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ABSTRACT 
 
This paper sketches a protocol for using structured expert judgement to generate uncertainty data for 
uncertainty analyses. The paper emphasises the use of performance based weighting as an instrument to 
enable optimisation of the aggregated experts’ assessments. Examples are shown from the EC/USNRC 
joint study on Probabilistic Accident Consequence Uncertainty Analysis. 
 
1 INTRODUCTION 
 
Governmental bodies are confronted with the problem of achieving rational consensus in the face of 
substantial uncertainties. The area of accident consequence management for nuclear power plants 
affords a good example. Decisions with regard to evacuation, decontamination, and food bans must 
be taken on the basis of predictions of environmental transport of radioactive material, contamination 
through the food chain, cancer induction, and the like. These predictions use mathematical models 
containing scores of uncertain parameters.  Decision makers want to take, and want to be perceived to 
take, these decisions in a rational manner. The question is, how can this be accomplished in the face 
of large uncertainties? This paper describes the European Guide for Expert Judgement in Uncertainty 
Analysis(1) and the results of the performance based analysis of experts’ assessment in the joint 
EC/USNRC study on Uncertainty analysis of nuclear probabilistic accident consequence codes. 
 
2 WHAT IS UNCERTAINTY? 
 
Uncertainty is that which is removed by becoming certain. In practical scientific and engineering contexts, 
certainty is achieved through observation, and uncertainty is that which is removed by observation. Hence 
uncertainty is concerned with the results of possible observations. Uncertainty must therefore be 
distinguished from ambiguity. Ambiguity is removed by linguistic conventions regarding the meaning of 
words. To be studied quantitatively, uncertainty must be provided with a mathematical representation, for 
instance, as probability.  
 
Within the subjective interpretation of probability, uncertainty is a degree of belief of one person, and can 
be measured by observing choice behaviour. Viewed from the theory of rational decision(2) one subjective 
probability is as good as another. There is no rational mechanism for persuading individuals to adopt the 
same degrees of belief.  In practice, however, decision makers rely on experts’ subjective assessments. 
 
3 STRUCTURED EXPERT JUDGEMENT 
 
Expert judgement has always played a large role in science and engineering. Increasingly, expert 
judgement is recognised as just another type of scientific data, and methods are developed for treating it 
as such. Summaries are given in references(3,4,5). 
 
For applications in uncertainty analysis, we are mostly concerned with uncertain quantities taking values 
in some continuous range. Our uncertainty is therefore described by a subjective probability distribution 
for uncertain quantities with values in a continuous range. 
 
When expert judgements are cast in the form of distributions of uncertain quantities, the issues of 
conditionalisation and dependence are important. When uncertainty is quantified in an uncertainty 
analysis, it is always conditional on something. It is essential to make clear the background information 
conditional on which the uncertainty is to be assessed. This is the role of the "case structure".  The case 
structure document describes in greater detail which areas of interest are to be assessed by the experts. 
From the case structure document the questionnaire on the elicitation variables is derived. For that reason 
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the case structure document should also include a section on which conditions the questions are based 
and which issues should be taken into account in the uncertainty assessments and which issues are not 
part of that. 
 
The expert judgement protocol has the following steps: 
 
Preparation for elicitation: 
(1) Definition of case structures document describing the field of interest for which expert judgements 

will be required: in general, this will be risk assessment codes or accident consequence codes. 
(2) Identification of target variables: these are the variables whose uncertainty must be quantified 

through formal expert judgement.  
(3) Identification of the query variables: these are the variables to be assessed by the experts. These 

variables must be observable. If a target variable can in principle be measured by a procedure 
with which experts are familiar, then these are also query variables.  Target variables for which no 
such measurement procedures exist cannot be quantified by direct elicitation. For these variables 
other derived elicitation variables must be found. The uncertainty distributions over these derived 
elicitation variables must then be pulled back via probabilistic inversion onto the target variables 
(see step (14)). 

(4) Identification of performance variables (or seed variables) to be assessed by the experts (that is 
the major issue of this paper). 

