The role of bathymetry in the local circulation and cross-shelf heat transport in the Denman region of Antarctica

Supervisors: Dr Maxim Nikurashin, Dr Beatriz Pena-Molino Student : Yuhang Liu

UNIVERSITY of TASMANIA

Institute for Marine and Antarctic Studies

Denman region and recent changes

• Antarctica ice sheet = **58 m** global sea level rise (Fretwell et al., 2013).

East Antarctica = **53 m** global sea level rise (Fretwell et al., 2013).

- Wilkes Land sector contributing up to 20% of the total Antarctic mass loss over the last four decades (Rignot et al., 2019).
- Denman glacier is the 2nd largest sea-level contributor in the East Antarctica (Miles et al. 2021).

Denman region and recent changes

• Antarctica ice sheet = **58 m** global sea level rise (Fretwell et al., 2013).

East Antarctica = **53 m** global sea level rise (Fretwell et al., 2013).

- Wilkes Land sector contributing up to 20% of the total Antarctic mass loss over the last four decades (Rignot et al., 2019).
- Denman glacier is the 2nd largest sea-level contributor in the East Antarctica (Miles et al. 2021).

Recent changes:

 The acceleration of the Denman system is evident in both its grounded (17 ± 4% acceleration) and floating (36 ± 5% acceleration) components (Miles et al., 2021).

Possible reasons for the ice mass loss

Potential role of the bathymetry

Bathymetry has a potential to change the ocean circulation.

Bathymetry

- Available datasets: **SRTM, BedMachine Antarctica,** ETOPO, IBCSO
- Differences: ice shelf boundary, seafloor roughness, topographic features

Bathymetry

Project aim and objectives

• Satellite derived bathymetry is the only data available for the Denman region

(Brancato et al., 2020; Miles et al., 2021; Liang et al., 2021).

SRTM15 BedMachine
high-resolution model

Estimate the impact of the bathymetry differences.

Objectives:

1. validate the regional model.

2. assess the role of uncertainty in bathymetry for the shelf circulation, properties, and cross-shelf heat exchange.

Model configuration & experiments

Model configuration (MITgcm):

□ Resolution: 1/20° in zonal direction, 1/40° in meridional direction

□ Vertical: 160 vertical levels

Boundary condition: **ACCESS-OM2-01** global ocean model

□ Repeat atmospheric forcing: JRA55v1.3 external forcing

□ Tides: TPXO9v4 tides

Bathymetry data: SRTM15_PLUS, MEaSUREs BedMachine Antarctica, Version 2

Experiments:

Bathymetry

🛛 Tide

Resolution

Model validation – Sea ice area

- Seasonal cycle with similar amplitude
- Timing bias: Start forming later but catch up quickly

Model validation - sea ice concentration

-60 0.9 -61 0.8 -62 0.7 0.6 Latitude -63 0.5 -64 0.4 0.3 -65 0.2 -66 0.1 GOPR, Jul, 2014 0 -67 110 90 95 100 105 Longitude

Sea ice concentration

MITgcm, SRTM15

GOPR

Model validation – SSH

MITgcm: SRTM15, tide

Model validation – SLA standard deviation

• Bias: low variabilities in the MITgcm

→ The sources of the bias: from ACCESS model, monthly-mean open boundary conditions, repeat-year atmospheric forcing

 \rightarrow Standard deviation of the SLA could be very different (by a factor of 2-5)

MITgcm

(e.g. Kiss et al.,2020; Farneti et al., 2010; Miles et al., 2014).

Model validation – SLA standard deviation

Result - Fresh shelf

- Isopycnals and isotherms intersect with the continental slope
 - \rightarrow eliminate the direct pathway for CDW onto the continental shelf
 - \rightarrow little or no dense shelf water flows across the shelf break (Thompson et al., 2018).

Diagnostics

- Stream function
- EKE

Water properties – T 400 m

- Continental slope (up to 0.9°C higher in BedMachine)
 → change in ASC: meridional shift, intensification
- Inner shelf (up to 0.1°C higher in BedMachine)
 → small-scale topographic features

Water properties – TS depth

1

0.5

0

-0.5

-1

-1.5

-2 └ 33

Temperature(^oC)

- About 0.5°C higher temperature of AASW in BedMachine.
- Deeper MCDW in SRTM15
- ightarrow deeper troughs and depressions on the continental shelf of SRTM15

Water properties – TS volume

Volume (m^3)

BedMachine – SRTM15

- The largest volumes per T/S bin are seen within the WW range. • Difference:
- Higher temperature of AASW in BedMachine.
- Fresher WW in SRTM15. ullet

Water properties – TS volume

- Bathymetry profoundly impacts the water mass composition over the shelf.
- Up to 62% more volume of MCDW in BedMachine.

Bathymetry changes the water volumes.

Ocean circulation - MKE

- Position shift of ASC: BedMachine is close to the coast.
 → shift of the shelf break position
- An intensification of the Antarctica Coastal Current (AACC) in the BedMachine.
- The path of the currents is different (eastern side).
 → canyon like feature

Ocean circulation – stream function

 The current transport is stronger in the shelf break region than near the coastline.

 AACC is stronger and active near the coast in BedMachine

Ocean circulation - EKE

 The magnitude of EKE is much lower than MKE and mainly enhanced near the coastline.

 \rightarrow higher variability associated with the AACC

- The strength of the variability (eddies) in BedMachine is higher than in SRTM15.
 - ightarrow likely related to the seafloor roughness

Heat flux

 Mean value: SRTM15: -0.9 TW (heat transport to south)
 22% increase

BedMachine -1.1TW (heat transport to south)

• BedMachine transports more heat to the south.

• Possible reasons: intense AACC with stronger MKE and EKE in the BedMachine

Take home message

 Bathymetry strongly controls the local circulation and heat transport across the shelf.

Differences are shown in

- 1) the position and strength of slope and coastal currents
- 2) water-mass properties and volumes
- 3) heat transport.
- Emphasize the need for reliable and high-resolution bathymetry.

