
Software-Requirements-Specification-(SRS).md 8/1/2023

1 / 8

Software Requirements Specification

Introduction
Where is the power, is a mobile and desktop app that navigates users through these dark times in South
Africa. Loadshedding is inconveniencing a lot of South Africans, especially on the roads. Where is the power
aims to assist South Africans avoid traffic, plan their day, find areas that have electricity, inform communities
of surprise power outages in local areas and more.

By means of a map, areas will be coloured in on the map to indicate the status of loadshedding and any other
power related issues. Navigating routes that are not impacted by loadshedding is a must, especially when
trying to get home. Statistics will be used to identify what the areas' average uptime is and more.

Class Diagram



Software-Requirements-Specification-(SRS).md 8/1/2023

2 / 8

User Characteristics

User Story

Normal user

This user interacts with the maps.
Able to navigate through roads, where loadshedding is not happening.
View the statistics of areas around them.
See reports(e.g. Stolen cables) that are happening in Areas.

Registered User

Everything a normal user can do.
This user can report problems in an area, while a normal user can not.
Receives push-notifications (mobile).

Example user Stories

As a a commuter, who has to travel from one place to another, I want an application that finds
the optimal route despite load shedding, so that I don’t have to manually look at the load
shedding areas and schedules and plan out my route manually. Given the destination location,
and the time of travel, the user may find the optimum route, avoiding load shedding. When the
user clicks navigate, then they are shown a map with a search bar at the top, then the user can
search for a place.
As a member of the community, I want to make awareness to any cables stolen, substations,
blown or any other related power outage reasons, so that I can inform others and they can plan
out their routes with more insight using the app. Given the user has something to report, when



Software-Requirements-Specification-(SRS).md 8/1/2023

3 / 8

they click the report button, then they can select the type of report issue and fill in other details
and send off a report.
As a member of the community, I want to know the stages of load shedding for a particular
area,so that I don’t have to use a separate app to do so. Given the user’s desire to view the
schedules, when the user clicks the schedule tab, then the user will be shown all the schedules for
a particular area they wish to see.
As a South African, I would like to see on my map which areas have loadshedding so I can plan
my trip.
As a South African, I would like to report on issues in my area regarding stolen cables such that I
can inform my community on outages
As a user I would like to save places on the map so that I can easily access them

Functional Requirements

Use Cases

1.2 Search place

1. Navigation Subsystem

1.1 Select destination
address/location

1.3 Cancel trip

1.4 Update/change trip

2.1 Report power issues

2. Reporting Subsystem

2.2 Like report

2.3 Comment on report

User

User

0. Maps System

1.5 Browse map



Software-Requirements-Specification-(SRS).md 8/1/2023

4 / 8

5.1 Search Area

3.1 Update profile details

3. User Management Subsystem

3.2 Managing notification 
settings

5. Schedule Subsystem

5.2 Select an area on the map 

3.3 Update profile picture

5.3 Update loadshedding
schedule

User

User

4.1 Save place to list

4. Saved Places Subsystem

4.2 Edit places from list

4.3 Delete places from listUser

6.1 Create user account

6. Authentication Subsystem

5.4 Loadshedding notification



Software-Requirements-Specification-(SRS).md 8/1/2023

5 / 8

6.2 Login with password 
and email

6.3 Recover forgotten 
password

6.4 Logout

User

<<extend>>

Service Contracts

Requirements
Open maps with loadshedding colours overlay

Colour overlay
Getting load shedding times for areas
Average uptime of an area
Click on area
Display load shedding INFO
Transition colour area for when load shedding

Report power issues for an area
Report area down
Show where power is having trouble unrelated to Load shedding
Heatmap of reports
A report is valid for 30 minutes and requires a new report
Ask user if report is still valid

Navigation
ETA based on loadshedding
Route alterations to avoid load shedding
Plan trip
Cancel trip
Updating trip

Statistics
Display Daily loadshedding graph
Display weekly loadshedding graph

Architectural Requirements

Quality requirements
Reliability
Consistency
Usability
Maintainability
Scalability
Mobility
Reusability



Software-Requirements-Specification-(SRS).md 8/1/2023

6 / 8

Architectural Patterns
Microservices: The application is divided into microservices, each responsible for specific functionalities. 

