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A B S T R A C T   

Crop models can support agricultural decisions, yet their reliability is necessarily limited when they do not 
sufficiently represent the complexity and specific circumstances of the target system. In some cases, models have 
such prohibitively high data requirements that they are only applicable with far-reaching and often questionable 
assumptions. In this paper, we demonstrate a customizable solution-oriented approach for crop modelling in 
situations where data and resources are limited. To address system complexity and produce a probabilistic crop 
model that does not depend on precise data, we used participatory analysis to describe system components using 
individual Bayesian networks that formalize expert knowledge into probabilistic causal relationships among 
important variables. We then used these Bayesian networks to generate inputs for a Monte Carlo model that 
illustrates the determinants of crop growth and simulates plausible ranges of expected grain and biomass yields 
at various stages of crop development. The resulting model accounts for all important variables and their in
teractions, as examined by local and foreign experts and described in relevant literature. We describe how to 
develop and customize such a model to specific situations based on case studies related to flood-based farming 
systems in Ethiopia and Kenya. The model assesses the performance of cropping systems and individual crops, 
and identifies factors of high importance for system outcomes. This approach to crop modelling paves the way for 
new opportunities to support agricultural decisions, since it does not require perfect information and can 
accommodate system complexity and uncertainty in data-poor environments.   

1. Introduction 

Various types of crop models are available with applications for both 
science and policy (Boote et al., 1996; Murthy, 2004; Uusitalo et al., 
2015; Van Ittersum et al., 2013). While these models contribute to un
derstanding the determinants of agricultural production in diverse 
contexts, their application in supporting decision-making is still con
fronted with many challenges. These challenges arise from conflicts 
between two distinct objectives of modelling: (1) summarize existing 
knowledge to formulate new research questions and (2) contribute 
actionable information to support real-life decisions aiming to produce 
desirable impacts (Boote et al., 1996; Luedeling and Shepherd, 2016; 
Uusitalo et al., 2015). Another major challenge for crop modelling is the 

need for frameworks that sufficiently address system complexity while 
allowing the use of imprecise or incomplete data inputs. 

A crop model that seeks to generate knowledge does not necessarily 
have to fully capture the complexity of a system, but this is critically 
important for models that aim to provide realistic management advice 
(Boote et al., 1996; Uusitalo et al., 2015). For crop models that simplify 
the complexity of agricultural systems too much, application beyond the 
originally intended scope can easily result in unrealistic yield estimates, 
particularly when factors that are not represented in the model are 
important (Murthy, 2004; Uusitalo et al., 2015; Van Ittersum et al., 
2013). 

Whenever the purpose of a model is primarily to explore the dy
namics of tightly circumscribed systems, extensive (and often costly) 
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data collection can address data limitations (Murthy, 2004; Refsgaard 
et al., 2007). For models that are meant to be applied beyond the scope 
of such heavily-sampled settings, however, data availability in the 
intended application areas should be considered when designing 
models. A mismatch between model needs and data supply can easily 
preclude the use of models in new settings or require the use of default 
values or other arbitrary choices for required model inputs for which no 
data are available. Crop models for supporting agricultural decisions 
must be developed with a view to the range of input data they depend 
on, since decisions being supported often require the inclusion of aspects 
on which little information is available (Luedeling and Shepherd, 2016). 
Consequently, such models would greatly benefit from being able to 
work with imprecise or incomplete datasets. They should also be able to 
account for the uncertainties that surround virtually all variables used in 
crop simulations. In order to specify precise numbers with reasonable 
confidence, any crop growth simulation would ideally be preceded by an 
extensive data gathering exercise, including crop growth experiments 
(Baroni and Tarantola, 2014). While hard data may be desirable and 
may often be more accurate than soft ones, time and resource constraints 
often preclude the collection of such precise datasets. In such situations, 
crop models that accommodate imperfect information would help to set 
realistic expectations about data inputs (Baroni and Tarantola, 2014; 
Luedeling et al., 2015). 

The dual challenges of system complexity and data limitations 
highlight the need for new modelling approaches that convey holistic 
systems understanding and do not require perfect information. In this 
paper, we argue that crop models should consider data uncertainty and 
include diverse data types and sources. We propose a framework for 
meeting this challenge and demonstrate its usefulness by developing a 
flexible crop model for supporting the management of Flood-based 
Farming Systems. 

Flood-based Farming Systems (FBFS) are rainfed agricultural sys
tems found mostly in relatively low-lying areas that frequently experi
ence flooding. While such floods are difficult to predict, they occur often 
enough – and are reliable enough – to allow the existence of farming 
systems that use this floodwater for irrigation, substantially extending 
the scope of crop production. Due to the critical importance of flood
water, which often constitutes a vital resource for substantial numbers of 
small farms, water acquisition and sharing among farmers are generally 
governed by complex socio-institutional arrangements at various scales 
(Haile, 2010; Van Steenbergen et al., 2010). In this context, floods are 
not considered natural hazards but simply manifestations of natural 
water fluctuation (e.g. periods of high rainfall or flood pulses in reser
voirs), as described in the concept of flood pulse (Junk et al., 1989), or in 
the concept of Crue/Décrue (Harlan and Pasquereau, 1969). Water 
management in FBFS takes advantage of water surplus related to flood 
events, which is then stored to allow extension of the natural growing 
period. 

Despite some scientific investigations, FBFS are still not well un
derstood (Erkossa et al., 2014; FBLN, 2018; Harlan and Pasquereau, 
1969; Liman Harou et al., 2020; Puertas et al., 2011; Van Steenbergen 
et al., 2011). Most FBFS studies have focused on specific issues such as 
moisture conservation, improvements to water diversion structures or 
social organisation (Embaye et al., 2012; Haile, 2010; Kilongosi et al., 
2019). The lack of policy and systematic approaches have made 
evidence-based management of FBFS difficult (Haile, 2010; Puertas 
et al., 2011; Van Steenbergen et al., 2010, 2011). Many engineering 
headworks that worked well under conventional irrigation have failed 
when transferred to FBFS settings, as evidenced by multiple examples in 
the Oromia and Tigray regions of Ethiopia (Erkossa et al., 2014). While 
such failures are attributed to knowledge limitations regarding the 
timing, frequency and size of the flood for irrigation, the risks have not 
always been sufficiently appreciated due to a lack of adequate risk 
assessment procedures. Consequently, farmers, investors and donors 
cannot reliably assess the return on investment in FBFS. Given that FBFS 
have been shown to generate substantial benefits in many places 

compared to rainfed agriculture (e.g. Kobo, Ethiopia; Erkossa et al., 
2014; Van Den Ham, 2008), this may have resulted in many lost op
portunities. However, positive outcomes can only materialize when the 
additional water is well distributed to cover shortages in rainfall. 
Inadequate flood management can result in waterlogging of soils or 
submergence of crops and have negative impacts on crop production. 
Models aiming to make effective predictions for FBFS must consider 
various factors such as sediment management, hydraulic infrastructure 
and the social rules set by farmers (Liman Harou et al., 2020). Such 
factors are generally absent from current crop models. Consequently, 
there is, to our knowledge, no crop model that is suitable for FBFS. 
Therefore, the objective of this paper is to use the settings of FBFS to 
demonstrate the development of a crop model for complex agricultural 
systems with limited information and high uncertainty. 

