the user failed

GYM KING Codebusters Demo 4 – 29/09/2022

28

the apikey of the
employee.
BODY {string} name -
The name of the
employee.

BODY {string} surname -
The surname of the
employee.

BODY {string} number -
The phone number of
the employee.

BODY {string} username
- The username of the
employee.

because of a wrong email or apikey.
Returns a json object saying
{‘message’:’Invalid email or apikey!’}

/employees/employee/picture BODY {string} email - The
email of the employee.

BODY {string} apikey -
the apikey of the
employee.

BODY {file} profilepicture
- the picture.

changes the specified employee’s
profile picture

If authorisation of the user failed
because of a wrong email or apikey.
Returns a json object saying
{‘message’:’Invalid email or apikey!’}

/claims/claim BODY {string} bid - badge
ID used to find badge.
BODY {string} email -
email used to find the
user.

BODY {string} empEmail
- The email of the
employee.
BODY {string} apikey -
the apikey of the
employee.

Update accepted badge_claim to
badge_owned.

If authorisation of the user failed
because of a wrong email or apikey.
Returns a json object saying
{‘message’:’Invalid email or apikey!’}

/badges/badge BODY {string} email -
The email of the owner
or employee.

BODY {string} apikey -
the api key of the owner
or employee.

Returns message confirming update.

If authorisation of the user failed

because of a wrong email or apikey.

Returns a json object saying

{‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

29

BODY {string} bid badge
ID used to find badge.

BODY {string} gid - gym
ID of the badge.

BODY {string}
badgename - edited
badgename.

BODY {string}
badgedescription -
edited badgedescription.

BODY {string}
badgechallenge - edited
badgechallenge.

BODY {string}
requirement1-
requirement of badge

BODY {string}
requirement2-
requirement of badge

BODY {string}
requirement3-
requirement of badge

BODY {string}
activitytype - edited
activitytype.

BODY {string} badgeicon
- edited badgeicon.

BODY {string} tags-
edited tags

GYM KING Codebusters Demo 4 – 29/09/2022

30

3.2.4. DELETEs

Endpoints Parameters Returns

/badges/badge BODY {string} apikey - the
apikey of the owner or
employee.

BODY {string} email - the
employee or owner email
address.

BODY {string} apikey - the
apikey of the employee.

removes the specified badge

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/claims/claim BODY {string} bid - unique
bid used to delete the
claim.

BODY {string} email -
unique email used to
delete the claim.

BODY {string} apikey - the
apikey of the employee.

BODY {string} email - the
employee email address.

removes the specified claim

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/employees/employee BODY {string}
owneremail - owner
email.

BODY {string} apikey - the
apikey of the owner.

BODY {string}
employeeemail - the
employees email.

removes the specified employee. requires
owners permission and password

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

31

3.3. Owners

3.3.1. GETs

Endpoints Parameters Returns

/owners/owner/picture/{:username} URL {string} username-
employee username.

{image URL}
Returns the public url for the
owner's profile picture.

3.3.2. POSTs

Endpoints Parameters Returns

/owners/employees BODY{string} email -

email of the owner.

BODY{string} apikey-

apikey of the owner.

List of all employees who work for gyms

owned by an owner.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/gyms/owned/getGyms BODY{string} email -

email of the owner.

BODY{string} apikey-

apikey of the owner.

List of all gyms that the owner owns.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/gyms/owned BODY {string} gid - gym ID
of the gym.

BODY {string} email -
email of the owner.

BODY{string} apikey-

apikey of the owner.

json object showing the parameters used to
insert the gym owned.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/gyms/gym BODY {string} email -
email of the owner.

BODY{string} apikey-
apikey of the owner.

BODY {string} gymName -
gym name.

json object showing the parameters used to
insert the gym.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

32

BODY {string}
gymBrandName - gym
brand name.

BODY {string}
gymAddress - gym
address.

BODY {number}
gymCoordLong -
Longitude coord of gym.

BODY {number}
gymCoordLat - Latitude
coord of gym.

/brands/brand BODY {string} brandname
- gym brand name.

message confirming insertion.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/owners/owner BODY {string} email -
owner email.

BODY {string}} fullname -
owner full name.

BODY {string} number -
owner number.

BODY {string} username -
owner username.

BODY {string} password -
owner password.

Returns a json object saying
{ 'success': true }

/owners/owner/OTP BODY {string} email -
Email of owner.