(5) Identification of experts. 
(6) Selection of experts. 
(7) Definition of elicitation format document describing the exact questions and format for the experts 

elicitations. 
(8) Dry run exercise describing the try out of the elicitation format document to a few experts. 
(9) Expert training session describing the ingredients of training experts in preparing probabilistic 

assessments. 
 
Elicitation: 
(10) Expert elicitation session, whereby the experts’ individual judgements are discussed in the 

presence of a normative analyst (experienced in probability issues) and a substantive analyst 
(experienced in the expert’s field of interest). 

 
Post-elicitation: 
(11) Combination of experts' assessments describing the methods with which the individual expert 

assessments will be aggregated to one combined assessment. Aggregation can be done by 
equally weighting all experts (as is done for the uncertainty analysis of COSYMA described in this 
special issue) or by using performing based weighting (as explained in this paper). 

(12) Robustness and discrepancy analysis describing the procedures to show the robustness of the 
combined results. Robustness analysis is available on experts and seed variables. Experts/seed 
variables are removed from the data set one at the time and the decision maker is recalculated, to 
account for the relative information loss to the original decision maker. If that loss is large, then 
results may not be replicated if another study were to be done using different experts and seed 
variables. Discrepancy analysis identifies items on which the uncertainty assessments of the 
experts differ most. These items should be reviewed to ascertain any avoidable causes of 
discrepancy. 

(13) Feed back communication with the experts. 
(14) Post-processing analyses describing the methods for processing the uncertainties of the 

combined expert assessments (resulting from the query variables, defined in step 3) into 
uncertainties on the target variables from step 2. 

(15) Documentation of the results. 
 
4 PERFORMANCE MEASURES AND RATIONAL CONSENSUS 
 
The goal of applying structured expert judgement techniques is to enhance rational consensus.  
Necessary conditions for achieving this goal are laid down as methodological principles(5): 
Scrutability/accountability: All data, including experts' names and assessments, and all processing 
tools are open to peer review and results must be reproducible by competent reviewers.  
Empirical control: Quantitative expert assessments are subjected to empirical quality controls. 
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Neutrality: The method for combining/evaluating expert opinions should encourage experts to state 
their true opinions, and must not bias results. 
Fairness: Experts are not pre-judged, prior to processing the results of their assessments. 
 We claim that these are necessary conditions for rational consensus, we do not claim that they are 
sufficient as well. Hence, a rational subject could accept these and yet reject a method which 
implements them. In such a case, however, (s)he incurs a burden of proof to formulate additional 
conditions for rational consensus which the method putatively violates. 
 
The requirement of empirical control will strike some as peculiar in this context. How can there be 
empirical control with regard to expert subjective probabilities? To answer this we must reflect on the 
question 'when is a problem an expert judgement problem?' We would not have recourse to expert 
judgement to determine the speed of light in a vacuum. This is physically measurable and has been 
measured to everyone's satisfaction. Any experts we queried would give the same answer. Neither do 
we consult expert judgement to determine the existence of god. There are no experts in the operative 
sense of the word for this issue. A problem is susceptible for expert judgement, if there is relevant 
scientific expertise. This entails that there are theories and measurements relevant to the issues at 
hand, but the quantities of interest themselves cannot be measured in practice. For example, toxicity 
of a substance for humans is measurable in principle, but is not measured for obvious reasons. 
However, there are toxicity measurements for other species which might be relevant to the question of 
toxicity in humans.  Or again, we may be interested in the dispersion of a toxic airborne release at 50 
km from the source. Although it is practically impossible to measure the plume spread at 50 km, it is 
possible to measure this spread at 1 km. If a problem is an expert judgement problem, then 
necessarily there will be relevant experiments which can in principle be used to enable empirical 
control.  
 
 
5 THE CLASSICAL MODEL 
 
The above principles have been operationalised in the so called Classical Model, a performance based 
linear pooling or weighted averaging model. The weights are derived from experts calibration and 
information performance, as measured on calibration or seed variables. These are variables from the 
experts' field whose values become known to the experts post hoc. Seed variables serve a threefold 
purpose: (i) to quantify experts’ performance as subjective probability assessors, (ii) to enable 
performance-optimised combinations of expert distributions, and (iii) to evaluate and hopefully validate 
the combination of expert judgements. The name “classical model” derives from an analogy between 
calibration measurement and classical statistical hypothesis testing. It contrasts with various Bayesian 
models.  
 
