
Testing Policy Document
AiPi

Regan Shen

Contents

-Tools used
-Procedure for Testing
-Unit Testing
-Integration Testing
-Automated Testing

Tools Used:

All the backend code was coded in the language of python, therefore all test (Unit and

integration) was coded in Python. Python offers many tools and packages to achieve

ones testing goals. To do the integration testing, the pytest tool was used, included in

the pytest package is the unittest tool, the unittest tool was also used in order to

complete the integration testing. To do the unit testing a few tools were needed, these

are as follows, just like the integration testing pytest was needed. In addition, the mock

tool from the unittest package was used in order to mock data. One of the most

important tools for the unit testing was the nose package. From the nose package we

were able to use tools such as assert_true, assert_equal and many more to get precise

tests.

• PyTest

• unitTest

• mock

• nose

Procedure for Testing:

There are 4 steps that need to be completed in order for the entire system to be tested

completely and ready for deployment. The first testing that needs to be completed is the

Unit testing. After the unit testing is completed and passed the next testing is the

integration testing. After both unit and integration testing is completed and passed we

move on to End-to-End testing. The final step in the testing process is to complete and pass

the user acceptance criteria test. When the tester starts running the manual tests he will

report in failed tests to the developer of the code, fortunately in the AiPi team, the tester

and backend developer was the same person and so any issues that were discovered during

manual testing was fixed almost immediately during the developing and testing phase. I will

briefly discuss below how the AiPi team followed the procedure for testing.

Unit Testing:

The first testing that needs to be done is the unit testing. Unit testing is the process of

testing individual coding components or units of code. This will be done each time a new

unit of code is added to the GitHub repository as well as when the tester runs test to

purposely find any problems in the code. Due to the nature of our project all our methods

are very dependent on third party API’s in order to retrieve the necessary data to create

ETF’s. And so when coding and running the unit tests it was very important that we can

mock data and therefore not be connected to any API or database. So the Tester used the

mock tool in order to mock requests, either get or post, that would have retrieved data from

the API. In this essence we were able to perform unit testing and test if the functions

performed the necessary tasks when given the mock data, in some tests the mock data had

errors in them in order to test each units error handling. In order to run the unit tests they

were ran in the terminal by using the “python -m nose --verbosity=2 unitTesting.py”

command. This ran all tests and returned the time taken and if any failures it would return

the necessary message. In a total 70 unit tests were run and all 70 tests passed.

Below is the start and the end of the unit testing output.

Integration Testing:

Integration testing is only started once a few unit tests have been run and completed. This is

the process of combining at different units of code that have completed their testing and

then running tests with the integrated units of code. Integration testing is also the process

of now testing different units while using the third party API’s as well as the local databases.

And thus we did not need to use the mock tool when doing integration testing, however

because we used API’s and did not mock any data the integration testing took very long to

complete. The integration testing was completed using the built in pytest package. The

integration testing was run at the end of the development and tested all objects, classes and

methods in order to test if the system is reliable. Within the integration tests we also tested

all methods that use a third party API directly. And fixed any error handling if the API was

down. In total we had 33 test for integration testing, this may not seem as a lot, however

because of the way the back-end has been coded when running one test it will run almost

all the methods and functions, we also tested for extreme inputs. Below is an image

showing the passing of all 33 tests and you can see it took 20 mins to complete.

Automated Testing:

When it came to the Automated Testing we knew we couldn’t do any integration testing as

this would take to long to run and complete the checks. So for our CICD we used the unit

testing that tests almost all the functions with mock data and in this essence we can test the

functionality of the code with out the need of the actual data before pushing something

onto the repo. If any of the test failed during the automated testing the necessary message

would be displayed showing where the error has risen and the pull request will be blocked.

Below is an image that shows the Actions and results.