Returns a json object saying
{ 'success': true }

/owners/owner/info BODY {string} email -
owner's email.

BODY{string} apikey-
apikey of the owner.

Returns the owner's information.

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

33

3.3.3. PUTs

Endpoints Parameters Returns

/owners/owner/picture BODY {string} email - The
email of the owner.

BODY{string} apikey-
apikey of the owner.

 BODY {file} profilepicture
- The piccture.

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because
of a wrong email or apikey. Returns a json
object saying {‘message’:’Invalid email or
apikey!’}

/brands/brand/logo BODY {string} brandname
- gym brand name.

BODY {file} logo- gym
brand logo.

BODY {string} email-
owner email.

BODY {string} apikey -
owner api key.

message confirming insertion.

If authorisation of the user failed because
of a wrong email or apikey. Returns a json
object saying {‘message’:’Invalid email or
apikey!’}

/owners/owner/info BODY {string} email -
owner email.

BODY {string} fullname -
Edited owner full name.

BODY {string} number -
Edited owner number.

BODY {string} username -
Edited owner username.

BODY {string} apikey -
owner api key.

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because
of a wrong email or apikey. Returns a json
object saying {‘message’:’Invalid email or
apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

34

/gyms/gym/info BODY {string} gid - gym id

BODY {string} email -
owner email.

BODY {string} apikey -
owner api key.

BODY {string} gymName-
gym name

BODY {string}
gymbBrandnName - gym
brand name

BODY {string}
gymaAddress - gym
address

BODY {string}
gymCoordLat- gym lat
coordinates

BODY {string}
gymCoordLong- gym long
coordinates

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because
of a wrong email or apikey. Returns a json
object saying {‘message’:’Invalid email or
apikey!’}

/owners/owner/password BODY {string} email - The
email of the owner.

BODY {string} otp - OTP
given by owner.

BODY {string}
newpassword - New
password.

Returns the owners information.

If authentication failed because of email or
otp. Returns
{'message':'Invalid email or OTP!'}

GYM KING Codebusters Demo 4 – 29/09/2022

35

3.3.4. DELETEs

Endpoints Parameters Returns

/owner/delete/gym BODY {string} email -
unique owner email used
to delete the gym.

BODY {string} apikey -
owner api key.

BODY {string} gid - gym id

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

/owners/delete BODY {string} email -
unique email used to
delete the owner.

BODY {string} apikey -
owner api key.

Returns a json object saying
{ 'success': true }

If authorisation of the user failed because of a
wrong email or apikey. Returns a json object
saying {‘message’:’Invalid email or apikey!’}

GYM KING Codebusters Demo 4 – 29/09/2022

36

4. Class Diagram

GYM KING Codebusters Demo 4 – 29/09/2022

37

5. Quality Requirements
• QR1 - Privacy

o The product must comply with the South African POPI Act.
• QR2 - Documentation

o All Documentation should be always up to date.
• QR3 - Scalability

o The product must be designed in a manner such that the system works as efficiently
as possible regardless of the number of users and gyms registered.

o The product must be able to always display multiple gyms on the map subsystem.
• QR4 - Correctness

o All code produced must conform to industry standards.
o All code must be tested to ensure correct operation of the product.

• QR5 - Performance
o The system should be able to render all Augmented Reality (AR) components within

30 seconds.
o The system should be able to display all information within 30 seconds.

• QR6 - Open Source
o All libraries and technologies used must be open source.

• QR7 - Security
o The product must be able to protect the system from external and internal threats

and ensure that no user information is lost/stolen.
• QR8 - Usability

o The product should be simple and easy to use regardless of environmental
conditions and user capabilities.