We applied methods from Decision Theory to simulate crop perfor
mance under FBFS with full consideration of production risks and in
clusion of all available information and knowledge on important drivers 
of system behaviour. We used a mixed methods approach, incorporating 
both Bayesian Network (BN) and Monte Carlo (MC) models to develop a 
crop model that captures farmers’ realities and accounts for qualitative 
as well as quantitative information. The BN is used to describe important 
qualitative processes, mostly related to farming constraints, such as the 
cropping systems and management options adopted by farmers. The MC 
model is used to describe the quantitative processes, such as biomass 
accumulation across crop development stages. 

FBFS are used to showcase the methodology, yet the concept is 
customizable to any other complex system. It is particularly suitable for 
solution-oriented research. Two study areas in Ethiopia and Kenya were 
selected as reference locations to produce a generic model that could be 
applied to many situations and contexts with minimal modification. The 
two areas are assumed to cover much of the complexity (e.g. type of the 
biophysical system, agricultural management, social and institutional 
arrangements) found in FBFS. Data analysis was conducted using the R 
programming language (R Core Team, 2019) and software packages 
mentioned in the text are contributed packages of R. 

2. Methods 

2.1. Description of the study area and the sampling frame 

The study areas, Kisumu County in Kenya and the Tigray region in 
Ethiopia, are located within relatively low-lying regions (Fig. 1C, D). 
These flood-prone areas differ substantially in terms of system hydrol
ogy, management of agronomic flooding and other agricultural practices 
(Fig. 1E, F; Table 1). While FBFS farmers in Kisumu mainly use per
manent reservoirs to irrigate crops via inundation canals, farmers in 
Tigray mostly obtain water from ephemeral rivers, where they have to 
divert important amounts of spate flow within a relatively short period 
of time (Table 1). While the water sources and acquisition procedures 
vary among systems based on rice (Oryza sativa) in Kisumu (i.e. ‘out- 
growers’, East and West Kano), the cultural practices are similar. In 
these areas, farmers sow rice in monoculture during floods, followed by 
various flood recession crops that are intercropped depending on 
farmers’ preferences and water availability (Fig. 1E). In Tigray, in 
contrast, farmers mainly sow maize (Zea mays), sorghum (Sorghum 
bicolor) and tef (Eragrostis tef) based on rainfall to later irrigate them 
using flood water (Fig. 1F). The sampling frame of the study considered 
8 areas across Kisumu and Tigray to capture such important differences 
(Table 1):  

• East and West Kano (Kisumu): Two conventional irrigation schemes 
where the Kenyan national irrigation board uses large pumps to 
provide farmers with water from River Nyando and Lake Victoria. 
We considered these locations because they share many properties 
with FBFS while representing a special case of water acquisition. 
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Fig. 1. Description of the sampling frame used to develop a mixed model of various flood-based farming practices in the Tigray region of Ethiopia and Kisumu 
County in Kenya. The selection of the flood-based farming system schemes was based on field observations and recommendations from key informants. A) and B) 
indicate the locations of Kenya and Ethiopia in Africa, the location of Kisumu County in Kenya and the location of Tigray in Ethiopia, and the sampling frame in both 
regions. For both areas, C) and D) show the prevailing topography around the sampling frame, and E) and F) provide a pictorial view of the local flood-based 
agriculture practices. 
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• Ahero and Awach out-growers (Kisumu): Two FBFS schemes where 
farmers use simple gravity flow to acquire water from the Nyando 
and Awach Rivers. The main difference between these locations is 
that the Ahero out-growers scheme serves as safe disposal for excess 
water in East Kano.  

• East Nyankach (Kisumu): Scheme where farmers collect water via 
runoff and roof water harvesting. Typically, they store the collected 
water in various household ponds and water tanks to be used later for 
irrigation.  

• Tsige’a, Harosha, and Dayu (Tigray): Schemes where farmers use 
improved, traditional, and modern floodwater diversions, respec
tively, to harness spate flow from various dry wadis. 

The differences captured in the 8 areas considered in the sampling 
frame (Fig. 1E, F; Table 1) have implications for water supply, social 
organisation, agricultural management and crop development. These 
aspects translate into different farmer concerns in the two study regions. 
The most important concerns, which vary across the study regions, are 
related to water supply and agricultural management. While floodwater 
uncertainty seems to be more important for farmers in Tigray than for 
those in Kisumu County, the challenges related to agricultural man
agement appear more pressing in Kisumu County than in Tigray. In both 
areas, weeds are important constraints and weed removal is required at 
every stage of crop development. 

2.2. Participatory model development 

To describe crop performance within FBFS settings, we developed a 
mixed Bayesian Network/Monte Carlo model describing causal re
lationships deemed important for crop production in FBFS. We param
eterized the model using various sources of information, including 
literature review, online databases, expert knowledge elicitation, farmer 
and expert interviews and remote sensing (Krueger et al., 2012; Liman 
Harou et al., 2020; Refsgaard et al., 2007). The goal was to develop a 
detailed description of the system by breaking down the system 
complexity into all important processes (see Section 2.5) while high
lighting risk factors that influence crop production and accounting for 
data uncertainty (Refsgaard et al., 2007). To ensure the quality of the 
estimates, we introduced the experts to the principles of decision anal
ysis and provided them with a calibration training (Hubbard, 2014a; 
Luedeling et al., 2015; Whitney et al., 2018a, 2018b). Expert calibration 
is the process of training experts to provide robust estimates and to 
assess their own confidence in these estimates. The procedure consists in 
training the experts in estimation, so that they neither understate nor 
overstate their knowledge of the issue under consideration. We con
ducted the calibration training based on a set of predefined questions 
guiding the experts as recommended by Hubbard (2014a, 2014b). 
Typically, the procedure consists in asking the experts to estimate the 
values of some variables based on a set of trivia questions and assessing 
their skill while providing tools for making better estimates. We do 

several rounds of this until the experts’ skills have increased to an 
acceptable level (i.e. they are correct close to 90% of the time when they 
say they have 90% confidence in their estimate). 

The model development process, therefore, consisted of five 
sequential steps with specific milestones (Fig. 2) to develop theories that 
match farmers’ realities:  

• A literature review to understand the issue and design broad leading 
questions to primary experts (experts from various academic and 
research institutions working with FBFS and related fields).  

• A high-level discussion with 11 primary experts to understand 
important FBFS concepts. At this stage of the process, the main 
objective was to obtain a high-level understanding of the concept of 
FBFS from different perspectives. We selected the experts based on 
their relevant and extensive experience regarding the practice of 
FBFS (Krueger et al., 2012) and asked them to define FBFS, thereby 
identifying important concepts to include in the model.  

• Discussions with 20 focus groups in Ahero and Kisumu towns 
(Kenya) in December 2016 and June 2017 and in Mekelle and Ala
mata towns (Ethiopia) in December 2016 and January 2017. At this 
stage of model development, the objective was to relate the high- 
level concepts to the local contexts. This allowed us to develop 
specific understanding of the FBFS practices in both Kisumu County 
and Tigray.  

• Consultation with local experts to formalize the model. We extended 
the pool of local experts, initially represented by local farmers and 
extension civil servants, to include the participants of a leadership 
course in flood-based farming and water harvesting in Kenya and the 
participants of the International Training Course on Integrated 
Watershed Management and FBFS in Ethiopia (FBLN, 2018). The 
main objective of this expert consultation was to define the causal 
relationships between variables along with the variable estimates. To 
achieve this objective, we grouped the farming constraints into 
variables related to soil water (e.g. upstream abstraction, amount of 
floodwater reaching the farming plot, available soil water), cropping 
systems (e.g. crop type, previous crop, effectiveness of cropping 
systems) and farmer management (e.g. access to inputs, skill of the 
farmer, pest and disease impacts). At this stage, we shared the in
formation acquired in the previous steps with the local experts for 
their feedback. They helped us to formalize the model and link the 
qualitative variables using a BN, and the quantitative ones using an 
MC model (Figs. 2 and 3). We later connected the BN and the MC 
models to form a generic model that captures the variability of FBFS 
schemes in the study regions.  

• Interviews with 159 farmers to ensure that the model had captured 
farmers’ realities. We asked the farmers to estimate their historical 
yields at 90% confidence intervals and used these estimates along 
with the experts’ estimates (e.g. yield potential) to model important 
yield metrics (e.g. yield gap). 

Table 1 
Characteristics of the flood-based farming systems sampled to develop a crop model in the Tigray region of Ethiopia and Kisumu County in Kenya.  

Study region Sampled areas Original design idea Diversion type Water Source Water Source hydrology Water acquisition 

Kisumu East Kano Engineers Modern Nyando River Permanent Pump 
West Kano Engineers Modern Lake Victoria Permanent Pump 
Ahero out-growers Farmers Traditional Nyando River, East Kano Permanent Gravity 
Awach out-growers Farmers Traditional Awach river Permanent Gravity 
East Nyankach Farmers Modern and Traditional Runoff harvesting Ephemeral Household pond/roof 

Tigray Tsige’a (Guguf) Farmers and engineers Improved Dry wadis Ephemeral Gravity 
Dayu (Gerjele) Engineers Modern Dry wadis Ephemeral Gravity 
Harosha (Tumuga) Farmers Traditional Dry wadis Ephemeral Graviy 

Agricultural practices are mainly homogeneous within study regions. The term ‘out-growers’ refers to farmers outside the scope of the Kenyan national irrigation 
board. Traditional flood water diversions are physical infrastructure, such as deflecting spurs or soil bunds that are constructed by farmers across flood channels using 
locally available materials. Modern diversion structures, such as diversion weirs, are usually designed by engineers and made of concrete. The improved diversion type 
constitutes an integration of farmers’ and engineers’ knowledge. 

I. Liman Harou et al.                                                                                                                                                                                                                           



Agricultural Systems 187 (2021) 103014

5

2.3. Models for quantitative variables 

A Monte Carlo (MC) simulation is a quantitative procedure that uses 
a deterministic mathematical equation to estimate the values of 
continuous variables based on the probability distributions of one or 
more input variables. The population of outputs consists of drawing 
many sets of random values from these distributions to parameterize the 
central equation, hence expressing a reasonable estimate of uncertainty 
around the value of the target variable (Luedeling et al., 2015; Refsgaard 
et al., 2007; Rosenstock et al., 2014). 

We used an MC model with 21 variables determining the perfor
mance of a given farmland (e.g. yield potential, exploitable yield po
tential, exploitable yield gap, exploitable yield gap loss due to 
constraints, actually exploited yield gap, expected actual yield, farming 
constraints and crop growth estimation considered at different stages of 
crop development) to quantitatively describe biomass accumulation 
during crop development and the conversion of this biomass into grain. 
We estimated the yield potential based on the global yield gap database 
(Van Ittersum et al., 2013), the attainable yield potential based on the 
literature (Van Ittersum et al., 2013), the actual yield based on data from 
farmer interviews, and the remaining variables based on expert elicita
tion. For each variable, the input data are the 5% and 95% quantile 

values, along with the shape of the probability distribution. We 
considered the yield potential to be the theoretical yield limit of a va
riety grown under optimal conditions (Van Ittersum et al., 2013). Since 
achieving the full yield potential is unrealistic, we considered the 
exploitable yield potential as the fraction of yield potential (70–80%) 
that farmers can potentially achieve under ideal conditions. Since such 
ideal conditions are not encountered in most places, we considered the 
exploitable yield gap (difference between the exploitable yield potential 
and the average farmer yield) to account for the systemic constraints 
encountered on farms. Internally, we imposed restrictions on some of 
the correlated variables to avoid simulating inconsistent values. For 
example, we restricted the exploitable yield gap to non-negative values 
that never exceed the attainable yield values in the Monte Carlo simu
lation. Finally, the expected actual yield expressed the yield expectation 
given a farmer’s management conditions (Van Ittersum et al., 2013). 

2.4. Models for qualitative variables 

A Bayesian network (BN) is a multivariate cause-effect model suit
able for conditional reasoning across variables with multiple qualitative 
states. Typically, a BN defines the probabilities of the states of unknown 
discrete variables, conditional on the probabilities of the states of (an) 

Fig. 2. Overview of the approach used to develop a crop model for flood-based farming systems in Tigray, Ethiopia, and Kisumu County, Kenya.  
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Fig. 3. Conceptual framework of important processes considered in the development of a crop model for flood-based farming systems in the Tigray region of Ethiopia 
and Kisumu County in Kenya. 
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other known variable(s). These conditional probabilities express causal 
relationships between the discrete variables (Jensen, 1996; Pearl, 1988). 
A BN is composed of logical connections (directed edges) between var
iables (nodes), which are arranged in probabilistic graphical models. 
Dependencies are represented by arrows (arcs) encoding the direction 
and nature (i.e. direct or indirect) of the causal relationships (Pearl, 
1988). A node describes the states of a variable (node states), with a 
variable at the arrowhead (child node) being influenced by the variable 
at the arrow tail (parent node). The strength of the influence is portrayed 
by the conditional probabilities typically specified as stochastic matrices 
known as conditional probability tables (CPTs), which are the central 
elements of BNs (Fenton and Neil, 2013; Jensen, 1996; Pearl, 1988). 
They portray the strength of the association between all states of a child 
node and the various states of its parents (Hansson and Sjökvist, 2003; 
Scutari and Denis, 2015). 