The performance based weights use two quantitative measures of performance, calibration and 
information. Calibration measures the statistical likelihood that a set of  experimental results 
correspond, in a statistical sense, with the experts assessments1. Loosely, the calibration score is the 
probability that the divergence between the expert's probabilities and the observed values of the seed 
variables might have arisen by chance. A low score (near zero) means that it is likely, in a statistical 
sense, that the expert's probabilities are 'wrong'. Similarly a high score (near one, but bigger than, say, 
0.05) means that the expert's probabilities are statistically supported by the set of seed variables.  
Information represents the degree to which an expert’s distribution is concentrated, relative to some 
user-selected background measure2. "Good expertise" corresponds to good calibration (high statistical 
likelihood) and high information. The weights in the classical model are proportional to the product of 
statistical likelihood and information. When a combined expert has been formed, we can also measure 
the calibration and information of this combined expert. For more detail see Cooke(5). 
 
In the classical model calibration and information are combined to yield an overall or combined score  
with the following properties: 

                                                           
1 In particular, the calibration score is the p-value of a standard Chi square goodness of fit test.  
2 The overall information score is the mean of the information scores for each variable. This is proportional to 
the information in the expert's joint distribution relative to the joint background measure, under the assumption 
of independence.  Independence in the experts' distributions means that the experts would not revise their 
distributions for some variables after seeing realisations for other variables. Scoring calibration and information 
under the assumption of  independence reflects the fact that expert learning is not a primary goal of the study.  
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1. Calibration dominates over information,  information serves to modulate between more or less 
equally well calibrated experts, 

2. The score is a long run proper scoring rule, that is, an expert achieves his/her maximal expected 
score, in the long run, by and only by stating his/her true beliefs. Hence, the weighting scheme, 
regarded as a reward structure, does not bias the experts to give assessments at variance with 
their real beliefs, in compliance with the principle of neutrality. 

3. Calibration is scored as ‘statistical likelihood with a cut-off’. An expert is associated with a  
statistical hypothesis, and the seed variables enable us to measure the degree to which that 
hypothesis is supported by observed data. If this likelihood score is below a certain cut-off point, 
the expert is unweighted. The use of a cut-off is driven by property (2) above. Whereas the theory 
of proper scoring rules says that there must be such a cut off, it does not say what value the cut-off 
should be.  

4. The cut-off value for (un)weighting experts is determined by optimising the calibration and 
information performance of the combination. 

A fundamental assumption of the Classical model (as well as Bayesian models) is that the future 
performance of experts can be judged on the basis of past performance, as reflected in the seed 
variables. Seed variables enable empirical control of any combination schemes, not just those which 
optimise performance on seed variables. Examples of expert judgement studies using seed variables 
are available(6,7,8,9). Therefore, choosing good seed variables is of general interest, see Goossens et 
al(10) for background and detail. 
 
6 RESULT OF PERFORMANCE IN THE EC/USNRC STUDY 
 
The classical model in the  eight expert panels shown in Table 1.The experts for each panel are 
internationally recognised in their fields, and were selected  according to the method described in the 
subsequent EC/USNRC-reports(11,12,13,14,15,16,17) . Seed variables were available for all panels except for  
study (13)3.  The seed variables for the  Late Health Effects panel are defined in terms of the follow-up 
of the Nagasaki and Hiroshima survivors, to be published in 2001. Hence the values of these variables 
are not available at present.  For the other panels seed variables were queried. Table 1 shows the 
performance based combination and the equal weight combination for the other seven panels.  For 
each panel, Table 1 shows the calibration score (1 is maximal, 0 is minimal), the mean information 
score (0 is minimal), and the 'virtual weight'. Virtual weight is the weight that the combination would  
receive if added to the expert panel as an additional virtual expert. A virtual weight of one half or more 
indicates that the combination would receive more weight than the real experts cumulatively. 
 