GYM KING Codebusters Demo 4 – 29/09/2022

38

6. Trace-ability Matrix
USE CASES

FU
N

C
TI

O
N

A
L

R
EQ

U
IR

EM
EN

TS

 U1 U2 U3 U4 U5 U6

FR1 X X X

FR2 X

FR3 X

FR4 X

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13 X

FR14 X

FR15

FR16

FR17

USE CASES

FU
N

C
TI

O
N

A
L

R
EQ

U
IR

EM
EN

TS

 U7 U8 U9 U10 U11 U12

FR1

FR2

FR3

FR4

FR5 X

FR6 X

FR7 X

FR8 X

FR9 X

FR10 X

FR11 X

FR12 X

FR13

FR14

FR15 X

FR16 X

FR17 X

GYM KING Codebusters Demo 4 – 29/09/2022

39

QUALITY REQUIREMENTS
U

SE
 C

A
SE

S

 QR1 QR2 QR3 QR4 QR5 QR6 QR7 QR8

U1 X X X X X X X

U2 X X X X X X

U3 X X X X X X

U4 X X X X X X

U5 X X X X X X

U6 X X X X X X

U7 X X X X X X

U8 X X X X X X X X

U9 X X X X X X X X

U10 X X X X X X X X

U11 X X X X X X X X

U12 X X X X X X X X

GYM KING Codebusters Demo 4 – 29/09/2022

40

7. Architecture Design

7.1. Architectural Design Strategy
It was decided that a Decomposition design strategy would be the best for this project. The

Decomposition design strategy integrates seamlessly with the technology used. The Front-end of the

product uses Ionic React, which prefers the pure component implementation approach. The

database and Server (Heroku) uses a ORM (Object-Relational Mapping) design, which treats each

table in the database as a unique entity, and ARCore (Android) and ARKit (iOS), which are separate

tools and need individual work. The Decomposition Design Strategy is efficient, ensures that

components can be reused and allows for improved error-management.

7.2. Architectural Styles

7.2.1. Client-Server Architecture (multi-tier)
The Gym King server will be hosted on the cloud service Heroku to provide a service to many

different users. The Client-Server architecture is a style that consists of one server that provides for a

number of users which is what is required for the Gym King server. The server does not need to

know each of the clients and the clients do not need to know each other. The clients are completely

dependent on the server. The client-server architecture was chosen to reduce the storage space and

computational power needed on the client device. This will save the device’s power and will allow

lower end devices to be supported as they do not need to process information themselves. This is as

long as the lower end devices understand what is being sent to them from the server.

7.2.2. Component-based Architecture
The Gym King application is programmed using Ionic React. The application will be broken down into

components that will then be used together to provide the required functionality. This follows the

Component-based architecture style as the different components accomplish different tasks of the

Gym King application.

7.2.3. Cloud Computing Architecture
As said above with the client-server architecture, we have to use a cloud-based platform to allow the

server to always be available and online. Inside the cloud platform, we run our client-server

architecture. Our server now acts as a cloud service which the Gym King application will use on

behalf of the users to minimise use of the devices’ resources. The application can make calls to the

persistent server to ask for resources that it needs to serve the user. An example of this would be

the Augmented Reality models. The Gym King application does not have these models saved locally

to save space so it would rather ask the server for the models that are needed. The server is

persistent on the internet and access to it is gained from the Heroku cloud platform. This means

Gym King applications should be able to reliably receive resources from it.

7.3. Architectural Quality Requirements

7.3.1. Availability
The system is expected to have at least a 95% uptime. Deployed with no single point of failure.

7.3.2. Deploy-ability
The Gym King application must be deployed, working, and supported on both Android and IOS

devices.

GYM KING Codebusters Demo 4 – 29/09/2022

41

7.3.3. Maintainability
The system should be easily understood by future developers. The system should use pure

components, such that an individual component can be improved upon without affecting the

system. The system should last for several years after deployment, meaning that it should not rely

on any packages or services that will become deprecated in the near future. The system should be

fully documented, and the at least 50% of the project must have comments detailing their functions.

7.3.4. Security
The system will use role-based access control. Unregistered users should not be able to make use of

services offered by the Gym King application. Sensitive user information should be encrypted when

stored and should not be accessible by unauthorized parties. The system should not be liable to SQLi

attacks, and the components used should not be single-points of failure.

7.3.5. Scalability
The system is designed to handle 50 user requests per second. The system should allow for the

addition of extra functionality and/or components. The Gym King server can be scaled up by

purchasing more dyno hours, higher tier Heroku server for more connections and better PostgreSQL

tier for more connections and storage size.

7.4. Architectural Design and Pattern
As explained above, Gym King uses the Client-server pattern, the Cloud-computing pattern and the

component-based pattern. The application also uses the ORM (Object-Relational Mapping) pattern.

The Architecture is based on the Decomposition design strategy, where all the various components

and systems with the application are broken down into smaller and more manageable parts. The

architectural patterns were chosen to reflect this. The component-based pattern and the ORM

pattern both break down the various components and tables and makes them separate entities.

