Skip to content

CQFIO/FastImageProcessing

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
September 15, 2017 17:36

Fast Image Processing with Fully-Convolutional Networks

This is a Tensorflow implementation of Fast Image Processing with Fully-Convolutional Networks.

Demo Video

https://www.youtube.com/watch?v=eQyfHgLx8Dc

Setup

Requirement

Required python libraries: Tensorflow (>=1.0) + Opencv + Numpy.

Tested in Ubuntu + Intel i7 CPU + Nvidia Titan X (Pascal) with Cuda (>=8.0) and CuDNN (>=5.0). CPU mode should also work with minor changes.

Quick Start (Testing)

  1. Clone this repository.
  2. Run "CAN24_AN/demo.py". This will generate results on L0 smoothing in "CAN24_AN/L0_smoothing/MIT-Adobe_test_1080p_result".
  3. To test a different model, change the variable "task" in "demo.py"

Training

  1. To train, change "is_training" to "True".
  2. To set up a customized training procedure, change the file paths in "prepare_data()". See the commands in the code.

Extensions

  1. The single network for all operators is "combined.py" in the folder "Single_Network". Run it and its result is in "Single_Network/result_combined/video".
  2. The parameterized network is "parameterized.py" in the folder "Parameterized_Network". Run it and its result is in "Parameterized/result_parameterized/video".

Data

If you want to experiment on the data in our evaluation, please email to chenqifeng22@gmail.com.

Citation

If you use our code for research, please cite our paper:

Qifeng Chen, Jia Xu, and Vladlen Koltun. Fast Image Processing with Fully-Convolutional Networks. In ICCV 2017.

License

MIT License.

About

Fast Image Processing with Fully-Convolutional Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages