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Why Statistics?

_JPredict The Stock Market

Suppose that one Monday morning you receive in the mail a letter from a firm
with which you are not familiar, stating that the firm sells forecasts about the
stock market for very high fees. To indicate the firm’s ability in forecasting, it
predicts that a particular stock, or a particular portfolio of stocks, will rise in value
during the coming week. If they successfully predict 7 consecutive weeks, Are
you going to pay them to buy another predicts?

The probability of Successfully predict for 7 weeks (1/2)" = 0.008
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Where do we use statistics?

* Scientific Research

* Weather Forecasting
° [nsurance

* Quantitative Trading
* Medicine

* Disease prediction

* Quality test

* Election

IIIIIIIIIIII

CALGARY



What included in Statistics

Stat
100/102/104
Quantitative

~Methods_~

Stat 109
Statistical

_ Modeling

Introduction to Applied Statistics

Stat 111
Inference

ol

=

( Stat 140 Stat 186
Design of Causal

Design Foundation r

Stat 117
Data Analysis
in

Stat 170
Quantitative

Stat 171
Stochastic

™

Stat 115
Computational

+ Life Sci

A2

From Harvard University CNEEARY



PART1 Introduction to Probability
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Probability

JContents of Probability
* Combinatorial Analysis
Axioms of Probability
Conditional Probability
Random Variables
Expectation and Variance
Special Distributions
The Law of Large Numbers and Central Limit Theorem
Generating Functions
Markov Chains
Random Walks
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Probability

_l Sample Space

* The set of all possible outcomes of an experiment

] Events
* Any subset E of the sample space

[EXAMPLE]

If the experiment consists of flipping two coins, then the sample space consists
of the following four points:

S={HH), (H,T) (T,H), (T, T)}

if E={(H,H), (H, T)}, then E is the event that a head appears on the first coin
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Probability

I Definition of Probability

We suppose that an experiment, whose sample spaceis S, is
repeatedly performed under exactly the same conditions. For
each event E of the sample space S, we define n(E) to be the
number of times in the first n repetitions of the experiment
that the event E occurs. Then P(E), the probability of the

event E, is defined as
P(E) = lim @

n-o N

P(E) is defined as the (limiting) proportion of time that £ occurs

IIIIIIIIIIII

CALGARY



Probability

1 Random Variables

* Let S be the sample space for an experiment. A real-valued
function that is defined on S is called a random variable

* Including Discrete R.V. and Continuous R.V.

* we may assign probabilities to the possible values of the random
variable

[EXAMPLE]

Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the
number of heads that appear, then Y is a random variable taking on one of the values
0, 1, 2, and 3 with respective probabilities

PY =0} =P{(T, T, T)} =+

P{Y=1}=P{(T, TH), (TH,T),(H, T, T} =
P{Y =2} =P{(TH,H), (H, TH), HH, T)} = @
P{Y =3}=P{(T, T, T)}=¢ ...
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Probability

. Distribution

* Let X be a random variable. The distribution of X is the collection
of all probabilities of the form Pr(X € C) for all sets C of real
numbers such that {X € C}is an event.

* Probability mass function(P.M.F) and Probability density
function(P.D.F)

[EXAMPLE]
p(x)=cA/x!,x=0,1,2, ..., Poisson distribution

1  (e-p)?
202
N © Normal distribution

flz | p,0?) =
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Probability

_l Expectation

* The expectation of X is a weighted average of the possible values
that X can take on, each value being weighted by the probability
that X assumes it

Discrete R.V. Continuous R.V.
E[X]= )  xp@ E[X] = f " ff d
xpix)={ —oa

[EXAMPLE]
Bernoulli distribution E(X)=p; Normal distribution E[X]=u

1 Variance
* Let X be a random variable with finite mean u = E(X).The variance
of X, denoted by Var(X), is defined as follows:
Var(x) = E[(X - u)?]. ©

Var(X) = E(X?) - [E(X)]>. At



Probability

JBinomial distribution

* Suppose now that n independent trials, each of which results in a
success with probability p and in a failure with probability 1 - p, are to
be performed. If X represents the number of successes that occur in
the n trials, then X is said to be a binomial random variable with
parameters (n, p). X~B(n, p)