We assumed that management practices influence various biotic and 
abiotic factors which, in turn, drive system functions (Jax, 2005). These 
profile a given farmland in terms of farming constraints and perfor
mance. The variability among system processes across farmlands is 
considered to imply differences in the states of variables modulating 
them. In developing the BN, the local experts used 121 variables to 
specify complex causalities defining one important variable: the 
‘farming constraints’ factor, which accounts for the combined effects of 
all limiting factors. The 121 variables describe the adequacy of water 
supply, cropping systems and agricultural management (see supple
mentary code for more details on these variables). The experts dis
aggregated these qualitative variables into their respective states (e.g. it 
rains or it does not, manure is either applied or it is not) and estimated 
several parameters describing the probabilities of these states as CPTs 
(see Section 2.6). 

2.5. Modularity and system complexity 

The generic model encapsulates the complexity of the farming sys
tem at 4 levels of abstraction embedded in the BN and MC models:  

• Recognition of individual processes defining system performance: 
This was done in plenary sessions during workshops, where the ex
perts identified the important processes and grouped them into 
separate modules based on the assumption that farming constraints 
affect crop development. To facilitate the description of complex 
processes, we described some of these modules using submodules. 
The experts described these processes through causal chains 
describing resource allocation (e.g. available soil water or available 
soil nutrients) in three modules (the soil water, the cropping system 
and the management modules) to estimate the farming constraints 
variable via the BN. Then, the experts assessed crop growth under 
these constraints at various stages of crop development, which we 
used to inform the MC model. 

• Disaggregation of the processes into individual variables (e.g. rain
fall occurrence or manure application): This was done in working 
groups, with the aim of identifying important variables and in
terfaces for shared connections between the processes.  

• Description of the variables: This was also done in working groups, 
with the aim of defining the relationships between variables and 
estimating their values. As mentioned earlier, the experts estimated 
the quantitative variables as continuous probability distributions 
and the qualitative ones as discrete probability distributions. When 
programming the model we used the mcSimulation function from the 
decisionSupport package (Luedeling et al., 2019) to conduct the MC 
simulation and the cptable function from the gRain package 
(Højsgaard, 2012) to generate the CPTs from the parameters esti
mated by the experts. For quantitative variables, we used the 5% and 
95% quantile values along with the type of the distribution to 
construct estimates using the estimate function from the decision
Support package, as required by the mcSimulation function. For 

qualitative variables, we used the make_CPT function from the deci
sionSupport package to formulate CPTs as required by the cptable 
function from the gRain package. The full BN and MC models 
describing these are provided in the technical and supplementary 
materials.  

• Separation of crop development into critical stages: we defined the 
crop development stages from the onset of the cropping season to 
10% ground cover as initial stage, from 10% ground cover to effec
tive full cover as the development stage, from effective full cover to 
the start of maturity as the mid stage, and from the start of maturity 
to harvest or full senescence as the late stage (Allen et al., 1998). As 
mentioned earlier, we assumed that farming constraints can have 
effects on crops during each of the 4 development stages, and these 
effects depend on the state of farming constraints at the previous 
stage. For example, the effect of weeds due to inadequate weed 
removal during the initial stage can influence crop growth during the 
development stage. At each of these stages, we introduced a variable 
to measure crop growth and prevent crops from arbitrarily growing 
beyond the actual yield expectations. We assumed that crop yield 
follows a negatively skewed gamma distribution (Gallagher, 1987; 
Ramirez et al., 2003), meaning that there is a high chance of low 
yield and relatively low chance of high yield. In developing the 
model, we focused on 4 crops – rice, maize, sorghum and tef – based 
on their importance in the study areas. 

2.6. Modelling interface 

As mentioned earlier, the experts estimated several parameters 
describing joint CPTs as inputs for the make_CPT function. To create the 
full CPT, the function requires the prior probability distribution of the 
child node, the child node’s sensitivity relative to the parents, the par
ents’ effects, and the weight of influence of each parent (Hansson and 
Sjökvist, 2003; Luedeling et al., 2019; Whitney et al., 2018b). We 
automated the make_CPT routines to generate inputs for the cptable 
function from the gRain package (Højsgaard, 2012) and formalised the 
BN as a computer-readable graphical model following the experts’ 
causal reasoning (Liman Harou et al., 2020). 

While BNs are ideal for specifying complex levels of hierarchy and 
categorization as cause-effect relationships, they also provide a conve
nient interface for studying simple aspects based on the states of 
different variables and their causal linkages. Based on the different 
combinations of the states of its parents, we generated the probabilities 
of the ‘farming constraints’ node by sampling from the posterior dis
tributions of the BN (Liman Harou et al., 2020). This is equivalent to 
generating all possible farming constraint scenarios based on the BN 
model. Technically, we used MC particle filters (Kitagawa, 1996; Koller 
and Friedman, 2009; Scutari, 2010) to generate the probabilities of 
farming constraints conditional on different combinations of the states 
of variables involved in the BN. We assumed that the negative effects of 
the different states of the variable on crop development range between 
0 and 1, where 0 denotes ideal conditions (exploitable yield potential) 
and 1 the worst-case scenario (total loss). Therefore, we used the vari
able as expected loss ratio, accounting for both the effects of the variable 
states and their probability of occurrence in the MC model (Fig. 3). 

A combination of MC and BN models is ideal for specifying complex 
deterministic and cause-effect relationships while enabling the use of 
data and information that are not necessarily precise. These modelling 
approaches can produce reliable advice that makes full use of the current 
state of information and adequately expresses all uncertainties in such a 
way that outcomes and risks of a given decision can be appreciated. We 
set the MC model to simulate the various yield metrics (Fig. 3) ranging 
from the maximum possible yield to what farmers actually achieve (Van 
Ittersum et al., 2013; Liman Harou et al., 2020), and the BN to provide 
the shape of the probability distributions of the variable ‘farming con
straints’ (Fig. 3), as well as its 90% confidence interval and median 
values. This was done at each of the 4 crop development stages to 
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account for the variability of farming constraints over the growing 
season and the biomass accumulation over time. 

