
1 AiPi

Coding Standards
AiPi

2 AiPi

Contents

1. Coding Conventions……………………………………………………………… 3
1.1. Compliance to Conventions…………………………………………… 3
1.2. Naming Conventions……………………………………………………… 3
1.3. Formatting and indentation…………………………………………… 3
1.4. Comments…………………………………………………………………….. 4

2. File Structure………………………………………………………………………. 4

2.1. Front-end……………………………………………………………………. 4
2.2. Back-end…………………………………………………………………….. 4
2.3. Branching……………………………………………………………………. 5
2.4. Commit………………………………………………………………………. 5

3 AiPi

1. Coding Conventions

1.1. Compliance to Conventions
The AiPi team had a meeting earlier in the year where we discussed the
necessary steps to take for all code no matter front-end or back-end to be of
the same coding conventions before pushing that code onto the GitHub
repository. All members agreed to these steps and thus ensured that their
own code followed the coding conventions.

1.2. Naming Conventions

• Function Names will not start with a capital letter.
• Function Names will not contain any number or special character, the

exception being an underscore.
• Global variables for specific classes will not start with a capital letter.
• Global variables will not contain any number or special character, the

exception being an underscore.
• Variable names may contain a number, in the sense that the variables

correlate to one another in a chronological order. (e.g. date1 and
date2)

• All variable and function names should be meaningful and correlate to
their functionality

1.3. Formatting and indentation

The backend language that was used is python, while the front-end language
that was used was HTML, JavaScript and CSS. Therefore, there was a huge
emphasis on indentation not only from our side as a group but also in order
for the code to run correctly. Therefore, our formatting and indentation rules
apply to both the front end and back end.

• All loops will have the inner function and code indented with a tab.
• At the end of a function and before the declaration of a new function

a line must be left open.
• Within function lines can be left open when parts of the code is not in

a following order, this is needed in order to make the code easier to
read,(e.g. after declaring variables leave a line before the for loop)

• Indentation and formatting must be applied according to the
languages rules as well (e.g., pythons’ indentation)

1.4. Comments
• Use of comments is allowed
• Comments can be added when trying to explain what a particular section

of code does, such that other developers can read the comment

4 AiPi

• Comments may also be used for developers when they are in the testing
phase and use comments to keep track of notes. These comments must
be removed before the final push to the develop branch,

• Random comments are not allowed and will be deleted

2. File structure

2.1. Front-end

The picture above shows the file structure of the front-end on the repository. All
the html files are placed in the templates folder. Within the static folder
contains the JavaScript files as while as a folder named styles which contains all
the CSS files. Both the templates and static folder are placed within the client
folder.

2.2. Back-end

5 AiPi

The picture above shows the file structure of the back end on the repository. All
the python files are placed within the Backend folder. In the Backend folder is a
folder named databases, in these folders is the csv file named industries, this file
is used for all industry and sector names with corresponding codes. Finally, the
Backend folder is a sub folder of the apps folder.

2.3. Branching

• There is one main Branch
• Each Developer will create their own fork
• Each Developer will work in their own fork and commit to this fork
• When the developer has finished their code, they will create a pull

request
• The pull request will merge their code to the main branch

2.4. Commit

• Commits must have a heading; this heading must contain whether the
code is for front-end or back-end. By using brackets at the front of the
heading e.g. (Backend)

• Each commit must contain a description that contains all the additions or
changes to code that was made with this commit.