8- PMF
e + p=0.5 and n=20 n
= p=0.7 and n=20 n—k
S e p=0.5 and n=40 (k)ﬂk(l —P)
o
w©
o-- .
Expectation

o [ ) )
N . . E(x)=np
g_ ° °
° . ‘. Variance
8_- ou:u‘:uul:t"‘ Ceees "000000000000

0 10 20 30 40 Var(x)=np(1-p)
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Probability

JPoisson distribution

* A random variable X that takes on one of the values 0, 1, 2, . . . is said
to be a Poisson random variable with parameter A if, for some A > 0,

e ANk

P(X=k)="—

© E(x)=A, Var(x)=1
* Expresses the probability of a given number of events occurring in a

fixed interval of time
0-40 1

0.35}
0.30}
< 0.25}
3 0.20}
5
0.15}
0.10}
0.05}
0.00
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Probability

J Other discrete distributions
* Geometric distribution
* Hypergeometric distribution
* Negative binomial distribution

| 1 I 1 m
1.0 . ; 7 o
— a — N=500, K=50, n=100
© p_0'2 /L — N=500, K=B0, n=200
0.8+ ® p=0.5 ] T \ — N=500, K=70, n=300
o a
< 0.6+ e \
Il L
x g i
o 0.4 B 8 \
=1 ] 3
0.2 a
0.0} 8 _
6 o T T T T T T T
0 10 20 30 40 50 60

X k
geometric distribution Hypergeometric distribution @
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Probability

JINormal distribution

* A random variable X has the normal distribution with mean
U and variance o? (—ee<u<ee and o >0) if X has a continuous
distribution with the following p.d.f.:

2 1 |: 1 (x—u)2:|
fx|p, o) p| —= for —oo < x -::oo.\

= , cX
Qm)/2a 2 o

r

f&x|po?) _
Expectation

Ex)=
Variance

Var(x)=o0°

=Y

n—2c L—a N wtao n+ 2o
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Probability

JUniform distribution

= X'is a uniform random variable on the interval («a, 8) if the
probability density function of X is given by

1
fixi =1 B —«a

0 otherwise

o —x < B

Na) Fla)

] ] a L g

i B o B
(a) (k)

Graph of (a) f(a) and (b) F(a) for a uniform (a, 8) random variable
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Probability

JExponential distribution

* LetB >0. A random variable X has the exponential
distribution with parameter 8 if X has a continuous
distribution with the p.d.f.

Be P*  forx >0,
X =
A {0 for x <0.
1.6 .
L4r . ’A\f(l)"r’ ' Expectation
1.2 -
10 A=LS E(X):%
550-8\ : Variance
0.6} ]
Var(x)=1/[>
0.4\\ _ x)=1/B
0.2}

0.0 I I 1 —_—
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Probability

J Gamma distribution

* Let a and 8 be positive numbers.Arandom variable X has
the gamma distribution with parameters a and 8 if X has a
continuous distribution for which the p.d.f. is

ﬁm xrx—le—ﬁx

for x > 0,
fxla, B) = (@)
0 for x <0.
0.5 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIIII I IIIIIIII _I__
—  k=1.0,0=20 :
i - k=2.0,0=20 ]
0.4 k=3.0,0=20
i — k=5.0,0=1.0 :
- ——— k=90,0=05 -
0.3 F k=75.0-10 1
- — k=05,0=1.0 -
02 F E
0.1 F =
o bl o i i &
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Probability

J Beta distribution
* Let a, 8 >0 and let X be a random variable with p.d.f.

F(ﬂ.’ +,8]' a—1 1 — B—1
fxle, B)= F{a}f‘(ﬁ)x (1=x)

0 otherwise.

for0<x <1,

2.5 S a=B=05 —— [ |
: a=5’B=1_ 7 V

a=1,f=3 —

a=2,B=2 —

a=2,p=5 —
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Probability

J Joint Distribution

* @Given random variables X)Y,..., that are defined on a
probability space, the Joint distribution for X)Y,... is a
probability that each of X)Y,...falls in any particular range or
discrete set of values specified for that variable.

* Bivariate distribution vs multivariate distribution

[EXAMPLE]

Bivariate normal distribution

— L 1 al “’1)2 5.102
S %2) = 2n(1 — p)20q0, expl 2(1—-p% [( o1 ©-102)
— 2p|(11 — ILI) (-1’2 — Haz) 4 (-1’2 — H»z)z] }
E"l ﬂ'g 0'2

UNIVERSITY OF

CALGARY




Probability

I Law of Large Numbers

Suppose that X, . .., X, form a random sample from a

distribution for which the mean is u and for which the

variance is finite. Let X, denote the sample mean. Then

X, > L.