Note that we evaluated the probability distributions of the node 
‘farming constraints’ based on reasonable bounds for skewness and 
kurtosis via visual observations supported by bootstrapping. We fitted 
several candidate distributions using the fitdist function from the fit
distrplus package (Delignette-Muller and Dutang, 2015; Liman Harou 
et al., 2020), from which we chose the best-fitting distribution. In the 
supplementary materials, we show examples of Cullen and Frey graphs, 
and quantile and probability plots, along with the theoretical and 
empirical density and cumulative distribution functions used to facili
tate the choice of the distributions. Note also that we computed the 
remaining parameters required by the mcSimulation function from the 
fitted distributions using the fitdist function and other functions from the 
rriskDistributions package (Belgorodski et al., 2017). 

2.7. Inputs, outputs and special models 

To demonstrate the flexibility of the approach and the importance of 
modularity in customizing model behaviour for specific situations, we 
derived specific models from the generic model to present the different 
modules and their throughputs in three case studies of varying 
complexity:  

• The assessment of soil water using the soil water module looks at the 
challenge of maximizing water storage in soils, while limiting 
waterlogging and restricting water losses through evaporation, run- 
off or percolation in FBFS. We show how the model can be custom
ized to prescribe optimum pre-season cultural practices for improved 
soil water on specific soil types. We formulated 18 different queries 
to assess the probability of soil water states (i.e. Drought risk, 
Normal, Waterlogging risk) conditional on soil types (i.e. Sandy, 
Loamy, Clayey), the amount of floodwater reaching the plot (Too 
little, Desired, Too much) and the states of manure application (True, 
False). We generated 10 variants of each of these 18 queries and ran 
them 1000 times using a customized version of the cpdist function 
from the bnlearn package (Scutari, 2010; Liman Harou et al., 2020). 
This corresponds to 180,000 possibilities capturing the variability of 
farmlands in space and time. It is important to note that by repli
cating each query 10 times we account for the variability of the same 
farmland. This is the variability over the same farming plot between 
different years, which technically corresponds to sampling from the 
posterior distribution of the BN. By considering each replication 
1000 times, we account for the variability between different 
farmlands.  

• The probabilistic assessment of crop biomass uses the crop growth 
module to show the model’s suitability as monitoring tool for 
biomass accumulation (i.e. the amount of above-ground biomass 
produced by crops on a given farm) over the growing season. We 
considered all possible scenarios defining the likelihood of a given 
state of the variable ‘farming constraints’ to generate 81 different 
queries. These correspond to all possible combinations of the states 
of the variable ‘farming constraints’ taken at each of the 4 stages of 
crop development. We performed the queries using the cpdist func
tion and used the outcomes in a Monte Carlo simulation to generate 
10,000 model runs simulating the exploitable yield gap, the 
exploitable yield gap loss due to constraints, the actual exploited 
yield gap, and the expected actual yield. While we provided all the 
324 simulated results in the technical material, we discuss only a few 
of these here to showcase the model.  

• The study of the impact of soil water and biotic stresses (i.e. pests, 
diseases and weeds) shows the effects of these on the grain yield of 
rice and sorghum, integrating all 4 model modules. We formulated 
all possible combinations of the extreme states of the nodes ‘Soil 
water’, ‘Weed impacts’ and ‘Pest and disease impacts’ based on 
which we queried the posterior distribution of the ‘farming 

constraints’ node. It is worth mentioning that we considered these 
scenarios only at the mid stage of crop development and assumed 
that the farming constraints define the actual yields, which the 
farmers estimated as value ranges. We conducted the MC simulation 
based on these considerations using the mcSimulation function. 

It is important to note that inputs for the three case studies consisted 
of scenarios that were formulated based on child-parent state relation
ships. Outputs are the probability of adequate soil water, biomass and 
grain yield, respectively. The rationales of each of these case studies are 
provided in the supplementary materials. 

3. Results 

3.1. Farming constraints for FBFS in Kisumu County 

Uncertainty in water supply in the sampled FBFS of Kisumu County 
depends mainly on the source of water and the water extraction method. 
Schemes relying on runoff harvesting are more exposed to water 
shortages than those relying on water bodies. For the latter type, sea
sonal fluctuations of water levels in reservoirs caused by the local hy
drology can strongly affect water supply to FBFS schemes. Schemes 
relying on gravity are generally more exposed to water shortages than 
schemes equipped with pumps, particularly in periods of low water 
levels in the reservoirs. Risks related to water supply may be more 
prominent in the schemes of ‘out-growers’, which are exposed to water 
excess and shortages, due to the relatively low level of control on the 
amount of water reaching the plots, compared to the schemes managed 
by the Kenyan national irrigation board, where the water supply is more 
closely regulated. 

In the schemes of ‘out-growers’, cultivation of a recession crop, 
which is almost entirely reliant on residual moisture, is not always 
possible due to lack of water. The risk of water excess is more of a 
concern for farmers in the Ahero out-growers scheme than for out- 
growers in Awach, where the risk of water shortages is more promi
nent. Despite being equipped with pumping machinery, the East Kano 
scheme is more exposed to water shortage than the West Kano scheme 
due to water level fluctuations in the Nyando River. The most important 
constraints related to agricultural management are represented by a 
range of pests, among which birds and other wild animals cause the 
greatest damage. Their impacts on crops are inversely correlated with 
water supply, meaning that the schemes with higher water endowments 
are more strongly exposed, because these animals often live close to 
water bodies. Relatively minor issues mentioned by farmers are the 
failure of the pumping machines in the East and West Kano schemes, the 
relatively limited labour force and access to inputs in the schemes of the 
‘out-growers’. 

3.2. Farming constraints for FBFS in Tigray 

Flood water uncertainty, which is perhaps the most important 
concern for farmers in Tigray, includes constraints related to the avail
ability and management of floodwater. The performance of spate irri
gation systems is generally assessed in terms of sediment budget, which 
strongly influences water delivery. The main challenge in these spate 
irrigation schemes is the sediment load and the labour-intensive work of 
sediment removal, which must be done regularly to maintain the 
flooding structures, particularly in traditional and modern floodwater 
diversion schemes. While fine sediments improve soil fertility, coarse 
sediments can raise wadi beds to levels that prevent water from reaching 
agricultural fields. In this regard, improved diversion structures that 
manage to filter out coarse sediments while allowing fine sediments to 
reach the farming plots, convey clear benefits to farmers (Embaye et al., 
2012). In Tigray, floods often come from elsewhere and flow for a 
relatively short period. Farmers can easily miss such flood events, and 
large floods can cause damage to both infrastructure and crops. 
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Relatively minor issues mentioned by the farmers are limited access to 
inputs, particularly fertilizers and chemicals for controlling pests and 
diseases. 