These separate entities are mostly independent of others and can be reused in other parts of the

application. The Client-server pattern and the Cloud-computing pattern were chosen to reduce the

strain that might be placed on the client device and will allow for improved scalability and

manageability as there is a central control of the application.

GYM KING Codebusters Demo 4 – 29/09/2022

42

GYM KING Codebusters Demo 4 – 29/09/2022

43

7.5. Architectural Constraints
1. Limited number of Geo calls per month for the Map component.

2. PostgreSQL’s database is situated on a cloud platform.

3. NodeJS server works in TypeScript and is situated on a cloud platform.

4. The Heroku Server does not have any South African servers.

5. The Heroku PostgreSQL database has limits on simultaneous connections, row count and

total storage size.

6. The Heroku Server has a dyno hour (uptime) limit of 550 hours per month.

7. The system is limited to open-source technology.

8. The system must run smoothly on a mid-range smartphone/smart device.

9. The system should ensure that battery drainage is minimised as far as possible.

10. AR capabilities are limited to devices that support ARCore (Android) and ARkit (iOS).

7.6. Technology Choices

7.6.1. Heroku

7.6.1.1. Overview

Heroku is a cloud platform that allows us to run a server on the web in its environment. We add our

server code with a profile to tell Heroku how to start our server.

7.6.1.2. Pros

• Free to host a server

• Free PostgreSQL database

• Easy to use

• Lots of online help and documentation

7.6.1.3. Cons

• Limited dyno hours (uptime) per month.

• Does not have South African based servers

• Limits on simultaneous connections, row count and total storage size.

• Only one server running

7.6.1.4. Reasoning

Heroku allows NodeJS and its various libraries to operate on it. This allows it to work seamlessly

within the client-server architecture. It also incorporates libraries to assist with the architecture,

such as the express library to make a REST API and Type ORM which will allow the product to make

entities of tables for better use of the PostgreSQL database. Heroku is an open source technology

that does not have the same constraints that many other cloud service providers offer. Heroku was

chosen since it had a wide range of supported languages and had a good uptime.

7.6.2. Ionic React

7.6.2.1. Overview

Ionic React is a native React version of the Ionic Framework. It is open-source and allows for

development for both iOS and Android devices.

7.6.2.2. Pros

• Open Source

• Compatible with iOS and Android.

GYM KING Codebusters Demo 4 – 29/09/2022

44

7.6.2.3. Cons

• Requires numerous plug-ins to properly function.

• Debugging can be a tedious task as error messages are sometimes vague.

7.6.2.4. Reasoning

Ionic React works well with the component-based pattern, since the technology works best by

splitting components into pure components that can be reused throughout the system. The

technology works well with the client-server pattern, since it does not need massive local storage

space. The technology is also open source which is a key constraint on the development of the

product. Ionic React was the only option for the front end component as it was specifically asked for

by the clients.

7.6.3. ARCore and ARKit

7.6.3.1. Overview

ARCore is designed to assist with the creation of augmented reality (AR) components that seamlessly

integrate the digital and physical worlds. We are using it for Android AR components.

ARKit is an iOS specific tool kit designed to create augmented reality (AR) components that brings

the digital world to the physical world.

7.6.3.2. Pros

• ARCore: Works with multiple development environments, such as Android and iOS.

• ARCore: Large development and support community.

• ARCore: Maps the surroundings relatively accurately.

• ARKit: The best AR software for iOS devices.

7.6.3.3. Cons

• ARKit: Only works with iOS devices.

• ARCore: Scanning accuracy could use improvement.

7.6.3.4. Reasoning

ARCore and ARKit work well with the client-server architecture and the cloud-based architecture.
This is because the AR components are stored on the cloud/server side and then downloaded to the
client side when the badge is viewed and/or earned. ARCore and ARKit work well with their
respective operating systems and both allow for components to be separated from the rest of the
product and features, which allows for improved error-management. It is an external technology
that is important to the overall product, however, it does not have much of an impact on the core
architecture. ARCore and ARKit were chosen as they were the best AR tool kits available that were
largely open source. Since open source is an important requirement of the project, no other
technology was possible.

GYM KING Codebusters Demo 4 – 29/09/2022

45

8. Deployment Diagram

The Server is already deployed on the Heroku system. The front-end and the back-end only

communicate using API calls, predominantly to retrieve or change information within the database

located on the Server. The map and AR components in the client use external services to be properly

rendered, whilst the CNN (Convolutional Neural Network) was trained offline, and accessed from the

application itself.