 
-------------------------------------------------------- 
CASE         WEIGHTING ¦Calibr.¦Mean    Number ¦virtual¦ 
                       ¦       ¦inform     seed¦weight ¦ 
-----------------------+-------+-------+-------+-------+ 
DISPERSION     Perform ¦0.90000¦  1.024¦     23¦0.80545¦ 
               Equal   ¦0.15000¦  0.811¦     23¦0.33166¦ 
DRY DEPOSITION Perform ¦0.52000¦  1.435¦     14¦0.50000¦   
               Equal   ¦0.00100¦  1.103¦     14¦0.00168¦   
WET DEPOSITION Perform ¦0.25000¦  1.117¦     19¦0.93348¦      
               Equal   ¦0.00100¦  0.793¦     19¦0.07627¦      
ANIMAL         Perform ¦0.75000¦  2.697¦      8¦0.50000¦    
               Equal   ¦0.55000¦  1.778¦      8¦0.19204¦    
SOIL/PLANT     Perform ¦0.00010¦  1.024¦     31¦0.13369¦      
               Equal   ¦0.00010¦  0.973¦     31¦0.12779¦  
INTERNAL DOSE  Perform ¦0.85000¦  0.796¦     55¦0.52825¦     
               Equal   ¦0.11000¦  0.560¦     55¦0.09217¦     
EARLY HEALTH   Perform ¦0.23000¦  0.216¦     15¦0.98749¦    
               Equal   ¦0.07000¦  0.165¦     15¦0.94834¦    
LATE HEALTH    Equal   ¦*******¦  0.280¦      0¦      0¦     

 
Table 1 Performance based and equal weight combinations 
 
Apart from the SOIL/PLANT case,  the performance based combination performs well; the calibration 
scores are not alarmingly low, and the virtual weight is high. The equal weight combination sometimes 
returns good calibration and high virtual weight, but these scores are lower than those of the 
performance based combination. In the case of SOIL/PLANT, we must conclude that the evidence 

                                                           
3 This study’s constraints precluded the collection of seed variables. 
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gathered from the seed variables does not establish the desired confidence in the results.4 In 
DISPERSION, ANIMAL and INTERNAL DOSE, the results of equal weighting are not dramatically 
inferior to the performance based combination. In such cases, a decision maker giving priority to 
political rather than rational consensus might apply equal weight combination without raising questions 
of performance. In the other cases the evidence for degraded performance in the equal weight 
combination, in our opinion, is strong. Table 2 shows the individual expert scores for the results in 
Table 1. 
 
 
DISPERSION                 DRY DEPOSITION  WET DEPOSITION     ANIMAL 
 
Expt Cal    Mean # Expt Cal Mean  #  Expt Cal  Mean    #    Exprt Cal.    Mean    # 
                       Inf       seed                      Inf     seed                          Inf    seed                                Inf    seed 
1     0.0001    2.078 23 1    0.0001 1.953  14   1     0.0001 2.638   19    1    0.00100   2.658    8 
2     0.0001    1.594  23    2    0.5200 1.435  14   2     0.0100 1.979   19     2    0.00100   2.730    8 
3     0.0010    1.504  23   3    0.0010 1.702  14    3     0.0010 1.009   19     3    0.09000   1.689    8 
4     0.1300    1.286  23    4    0.0010 1.732  14    4     0.0001 1.028   19     4    0.75000   2.697    8 
5     0.0300    1.092  23    5    0.0001 1.792  14    5     0.0010 1.565   19     5    0.01000   2.835    6 
6     0.0050    1.590  23   6    0.0010 2.234  14    6     0.0001 1.946   19     6    0.64000   2.888    8 
7     0.0100    1.508  23    7    0.0010 1.695  14    7     0.0001 1.252   19     7    0.02000   2.821    7 
8     0.0200    1.840  23   8    0.0005 1.985  14    Prf  0.2500 1.117   19    Prf  0.75000   2.697    8 
Prf  0.9000    1.024  23    Prf  0.52001.435  14    Eq  0.0010  0.793   19    Eq  0.55000   1.778    8 
Eq   0.1500    0.811 23   Eq  0.0010 1.103 14 
 