3.3. Overview of the conceptual model 

The generic model (overview in Fig. 4) includes several socio- 
economic, biophysical, and agronomic aspects to describe crop devel
opment under various types of farming constraints. Socio-economic as
pects in the model describe negotiations at various decisional scales (e.g. 
arrangements between upstream and downstream farmers), the socio- 
economic context (e.g. access to inputs, mutual assistance, available 
labour force, economic situation of the farmer). Agronomic aspects in 
the model describe farmers’ choices regarding cropping systems and 
agricultural management. These include aspects such as crop type, crop 
variety, and the planting method along with other farm management 
practices such as the planting date or crop rotation. Aspects of the model 
related to farmer management inform soil fertility, crop protection and 
ultimately the efficiency of agricultural management. Biophysical as
pects in the model describe the climate, the soil and the type of flooding 
system, which strongly influences floodwater delivery. 

3.4. Soil water module 

The soil water module (Fig. 4a) estimates the adequacy of water 
supply to the crop as a convenient determinant of crop performance (in 
the sense of water-limited yield). Adequacy is related to available soil 

water, which depends on other factors such as rainfall, soil water 
holding capacity, the amount of floodwater reaching the plot, and 
evaporation (Fig. 5). Two sub-modules describe this module: the amount 
of floodwater reaching the plot, and the available soil water (see sup
plementary material). The former describes external influences, infra
structure, and social arrangements determining flood water acquisition 
and sharing in FBFS. The latter describes the factor ‘soil water’, as it 
would be described under rainfed conditions (Fig. 5). 

Various social arrangements, such as agreements for water sharing 
and system maintenance between stakeholders, determine the sharing of 
floodwater in a given scheme. These can influence sediment loads 
(depending on the type of water diversion), hence affecting the ade
quacy of water supply to crops through floodwater delivery. External 
effects such as upstream abstraction influence the amount of floodwater 
reaching the plot directly or indirectly (via the amount of shared flood 
water). Off-site rainfall occurrence can have a positive effect by 
increasing water supply. These, however, are not the only factors 
affecting soil water availability, which also depends on intrinsic soil 
characteristics, farm management, and other climatic factors (Fig. 5). 

The assessment of soil water using the soil water module (Fig. 6) 
shows that on clayey soils without manure application, drought impacts 
are unlikely, while waterlogging is very likely when at least the desired 
amount of floodwater is obtained (Fig. 6). Uncertainty is greater when 
little floodwater is available. Supplementary manure application 
slightly increases the chance of waterlogging, which also increases when 
too much floodwater is obtained. 

Loamy soils generally behave similarly to clayey ones, with a slightly 

Fig. 4. Overview of the mixed Bayesian Network/Monte Carlo crop model for flood-based farming systems in the Tigray region of Ethiopia and Kisumu County in 
Kenya. a) factors determining the available soil water, b) cropping system characteristics, c) management practices adopted by the farmer, and d) crop development 
over time. This graph provides a simplified overview of the generic model. Nodes represent groupings of similar aspects. Bullet lists provide examples of variables 
that can be expected in the model described in fine detail in the technical material. Bubble shapes are Bayesian networks formed by variables (rectangular shapes) 
pointing to them. 
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lower chance of waterlogging and greater probability of normal soil 
water conditions. Sandy soils appear to be the riskiest and most uncer
tain soil type for soil water. In all three soil types, drought appears to be 
more likely in years with little floodwater and no manure application 
than in other scenarios. 

3.5. Cropping system module 

The cropping system module (Fig. 4b) assesses the effectiveness of 
the cropping options, evaluating the performance of the cropping system 
adopted by the farmer instead of the cropping system itself. Crop types 
were ranked in decreasing order of yield (rice, tef, maize and sorghum) 
with improved crop varieties assumed to perform better than local ones. 
However, the effectiveness of the cropping system depends on an array 
of agricultural practices, such as the choice of planting date, the crops 
previously grown on the same land, and the presence and density of 
intercropping. The most effective cropping is generally achieved when 
an improved variety is planted early on land that had a different crop in 
the previous season. This can depend on the crop type. For example, rice 
and tef are quite tolerant of repeated cultivation and monoculture, 
whereas maize and sorghum perform better in crop rotations and 
intercropping. 

3.6. Crop growth module 

The crop growth module (Figs. 4d and 7) monitors biomass accu
mulation over time to estimate yield metrics (e.g. biomass yield gap, 
exploited biomass yield) at different stages of crop development. Fig. 7 
summarises the MC model, including the relationships between the 
quantitative variables and the mathematical calculations involved at the 
initial and development stages. Crops are initially regarded in terms of 
their boundary conditions represented by their yield potential, which 
was differentiated into attainable yield potential, yield gaps, and actual 
yield via the actual farm conditions represented by farming constraints 
(see Section 2.3; Fig. 7). We selected the initial and the late stages of crop 
development along with the worst, medium, and best-case scenarios to 
show the biomass accumulation over time, and to illustrate the effect of 
varying farming constraints on crop development (Fig. 8). In this lum
ped assessment, we focused on the amount of biomass with no attempt 
to distinguish between the 4 crops considered. 

The probabilistic simulation of crop biomass shows that several risk 
factors, some of which are specific to FBFS, affect the actual biomass 
yield, as well as the other yield metrics (Fig. 8). Farms generally have a 
high probability of relatively low yield, which varies substantially over 
time and in response to differing levels of farming constraints. 

Based on computed 90% confidence intervals, the exploitable yield 
gap, the actually exploited yield gap, and the expected yield can differ 

Fig. 5. Causal linkages defining the factor ‘available soil water content’ in flood-based farming systems in the Tigray region of Ethiopia and Kisumu County in Kenya 
(simplified illustration). 
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by a factor of two between situations with high and low farming con
straints. The exploitable yield gap and loss due to farming constraints 
are substantial, indicating great potential for yield improvement. 
Exploitable yield loss is positively correlated with farming constraints, 
with a high chance of zero loss under minimal farming constraints. 
Simulation results show right-skewed gamma distributions (Fig. 8) 
indicating that crop yields in the study area are characterized by a 
relatively high frequency of low values. This highlights important un
certainty regarding yield expectations in the study areas. In general, 
chances of grain yield above 5 Mg ha− 1 are negligible. 

3.7. Management module 

The management module (Fig. 4c) points out the agricultural man
agement efficiency via 4 important sub-modules describing the general 
household situation, soil nutrients, pests and diseases, and weeds 
(Figs. 4c and 9). Pest and disease attacks can weaken the crop in sub
sequent development stages, aggravating other problems and ultimately 
lowering the agricultural management efficiency, particularly when the 
farmer lacks advanced skills in crop protection. The skill of the farmer, 
which depends on the social and economic context (e.g. opportunity, 
willingness and ability to purchase inputs), defines the farm manage
ment efficiency regarding water and crop protection methods (Fig. 4c). 

