
Coding Standards.md 8/1/2023

1 / 3

Coding Standards

FrontEnd - Ionic/Angular

File and Folder Structure

Files and folders are organised based on a feature or module.
Used consistent naming conventions for files and folders.
Separated components, services, and models into their respective folders.

Component Naming

Component names follow the PascalCase convention.
Component names are suffixed with Page, Component, or Dialog.

Module Organization

Each feature or functionality has its own module.
Related components, services, and models are grouped within the same module.
Modules are defined and configured using the NgModule decorator.

Component Structure

Components follow the Angular component structure, utilizing decorators such as @Component,
@Input, @Output, and @ViewChild.
Templates, styles, and logic are organized into their respective sections.
Components adhere to the Single Responsibility Principle (SRP) by focusing on specific tasks.

Services

Services encapsulate business logic and data manipulation.
Services are registered either in the root module (AppModule) or feature modules based on their
scope.
Dependency injection is used to inject services into components.

Code Formatting

Consistent indentation and formatting conventions are followed.
Proper spacing and line breaks are used to enhance code readability.
Variable and function names are descriptive, conveying their purpose.

TypeScript Best Practices

Strict type checking is enabled by setting "strict": true in the tsconfig.json file.
TypeScript features like interfaces, generics, and type annotations are utilized.
The any type is avoided unless absolutely necessary.

Angular/Ionic Best Practices



Coding Standards.md 8/1/2023

2 / 3

Angular's built-in directives and features are used whenever possible.
Ionic's UI components are leveraged to achieve consistent and responsive design.
Observables and reactive programming are employed for handling asynchronous operations.

Error Handling and Logging

Error handling mechanisms are implemented to enhance the user experience.
Angular's error handling mechanisms, such as ErrorHandler or global error interceptors, are utilized.
Errors and exceptions are logged for debugging purposes.

Testing

Unit tests are written using Jasmine.
Components, services, and other application logic are tested.
Karma and Cypresss are also used for testing.

Backend - Rust

File and Module Structure:

Organized files and modules based on the application's features or functionality.
Use a consistent naming convention for files and modules.
Separate route handlers, models, and utility functions into their respective modules.

Endpoint Routing

Endpoint routes are defined using attribute macros provided by Rocket, such as #[get], #[post], #
[put], #[delete].
Related routes are grouped within the same module.
Dynamic routes are handled using route parameters and path variables.

Route Handlers

Route handlers are implemented as functions with clear and descriptive names.
Route handlers follow the single responsibility principle, focusing on specific tasks.
Request data handling and validation are performed using Rocket's request guards and extractors.

Data Models

Data models or request/response objects are defined using Rust structs.
Traits such as FromForm, FromData, Serialize, and Deserialize are implemented for data
serialization and deserialization.
External crates like Serde can be used for advanced serialization and deserialization needs.

Error Handling

Errors are handled and propagated using the Result type in route handlers.
Rocket's error handling mechanisms, such as Result combinators (? operator) and the #[catch]
attribute macro, are utilized.



Coding Standards.md 8/1/2023

3 / 3

Custom error types are implemented, or existing crates like anyhow or thiserror are used for
structured error handling.

Middleware

Rocket's middleware feature is employed for cross-cutting concerns, such as logging, authentication, or
request/response modification.
Custom middleware functions are created or existing middleware crates compatible with Rocket are
utilized.

Testing

Unit tests are written to cover route handlers and other application logic.
Rocket's rocket::local::Client is used to simulate HTTP requests in tests.
Testing frameworks like assert or expect macros can be used for assertions.

Code Formatting

Consistent code formatting conventions, including indentation and line length, are followed.
Code is formatted using tools like Rustfmt to maintain consistency.
Descriptive variable and function names enhance code readability.

Documentation

Documentation comments (///) are included to provide clear explanations of the code.
Route handlers, important functions, and modules are documented, highlighting their purpose, input,
and output.

Security

Security best practices, such as input validation, authentication, and authorization, are considered.
User inputs are sanitized to prevent common web vulnerabilities like SQL injection and XSS.