 
SOIL/PLANT                     INT. DOSIMETRY        EARLY HEALTH        LATE HEATH 
Expt Cal    Mean    #     Expt Cal  Mean   #    Expt Cal    Mean    #          Expt Cal  Mean     # 
                  Inf   seed                       Inf      seed                Inf.    seed                     Inf      seed 
1    0.0001 2.376    31  1   0.0010 1.671 39    1    0.0001 0.834     15  1    *****  0.440      0 
2    0.0001 1.309    31  2   0.7300  0.822 55    2    0.0001 1.375     15    2    *****  1.379      0 
3    0.0001 1.346    31   3   0.0001 2.003  50    3    0.0001 1.008     15    3    *****  1.024      0 
4    0.0001 1.607    31   4   0.0001 2.366 39    4    0.0001 0.966     15    4    *****  0.507      0 
Prf 0.0001 1.024    31     5   0.0001 1.205  39    5    0.0001 1.115     15    5    *****  0.836      0    
Eq 0.0001 0.973    31     6   0.0050 0.838  28    6    0.0001 0.573     15    6    *****  0.599      0 
                                             Prf0.8500  0.796  55    7    0.0001 0.410     15    7    *****  0.616      0 
                                             Eq0.1100 0.560  55    Prf 0.2300 0.216    15     8    *****  0.988      0 

                                                                                       Eq 0.0700 0.165     15    Eq  *****  0.280   0 

 
 
Table 2. Individual scores  
 
The mean information of the performance based combination is usually slightly lower than that of the 
least informative experts, and the calibration score is typically substantially higher. This reflects the 
dominance of calibration over information in this weighting scheme. The equal weight combination has 
wider confidence bands still, and the calibration is typically lower than the best calibrated experts. 
Inspecting the data in Table 2, we see that the performance based combination for DRY DEPOSITION 
and ANIMAL, actually coincides with one of the experts. In other words, performance is optimised by 
assigning weight one to a single expert. This naturally raises the question of robustness with regard to 
expert choice. How much would the results differ if this one expert happened not to be available? One 
way to address this question is to repeat the analyses, leaving this expert out. If the differences 
between the original and the 'perturbed' combination are smaller than the differences among the 
experts themselves and if the performance is still acceptable, then there is no strong indication that the 
results are not robust against choice of experts. Table 3 shows the results of these comparisons. 
Experts are excluded one at a time and the performance based combination is recalculated. Columns 
2 and 3 show the mean information and calibration of the 'perturbed' combination. Column 4 shows 
the relative information of the ‘perturbed’ expert with respect to the original combination. The 
differences of the experts among themselves are reflected in the last column, which shows the relative 
information of each expert with respect to the equal weight combination. 

                                                           
4 Although it might be argued that 31 seed variables constitutes a rather sever test of calibration, reducing the 
effective number of seed variables to 10 still yields poor performance (calibration scores  0.04 and 0.01 for the 
performance based and equal weight combinations respectively). In general, the number of effective seed 
variables is equal to the minimum number assessed by some expert. Hence the effective number in INTERNAL 
DOSIMETRY is 28 and in ANIMAL is 6. Experts are scored on the basis of the effective number of seed 
variables; lowering this number is comparable to lowering the power of a statistical test. Thus we cannot directly 
compare calibration scores of different panels without first setting the effective number of seed variables equal. 
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ROBUSTNESS ON EXPERTS: ANIMAL                ROBUSTNESS ON EXPERTS: DRY DEPOSITION 
 
Expert      Mean        Calibration   Rel.Inf      Rel.Inf  Expert     Mean         Calibration   Rel.Inf      Rel.Inf 
Excluded  Inf.                                Original   Eq.Wgt  Excluded  Inf                                 Original   Eq.Wgt 
 
None        2.697       0.750              0                            None    1.435         0.520               0  
1              2.697       0.75000           0           1.084      1           1.435         0.52000           0               0.852 
2              2.697       0.75000           0            0.987      2           1.245         0.05000      0.858             0.420 
3              2.045       0.75000           0            0.374      3           1.435         0.52000           0               0.555 
4              2.695       0.64000       0.569         0.719      4           1.435         0.52000           0               0.608 
5              2.697       0.70000           0            0.835      5           1.435         0.52000           0               0.651 
6              2.690       0.75000           0            0.818      6           1.446         0.52000           0               1.137 
7              2.697       0.75000           0            0.988      7           1.431         0.52000           0               0.618 
                                                                                       8           1.435         0.52000           0               0.860 

 
Table 3. Robustness on experts, performance based combination. 
 