The impacts of soil water and biotic stresses on grain yield suggest 
that crops subjected to strong farming constraints during early growth 
are likely to experience slow growth over the entire season. This cu
mulative effect of farming constraints seems to cause important biomass 
losses, which translate into low yields. Grain yield is very low when the 
late-stage constraints are high, regardless of the status of pests and 
diseases or water at the previous stages. Under such conditions, grain 
yield in both rice and sorghum rarely exceeds 1 Mg ha− 1. Grain yield 
expectations are generally higher and more sensitive to varying levels of 
farming constraints in sorghum compared to rice. The greater sensitivity 
of sorghum can be seen by comparing the two crops following increasing 
levels of farming constraints (from bottom to top in Figs. 10 and 11). 
Based on the confidence interval, grain yield of sorghum surpasses that 
of rice by about 1 Mg ha− 1 when the farming constraints are low at the 
initial and development stages. This difference is on the order of 0.5 Mg 
ha− 1 when the farming constraints are high at the initial and develop
ment stages. These findings highlight the importance of the early and 
late stage regarding grain yield in FBFS of the study areas and suggest a 
need for adequate management and crop protection during these critical 

crop development stages. Even with favourable conditions at these 
stages, grain yields rarely reach 5 Mg ha− 1 for rice and sorghum. As 
mentioned earlier, the difference in terms of ‘Pest and disease impacts’, 
‘Weed impacts,’ and ‘Water supply’ were considered over a relatively 
short period of time (mid stage of crop development only). Note also that 
crop yield was assessed in Mg ha− 1 and a difference (e.g. 0.25 Mg ha− 1) 
that may be small in other areas is quite substantial for the farmers in our 
study areas. 

Rice subjected to a high level of farming constraints during the initial 
and development stages seems insensitive to both water variation and 
changes in weed pressure (Fig. 10). However, controlling the level of 
pests and diseases, supported by good water supply, is likely to improve 
yield regardless of weed levels. Under limited water conditions and 
increasing levels of pests and diseases, however, weed removal seems to 
improve grain yield in rice. This slight yield improvement seems to level 
off with better farm conditions at the development stage. While weed 
removal generally improves rice grain yield, weeds are likely to have 
less of an effect when water is available, and pests and diseases are 
controlled. The effects of both weeds and pests and diseases seem to 
increase with increasing soil moisture. 

In contrast to rice, sorghum grown under high farming constraints at 
the initial and development stages seems to respond to varying levels of 
water and weeds (Fig. 11). While the crop is likely to have higher yields 
with non-limiting water supply, it seems more suitable for drier condi
tions when severe pest and disease effects are expected. Only in this 
situation of strong pest and disease impact, however, does sorghum 
grown under non-limited water supply seem to show grain yield 
improvement due to weed reduction. Regardless of water conditions, 
improved farm management at the early stage seems to improve the 
effect of weed removal in sorghum, particularly when the level of pest 
and disease impact is minimal. With increased severity of pests and 
diseases, sorghum seems to no longer respond to weed reduction. When 
farm conditions are better at the development stage, both non-limiting 
water supply and weed reduction improve the yield of sorghum. When 
farm conditions are better at both initial and development stages, wetter 
conditions seem better under minimal pest and disease pressure, 
whereas drier conditions are better in situations of severe pest and dis
ease pressure. In situations of limited pest and disease impact, sorghum 
seems to respond to weed reduction only when water is limited. Under 
severe pest and disease pressure, however, the crop seems to improve 
with weed removal regardless of the water conditions. This supports our 
earlier findings on the cumulative effect of farming constraints and 

Fig. 7. Overview of a Monte Carlo model assessing biomass accumulation during crop development in flood-based farming systems in the Tigray region of Ethiopia 
and Kisumu County in Kenya. Gray-bordered nodes are taken at initial stage. Blue-bordered nodes are taken at development stage. Dashed and plain lines nodes, 
respectively, are elicited and computed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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suggests possible weed-sorghum competition for water. 

4. Discussion 

The model presented in this paper navigates system complexity by 
breaking down a complex agricultural system into meaningful compo
nents to provide a reasonable representation of the system. The partic
ipation of stakeholders and the inclusion of other relevant sources of 
information increases the chance that the model captures the necessary 
knowledge to adequately inform management decisions in FBFS 
(Krueger et al., 2012; Refsgaard et al., 2007). To provide decision sup
port for development interventions, crop models generally need to 
include hard-to-measure aspects, which often require non-trivial 

measurement and analysis methods. For example, a crop model for FBFS 
cannot ignore the various social aspects, which are crucial for crop 
production. While the model development process can easily overlook 
such aspects, a crop model for agricultural decision support needs to 
consider the whole system and represent at least its most important 
factors. A model for such purposes should be framed in a way that allows 
the use of imperfect knowledge. New knowledge and high-quality data 
constitute a means of reducing initial uncertainties, but they should not 
be a prerequisite to running a model in the first place (Liman Harou 
et al., 2020). 

The predictions of the model discussed in this paper have not been 
compared with actual yield data due to a lack of required secondary data 
in the study region and limited resources for collecting new data. Even if 
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more empirical measurements were available, they may still not meet 
the requirements for validating such probabilistic predictions that ac
count for the entire space of possibilities. Still, by predicting all yield 
possibilities based on estimates from knowledgeable experts and on 
other relevant information available in the study regions, we have 
limited the risk of making unrealistic predictions. To support the use of 
local knowledge and improve model predictions, future studies may 
consider the use of biophysical information collected via field surveys 
and experiments (see Kilongosi et al., 2019), which was not possible in 
this study. The wealth of remote sensing data can be useful for both 
spatial and non-spatial models (Liman Harou et al., 2020). Available 
databases from previous modelling work, such as the global yield gap 
database, are potential sources of data for studies aiming to reproduce 
the proposed approach under rainfed conditions, but more caution is 
required for studies dealing with FBFS given the variation in FBFS set
tings. Even though the causal relationships between the variables are 
likely similar in many FBFS settings, studies aiming to use this model 
outside our study areas may need to specify the variable estimates ac
cording to specific local circumstances. 

Soil type is crucial for water supply (Fig. 6), and soil properties are 
particularly important for the stability of water supply in FBFS settings. 
For example, clay soils are known to have high water holding capacity. 
Due to regular flooding, however, a soil’s ability to store water can 
either decrease with the contribution of coarse sediments (i.e. gravel or 
sand) or increase with the contribution of finer sediments (i.e. silt and 
clay). Because coarse sediments tend to be deposited first, upstream soils 
are more likely to have low water retention than downstream soils. 