] Central Limit Theorem

If the random variables X, .. ., X,, form a random sample
of size n from a given distribution with mean u and
variance o0.(0 < o<o0), then for each fixed number x,

. X, —
lim P L <x|=&
e I'|: o/nl/? _x:| (%), @
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PART3 Introduction to Statistics
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JContents of Statistics
* Descriptive statistics
- Statistical Inference
* Point Estimation
* Interval Estimation
* Hypothesis Testing
* Goodness of Fit
* Analysis of Variance
* Regression
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Statistics

1 Statistic

Let X,,...X,, be a random sample of size n from a population
and let T(x,,...x,) be a real-valued or vector-valued function
whose domain includes the sample space of (X,,...,X,),the
random variable or vector Y=T(X,,...X,) is called a Statistic.

) Sampling distribution

The probability distribution of a statistic Y is called the
sampling distribution of Y

[EXAMPLE]

sample mean X and Sample variance S? = ni . (X; —X)?fromsamples of size n
are two Statistics, If the population follows normal distribution, the sampling
distribution of X~N(u, = ) (- 1)5 ~x%_,df =n—1

Important sampling dlstrlbutlon F distribution, Chi-square distribution and t @
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Standard X-l N 1 Multivariate
Normal | "o orma n=1 Normal
NO.) | AT N(wo?) MVN(y,02)
e/ X+ 4X2
t Chi-square
t(n) Xz("}
XZ 2
| e
X 11 00 R=1
1 nX
F Wishart
F(n,m) W(R.n)
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_l Statistical Inference

_!Parameter Estimation

_IPoint estimation
) method of moments
I Maximum likelihood estimation
1 Bayesian estimation

nterval estimation
_'Hypothesis Test
.. Goodness of fit
_!ANOVA and Regression
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! Point Estimates
J Method of moments

9.3 Definition. The method of moments estimator gﬂ is defined to be
the value of 0 such that

-~

(a3 (Qn) = al
(815) (Qn) = 622
ar(fn) = ay. (9.4)

[EXAMPLE]
9.4 Example. Let X;..... X,, ~ Bernoulli(p). Then ay = E,(X) = p and

ap =n~131, X;. By equating these we get the estimator]

P I
pn:E;X,;. n
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1 Point Estimates

dMaximum Likelihood Estimation
| |
B X = (X1, , Xn) ANEHBRER fo(z) hEAKPH
RWER, 0 hRpEEZESHAE. 2= (21, - ,2n) H
BHAWNEME, A4 % 2 B, H 6=0z) #ETRA

L(6) = max L(z;0) Definition
Mk 6 HE % 0 WRAMKEITE, T 6(X) KASHK 0
WRAMKEITE. ERESEN 0 HEHK 90), U g(0)
HRA MR EITEN 9(d).

L(:B;E?):er(fﬂi) s 16) =logL(0) — % —0
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1 Point Estimates

(dMaximum Likelihood Estimation
[EXAMPLE] Sampling from a Bernoulli Distribution

Likelihood function fa(x|8) = ]_[ 6% (1 — 0) .
i=1

Loglikelihood function  L@®)=1og £, x6) = Z[x; log # + (1 — x;) log(1 — 8)]
=1

— (Zx;) log 6 + (n — Zx;) log(1 —#6).

i=1 =1

dL(0)
do

A ja—

=0 — 4=xX

N\
N
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Statistics

_ Hypothesis test

SENBARSHEEHREMRER, REFAERESXRAREREZE
Tz, BFHRERBMNIFSHRRER, HIXRAZELNKR
D%, WRIESIT LRy MR RIE

suppose that we partition the parameter space O into two

disjoint sets ©, and O, and that we wish to test

HO:08€0,versus H1:0 €0,.

