
DataMaster:
Software Architecture

DnD
Computer Science Department

California Polytechnic State University
San Luis Obispo, CA USA

December 2, 2018

CONTENTS 2

Contents

Revision History 2

Credits 2

1 Introduction 4

2 Problem Description 4

3 Solution 4
3.1 Overview . 4
3.2 Components . 5

3.2.1 Deployment Diagram (Griffin Aswegan) 5
3.2.2 Backend Component Diagram (Steven Bradley) 6
3.2.3 Frontend Component Diagram (Steven Bradley) 7
3.2.4 Class Diagram (Larry Hu) 8
3.2.5 Package Diagram (Christina Daley) 9

3.3 Design . 10
3.3.1 Use Case (Griffin Aswegan) 10
3.3.2 Activity Diagram (Christina Daley) 11
3.3.3 Activity Diagram (Dustyn Zierman-Felix) 12
3.3.4 Activity Diagram (Shane Villalpando) 13
3.3.5 State Diagram (Dustyn Zierman-Felix) 14
3.3.6 State Diagram (Shane Villalpando) 15
3.3.7 Sequence Diagram (Larry Hu) 16

4 Test 16
4.1 Testing Tools . 17

4.1.1 Unit Testing . 17
4.1.2 UI Testing . 17
4.1.3 Acceptance Testing . 17
4.1.4 Continuous Integration . 17

4.2 Test Examples . 17

5 Issues 17

A Glossary 18

CONTENTS 3

Credits

Name Date Role Version
Griffin Aswegan November 6, 2018 Author 1.0
Steven Bradley November 6, 2018 Author 2.0
Christina Daley November 6, 2018 Author 2.0
Larry Hu November 6, 2018 Author 1.0
Shane Villalpando November 6, 2018 Author 1.0
Dustyn Zierman-Felix November 6, 2018 Author 1.0

Revision History

Name Date Reason for Changes Version
Steven Bradley December 2, 2018 Added more info in Test section 2.0
Christina Daley December 2, 2018 Fixed formatting 2.0
Team DnD November 6, 2018 Initial Revision 1.0

1 INTRODUCTION 4

1 Introduction

This document describes the various components and pieces that make up the
DataMaster software. This document details the parts of the system, how the
parts relate to each other, how each part is connected, and how each part relates
or interacts with the user.

This document also contains images and visuals, such as Use Case Diagrams,
Activity Diagrams, and Component and Deployment Diagrams, to help with vi-
sual clarity and understanding.

2 Problem Description

MarkLogic is looking for software that can help organize and collect common
information from large data silos while leaving the data itself untouched.

This solution is designed to provide a flexible and intelligent system for finding
commonalities between data sets. Specifically, this system is designed to look for
and find connections between different collections of data and classify them so
that groups of common data sets can be found.

For more details, the System Requirements Specification document (the SRS,
found below under Glossary) provides more specifics on how the system is sup-
posed to work, how it solves the solution from a higher-level perspective, and more
details on how the system interracts with the user.

3 Solution

3.1 Overview

The main components of the system are as follows: the primary back end of
the system will be written in Python, using SciKit Learn for Machine Learning
of classifications, Pandas for data wrangling, and Django as a REST API to push
data to the front end. The back end will also utilize Node.JS to provide a front-
end webpage that will be written primarily in Javascript, utilizing React.JS and
D3.JS for visualization. The system will be run on AWSs servers during devel-
opment, but will be designed to be run on any server that has Node and Python
installed.

3 SOLUTION 5

3.2 Components

3.2.1 Deployment Diagram (Griffin Aswegan)

DataMaster is broken up into two major parts - a back-end server, and a front-
end web page. The back-end server has a couple of major components - the main
classification component, which consists of a machine learning component, a file
parser, and the actual classifier, and a system running as a host for the front-end
web page.

The client-side front-end is going to be composed of a web page (running on
the aforementioned host system) that will display information to the user. Most
of the information displayed will be from the classifier in the server. The front-
end is planned to perform no computation involved in classifying, but some light
computation in drawing some visualizations.