A major concern for FBFS farmers is uncertainty surrounding the 
magnitude and intensity of flooding (Van Steenbergen et al., 2010). 
Water supply in FBFS does not only depend on the soil type or rainfall 
but also on the availability and management of agronomic flooding and 

soil fertility, along with the social organisation involved at various scales 
(Haile, 2010; Kilongosi et al., 2019; Van Steenbergen et al., 2010). 
Harmful consequences of water supply (e.g. drought, waterlogging) in a 
particular year can only be attenuated through adequate management. 
On soils with low water holding capacity (e.g. sandy soils), the use of 
groundwater, which is often relatively shallow due to the recurrent 
floods, can be considered for drought management. Groundwater from 
shallow wells can also constitute an additional source of drinking water, 
but little information is yet available regarding the quantity and quality 
of this water (Haile, 2010; Van Steenbergen et al., 2010). While soil 
fertility management can improve soil water conditions, the erosive 
effect of floodwater should not be underestimated. Rich soils are often 
transported between farmers’ fields in the flood distribution network. 
The high risk of waterlogging on clayey and loamy soils can be 
addressed through limited tillage and enhanced soil organic matter 
content (Van Steenbergen et al., 2010). 

The small effect of varying water levels and weeds on rice subjected 
to high farming constraints at the earlier development stages suggests 
that certain growth traits are affected by other forms of farming con
straints than water and weeds, supporting the hypothesis that farming 
constraints during early growth are a major limitation to crop yield. 
Since with improved water supply, pest and disease control appears to 
result in higher yield, efforts to control pests and diseases would be more 
effective than weed removal, when conditions are harsh during the 
earlier stages of rice development. The slight yield improvement due to 
weed removal in situations of a high level of farming constraints sug
gests possible rice-weed competition for water, which becomes irrele
vant with better farm conditions. The relatively high yield reduction due 
to pests and diseases in sorghum grown under non-limited water supply 
compared to dry conditions, and the yield improvement in this crop due 
to weed removal, suggest that healthy sorghum is likely to be weed- 

Fig. 9. Overview of causal relationships defining the farming constraints in flood-based farming systems in the Tigray region of Ethiopia and Kisumu County 
in Kenya. 
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tolerant to some extent, but weed removal may improve water pro
ductivity, particularly when weed-sorghum competition for space is 
limited. The lack of sorghum response to weed removal under severe 
pest and disease pressure implies the possibility of some sort of syner
gistic effect between these biotic stresses. Since sorghum responds better 
to improved water supply and weed reduction with better farm condi
tions at the development stage than rice, it is more likely than rice to 
escape from the farming constraint trap with improved management at 
later stages. The yield improvement in sorghum affected by pests and 
diseases due to drier conditions suggests that moisture exacerbates the 
effect of pests and diseases. 

Despite the high potential for biomass production (Fig. 8), the net 
grain yield depends strongly on farming constraints at the late stage of 
crop development (mainly pests and diseases; Figs. 10 and 11), which 
are crucial in the FBFS of the study areas. The cumulative effect and 
variability of farming constraints across farmlands (Figs. 6, 8, 10 and 11) 
further illustrates the importance of recognizing the complex web of 
processes, many of which require further investigation. Future research 
hypotheses can be centred on the nexus between 4 important aspects:  

1. Synergetic effects of different biotic stresses  
2. Sensitivity of different crops to the joint effect of these stresses  
3. Effect of water supply on different crops subjected to these stresses  
4. Options for managing these stresses for particular crops 

Another interesting venue for future studies would be the compar
ative analysis of the market values of different types of produce. This 
would require the use of time series data, since the market prices change 
throughout the year (Van Den Ham, 2008). When such aspects are well 
understood, experiments can be conducted to assess the attainable yield 
under reduced farming constraints and set realistic targets for closing 
the yield gap. According to Meng et al. (2013), three important factors 
are generally responsible for yield gaps. The first factor is a mismatch 
between the local climatic conditions and the crop cultivar, which does 
not allow exploitation of the entire available growing period. Inade
quate sowing dates and thus relatively short-duration crops, can lead to 
earlier harvests than would be ideal, often not leaving enough time for 
crops to complete grain filling. In China, 7–15% of yield losses have been 
attributed to harvest before physiological maturity (Meng et al., 2013). 
Yield losses in FBFS are exacerbated by harvest and post-harvest losses 
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Fig. 10. Effects of pests and diseases, weeds and soil water on grain yield of rice grown in flood-based farming systems in the Tigray region of Ethiopia and Kisumu 
County in Kenya. Scenarios for water, weeds, pests and diseases are taken at the mid stage of crop development. Scenarios corresponding to ‘Farming constraints at 
late stage=High’ were not presented, because the results are barely visible owing to very small yield values below 1 Mg ha− 1. 
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due to a range of pests and diseases (Figs. 10 and 11). In Kisumu for 
instance, rice farmers experience large losses due to bird attacks, besides 
other limitations of high agricultural importance. Other less perceptible 
losses, such as those incurred due to harvesting technologies, or market 
opportunity losses due to the lack of storage facilities, contribute to low 
returns on agricultural investments (Van den Berg and Singels, 2013). 
The second factor responsible for yield gaps is related to the inadequacy 
of input allocation (e.g. inadequate water and nutrient supply). In 
Tigray, and to some extent also in Kisumu, few farmers use recom
mended amounts of fertilizers, while many schemes are exposed to 
water shortages. The third major reason for yield decline is poor man
agement resulting in inadequate crop protection. 

5. Conclusions and policy recommendations 

This paper presents a novel approach to crop modelling that ad
dresses system complexity in the context of limited information. Using 
Decision Theory methods, we demonstrate how expert knowledge can 
be used to support decision making under uncertainty. Using the 
example of FBFS, we build a complex system model using simple 

building blocks and imperfect information and demonstrate how to 
make predictions based on different scenarios that account for vari
ability across farmlands within a farming system. We show how intan
gible factors can be assessed for inclusion into the model and how 
seemingly marginally important factors can have cumulative effects on 
model predictions. The findings suggest that addressing the major 
farming constraints, such as uncertainty in water supply or the pro
duction risk due to biotic stresses, could reduce yield gaps and provide as 
much as double the current crop production in FBFS of the study areas. 
Therefore, development policies should focus on sustainable water 
supply and crop protection. Research and development should concen
trate on closing the current FBFS yield gap through the study of farming 
constraints that compromise primary production. From a modelling 
perspective, more robust assessments of agricultural systems are 
possible using empirical models, preferably derived from field experi
ments, in a probabilistic framework. Other promising avenues could be 
the modelling of agricultural systems with consideration of system 
variability and model boundary conditions in a spatially explicit fashion. 
We hope the approach we presented will stimulate robust assessments 
that adequately account for system complexity and data uncertainty. 
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Fig. 11. Effects of pests and diseases, weeds and soil water on grain yield of sorghum grown in flood-based farming systems in the Tigray region of Ethiopia and 
Kisumu County in Kenya. Scenarios for water, weeds, pests and diseases are taken at the mid stage of crop development. Scenarios corresponding to ‘Farming 
constraints at late stage=High’ were not presented because the results are barely visible owing to very small yield values below 1 Mg ha− 1. 
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Such predictions can be instrumental for enhancing the usefulness of 
model-based decision support in complex real-world settings. 
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