Model-View-Controller (MVC): The MVC pattern is implemented within each microservice to further
organize and separate concerns. 

Three-tier: Front-end + API + Backend 

Maps and Geolocation Microservice

Model: Represents the data structure and logic related to maps and
geolocation. This includes storing and retrieving map data, handling



Software-Requirements-Specification-(SRS).md 8/1/2023

7 / 8

geolocation-related operations, and integrating with external map services.
View: Defines the presentation layer responsible for rendering the maps and
related UI component.
Controller: Handles user interactions, manages the communication between the
model and view, and triggers actions based on user input.

Reporting Microservice

Model: Contains the data structures and business logic for problem reporting.
This includes storing problem reports, managing their lifecycle, and
integrating with other services for notifications or processing.
View: Displays the problem reporting forms, user interface for browsing
problems, and any related visualizations
Controller: Handles user input, validates and processes problem reports, and
interacts with the model and view accordingly.

Time Schedules Microservice

Model: Manages time schedules, including storing schedules, validating and
processing schedule data, and integrating with other services for
notifications or reminders.
View: Presents the schedule information, UI components for managing schedules,
and any relevant visualizations.
Controller: Handles user interactions related to time schedules, triggers
actions based on user input, and communicates with the model and view.

Saved Places Microservice

Model: Stores and manages saved places data, including CRUD operations on
saved places, categorization, and integration with map services.
View: Displays the list of saved places, provides UI for adding, editing, and
deleting saved places.
Controller: Handles user interactions related to saved places, manages
communication between the model and view, and triggers actions based on user
input.

Power Outage Statistics Microservice

Model: The model in the power outage statistics microservice would include the
data structures and business logic for managing power outage statistics.
View: Have a view component responsible for fetching the statistics from the
backend API and passing them to the frontend for display.
Controller: The controller in the power outage statistics microservice would
handle the business logic and expose endpoints for retrieving and processing
power outage statistics.

Backend API



Software-Requirements-Specification-(SRS).md 8/1/2023

8 / 8

Use the Rust Rocket framework to build the backend API that exposes endpoints for communication
between the frontend and the microservices. It handles requests from the frontend, performs necessary
data processing and integration with the microservices, and returns responses.

Database

Utilize MongoDB as your database to store the relevant data for each microservice. Each microservice
can have its own collections or schemas in the database.

Three-Tier Architecture

The Three-Tier Architecture gets implemented at a higher level to structure the app into three layers

Presentation Tier: Use Ionic and Angular to build the frontend user interface
(UI). This layer handles UI rendering, user interactions, and communication
with the Application Layer through APIs.
Logic Tier: Use Rust Rocket as the API framework to build the middle layer. This
layer receives requests from the Presentation Layer, processes them, and
interacts with the appropriate Microservices or backend services. It acts as
the bridge between the frontend and backend services, handling business
logic, request routing, and authentication.
Data Tier: Utilize Rust and MongoDB for the backend services and database.
Implement the necessary Microservices to handle specific functionalities such
as maps, problem reporting, time schedules, and saved places. Each
Microservice can have its own Models, Views, and Controllers, following the
MVC pattern, to handle specific logic related to that functionality. The
Microservices interact with the MongoDB database to retrieve and store data.

Design Patterns
Dependency Injection
Template Method
Observer
Facade

Constraints
Display one loadsheading time sheet at a time.
Show loadshedding statistics for one area at a time.
Load n areas around the currently located area/searched are of the user.

Technology Requirements

ANGULAR
 

IONIC
 

RUST
 

MONGODB
 

AMAZON AWS

https://angular.io/
https://ionicframework.com/
https://rocket.rs/
https://www.mongodb.com/
https://aws.amazon.com/