3 SOLUTION 6

3.2.2 Backend Component Diagram (Steven Bradley)

The back end of DataMaster will consist of two main subsystems, the data
classifier and a communication subsystem. The communication subsystem will be
responsible for all communication between the server and the client. Clients will
send HTTP requests to the server. These HTTP requests will be handled by the
communication subsystem, which will invoke the data classifier.

The data classifier will have 3 main components: a file manager, a data wran-
gler, and a machine learning component. The file manager will be able to fetch
newly uploaded files from the database. It will also be able to fetch previously
used data from the database. After the file manager gets data from the database,
it will pass the data to the data wrangler which is responsible for cleaning the
dataset and transforming it into tables usable by the machine learning compo-
nent. Once these tables have been formed, the machine learning component will

3 SOLUTION 7

use the tables to classify the dataset. The classification data will then be uploaded
to the database and then passed back to the communication subsystem. In the
communication subsystem, the data will be jsonified and then sent back to the
client via a REST API.

3.2.3 Frontend Component Diagram (Steven Bradley)

The frontend of DataMaster is relatively simple. There is a communication
subsystem which is responsible for handling all communication between the fron-
tend and the backend, a data visualization component, and a file upload compo-
nent.

The communication subsystem will send HTTP requests to the backend and
will consume the REST API responses from the backend. When the backend sends
JSONified objects(classified data) to the frontend, the communication subsytem
will hand this data off to the data visualizer. The data visualizer has a single
responsibility, visualizing data. The file upload component will be responsible for

3 SOLUTION 8

uploading files that are on the user’s local computer to our database.

3.2.4 Class Diagram (Larry Hu)

The above diagram is the class diagram of the system. This is a static diagram
that shows the relationships of all the individual pieces of the classification portion
of DataMaster. The purpose of this system is the Classify Data and eventually
display the data to the user.
We start with the File Parser that takes in standard file types such as XML,
CSV, and JSON and sends it to the Classification Abstract class. Here the data
is classified by the Machine Learning class and there is also an method to ViewFile.
Cluster and Classify classes extend Classification and are subclasses. They have
the option to Classify the data with or without given categories. Category is an
attribute to of classify and Wrapper. Once the data is classified it is entered into
a wrapper class and can be sent to the Visual Class to be ready to be displayed
to the user.

3 SOLUTION 9

3.2.5 Package Diagram (Christina Daley)

DataMaster layers several different packages to successfully create a working clas-
sifier. The DataMaster takes user input through the view layer. Within this layer
the user interface and view logic is contained. This layer also accesses the data
layer and the classification layer. The data layer holds the graph and table orga-
nization of the data and accesses the database. The classification layer holds the
classify and cluster logic. The classification layer accesses the machine learning
logic.

3 SOLUTION 10

3.3 Design

3.3.1 Use Case (Griffin Aswegan)

3 SOLUTION 11

The above diagram is a use-case example for the system. There are three
primary actors - active users of the systems, a data base to store the data sets
themselves, and a data base to store information about classification (note that
these do not need to be separate tables - they are marked as separate to illustrate
that they have no interaction with each other except through the system, and
that classification should be connected, but independent, of the data itself).

Users are able to perform a multitude of tasks, such as uploading files for fu-
ture classifiction, classify files based on information within though files, search for
specific files or data sets, visualize connections and similarities between classifica-
tions and data sets, edit data sets that have been classified, and edit collections
of similar classifications. The Classification Database stores all of the information
involving the classifications, including which files have what classifications, what
classifications are parts for collections, and more. The Data Set Database stores
all of the information related to the physical files, such as name, column informa-
tion, metadata, and more.

3.3.2 Activity Diagram (Christina Daley)

Classifying Data Sets:

DataMaster has a specific flow of actions it will take to classify data sets. To start,
DataMaster will get the data set or sets it will process. It then will either classify
or cluster the data set depending on if it received classification categories. Then
it will classify the data and has the ability to display the data in graph and/or
table view.

3 SOLUTION 12

3.3.3 Activity Diagram (Dustyn Zierman-Felix)

Search For Data Sets:

DataMaster gives the user the option of searching for data sets, which will help
the user build projects and make new classifications on different data. This activ-
ity diagram displays the flow that the user must go through in order to find new
data sets. The system will display the results of the user’s search in alphabetical
order, which will be helpful to the user.