 
We see from Table 3, that the robustness on experts for ANIMAL is satisfactory in the sense that the 
largest entry in column 4 is smaller than all but one entry of column 5. Robustness for DRY 
DEPOSITION is marginal. Lack of robustness is always a danger when performance is optimised. The 
equal weight combination is almost always more robust, but the price of course is lower performance.  
 
Finally, Table 4 compares cancer risks at various cites of the EC-USNRC study with those of other 
studies, for high dose, high dose-rate. These results are obtained from the LATE HEALTH panel and 
hence reflect the equal weight combination. 
 
 
 EC-USNRC (+90% 

confidence)5 
BIER V6 ICRP 607 UNSCEAR8 COSYMA

9 
BONE 0.035 (<0.001, 0.88) - - - 0.01 
COLON 0.98 (0.011, 3.35) - 3.24 0.6 2.24 
BREAST 0.78 (0.11, 3..78) 0.35 0.97 1.0 0.80 
LEUKEMIA 0.91 (0.026, 2.33) 0.95 0.95 1.1 0.52 
LIVER 0.086 <0.001, 2.02) - - 1.2 - 
LUNG 2.76 (0.59, 8.77) 1.70 2.92 2.50 0.90 
PANCREAS 0.17 (<0.001, 1.26) - - - - 
SKIN 0.039 (<0.001, 0.37) - 0.03 - 0.01 
STOMACH 0.30 (<0.001, 4.01) - 0.51 1.4 - 
THYROID 0.059 (,0.001, 0.71) - - - 0.17 
ALL OTHER 2.60 (<0.001, 10.8) - - - - 
ALL CANCERS 10.2 (3.47,  28.5) 7.90 12.05 12.0 5.02 

 
 
Table 4. Comparison of elicited high dose and high dose-rate lifetime low LET cancer risks for a  
general EU/US population with those derived from other sources (10-2Gy-1) 
 
 
Although the median values of the EC-USNRC study generally agree with the values from the other 
studies in Table 4, the 90% central confidence intervals are sometimes significantly wider than the 
spread of values from these studies. Indeed, the spread of assessments in the last four columns of 
table 4 is not an assessment of uncertainty. 
 
6 CONCLUSIONS 
 
We collect a number of conclusions regarding the use of structured expert judgement. 

                                                           
5 Radiation exposure-induced deaths (REID) for joint current EU-US population (high dose, high  dose-rate) 
6 BIER V calculates excess cancer deaths for current US population 
7 ICRP calculates REID average of risks for current UK and US populations. 
8 UNSCEAR calculates REID for current Japanese population. 
9 COSYMA default values (low dose and low dose-rate) 
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1. Experts' subjective uncertainties may be used to advance rational consensus in the face of large 
uncertainties, in so far as the necessary conditions for rational consensus are satisfied. 

2. Empirical control of experts' subjective uncertainties is possible. 
3. Experts' performance as subjective probability assessors is not uniform, there are significant 

differences in performance.  
4. Experts as a group may show poor performance. 
5. A structured combination of expert judgement may show satisfactory performance, even though the 

experts individually perform poorly. 
6. The performance based combination generally outperforms the equal weight combination. 
7. The combination of experts' subjective probabilities, according to the schemes discussed here, 

generally has wider 90% central confidence intervals than the experts individually; particularly in 
the case of the equal weight combination. 

We note that poor performance as a subjective probability assessor does not indicate a lack of 
substantive expert knowledge. Rather, it indicates unfamiliarity with quantifying subjective uncertainty 
in terms of subjective probability distributions. Experts were provided with training in subjective 
probability assessment, but  of course their formal training does not (yet) prepare them for such tasks.  
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