3 SOLUTION 13

3.3.4 Activity Diagram (Shane Villalpando)

Upload Data Set Files:

DataMaster conveniently allows users to add files to projects. DataMaster uti-
lizes a convenient drag-and-drop method of doing this. Files that the user adds
to projects will be stored in a database and inside the user’s project.

3 SOLUTION 14

3.3.5 State Diagram (Dustyn Zierman-Felix)

Search For Data Sets:

The system of DataMaster will be in the state of displaying the home page at
the beginning of this state diagram. Once the user enters a search, the system
will be in the state of searching for results. If the system does not find a single
match, the system will display a page that shows the user that nothing matched
the search. Then the state will return to displaying the home page. If there were
results found, the system will display the results on a new page.

3 SOLUTION 15

3.3.6 State Diagram (Shane Villalpando)

Upload Data Set Files:

DataMaster will be in the state of displaying the home page with a list of current
projects that the user is working on. When the user selects a project to add data
sets to, the state will change to display information about that project and an
”add data set” button. When the user clicks on that button, the state will change
to display a prompt page. When the user drags files into the browser, the state
will change to uploading those files to the database and project. If the upload is
successful, the task is done. Otherwise, the state will change to an error display
screen.

4 TEST 16

3.3.7 Sequence Diagram (Larry Hu)

This is the Sequence Diagram for covering the use case to ”Edit Classification”.
The user starts by selecting data and viewing selected data from the main inter-
face. The main interface finds the related path and sends it to the controller to
retrieve the data from the database which is passed back to the controller. Then
the controller sends the received data to the main interface to be displayed.
Next the user selects the Classify Data button and inputs his desired category. The
front end sends the category from the controller to the Database. The database
then calls classify with Classifier and uses machine learning to change the cur-
rent Database. Database is now clustered by the specific given category, and the
clusters are displayed in the main interface.

4 Test

In order to ensure that, after each sprint, we have a working, potentially shippable
increment, we will follow an industry standard testing and integration process.
We will be using GitHub to manage our code repository, with a ’master’ branch
that will act as the primary release branch. Each developer will work on their
own separate branch, to ensure modularity and a lack of interdependence. Each
developer must submit a pull request that must be reviewed by at least one other
developer before it is merged. Each pull must have at least one or two meaningful
automated tests (unit, UI, acceptance, or other). Developers will be using a
TravisCI integration server that will be run after each pull request, to ensure

5 ISSUES 17

code that is quality and consistent, and if the code does not pass the TravisCI
integration test, then the code will not be merged until it is fixed. The developer
that submitted the pull request will be responsible for fixing the failing code, and
no further pull requests will be made until the pull request in question is repaired.

4.1 Testing Tools

This section includes information about the various testing frameworks that we
use to test all parts of the system.

4.1.1 Unit Testing

For unit testing of our python modules we plan on using the PyTest framework.
The developers who write the python modules will be responsible for all unit
testing of that module.

4.1.2 UI Testing

UI testing frameworks will be determined during the first sprint.

4.1.3 Acceptance Testing

Acceptance testing of Python modules will be done using the Robot framework.
The responsibility of writing acceptance tests will be mostly on the developers of
the Python modules with some assistance from the UI developers.

4.1.4 Continuous Integration

A TravisCI server will be used for continuous integration. The TravisCI server is
connected to our GitHub repository. Whenever a developer makes a pull request
or a commit is made to the repository, the TravisCI server shall run a subset of
our test suite. This subset shall consist of integration tests that test whether the
various components of our system work together.

4.2 Test Examples

Below you will find some examples of tests used to test our system.

5 Issues

No issues to be aware of.

A GLOSSARY 18

A Glossary

Dataset : A file, or collection of files, that represents a single table within a data
base.

Classification: A label that identifies information about the data inside of a data
set under a common identifier.

Category/Collection: A collection of classifications that provide information about
a single topic (for example, ”Phone Number”, ”Address”, and ”Email” could all
be categorized/collected as ”Contact Information”.