We call H, the null hypothesis and H, the alternative hypothesis
c BREFHNREAZTERE
s MRRFZEER" TN, BERERHEFHLR—BMEAFTRIE

IIIIIIIIIIII

CALGARY



_ Hypothesis test

P L Ho BoT Hy AT
AE4 Hy AL 55 11 285515
fH4s Hy 551 REHR AAC4E

AALRFIXERBEEEKN, FEREHLILFIRFR. B, XFAERR
w3 — KRR THRETTE, MRA EEMERE

ik, 8 — P AVFAIILE —XERBMENRAE, EEES
PHO(T <T ) <a

o BEMIKI (significant level) . B & EX40.1, 0.05, 0.01

%i& /J \ E/\] %ﬁ umvv oF
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- Hypothesis test

0.25

0.2

0.157

0.1

0.05

BEKF = U{E \I;L

p-value. In general, the p-value is the smallest level assuch that we would reject
the null-hypothesis at level a.with the observed data.

value = (.01

8 9

N
7

10 11

o
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_ Hypothesis test steps
1. AR, B R R

Hy:0€0+ Hy:0€ O,
H Ho AFRiIgERRE, 1 H AR R EERIR.

2. MIEZ MG T EAE - TEANRERTET =T (X1, -, Xa).
Hep Xy, -+ X AAERAPSA A — AR

3. HURA B TR — MR B W = (T(X1, -, Xa) €
A}, 2 A MRS, BERE—ANKIE. HIE 4 T
(T(X1,-, Xn) > 7}, WF 7 H WSFE

4. IHMEEN 0 € 9, 25 1 KEIRIMEE Py(T(Xy,--- , Xn) €
A) INFEETRMEIEENFER o), WK o NEEFEKFE.

5. @a T f£ Ho PRI, EH A.

o
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* Goodness of fit

The goodness of fit of a statistical model describes how well it fits a set of

observations.

Pearson's chi-squared test uses a measure of goodness of fit which is
the sum of differences between observed and expected outcome
frequencies (that is, counts of observations), each squared and divided

by the expectation:
n(O; — 2
i=1

O, = an observed frequency (i.e. count) for bin |

E; = an expected (theoretical) frequency for bin i, asserted by the null hypothesis.

Likelihood ratio test and Wald test
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https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Null_hypothesis

PART4 An example

IIIIIIIIIIII

CALGARY



b
and example

v

Jiang Li and Yu Wang
December 7, 2018

UNIVERSITY OF

CALGARY



OUTLINE

01

Problem with
Beta Binomial

Distribution

02

Generalized
Beta Binomial
Distribution

03

Alcohol
Drinking days
Sample

CALGARY



PART1 Problem with Beta Binomial Distribution
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Beta Binomial Distribution

= The beta-binomial distribution is the binomial distribution in which the
probability of success at each trial is fixed but randomly drawn from a beta
distribution prior to n Bernoulli trials.

= Application area

Purchasing and consumption

behavior

Alanko and Lemmens, 1996
Danaher and Hardie, 2005
Chatfield and Goodhart,1970

Spatial heterogeneity

Yang et al., 2005
Shiyomi et al., 2009

Bioinformatic research

RNA-seq experiments(C.A. Kapourani,2018)
Methylation analysis(Dolzhenko et al., 2014)
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Beta Binomial Distribution

(BB distribution fit better in count datasets with overdispersion
(JBeta distribution is the conjugate prior of BB distribution

(JExpanded the choice of models

x* (1 —x)B1
B(a, B)

n)B(a+x,n+,B—x)

n
Fotinp) = ()ra=m" fooap = B(a, B)

fasCiia ) = (

X

015

0104 L5r
1F

0.05

I I )
I | -
0.00 -—= S S O O e O B e e . |
5 10 15
X

0 0.2 0.4 0.6 0.8 1

mwmnno

NP U5
PEED ||
N WE WL

RRRR g
iy

PDF

Density

o

Binomial distribution Beta distribution Beta binomial distribution
X~Binomal(20,0.5) X~Beta binomial(20,0.2,0.25)
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Beta Binomial Distribution

_IDifficulties with Beta Binomial Models

Alcohol Drinking Days in Week 1

95 1

85 H

d We need a new distribution
* Fit better
* Flexible
* More parameters
* Based on Beta binomial distribution

~
(63}
1

Beta binomial model

Q 3
. e ] T
0 1 2 3 4 5 6

Drinking days in week one

Frequencies
(o)}
(83

[¢)]
;]

7
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PART2 Generalized Beta Binomial Distribution
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Beta Binomial Distribution

] Beta Binomial distribution is a beta mixture of the binomial distribution

Binomial(n,p) A Beta(a, )
p (Johnson et al., 1992)

n=10
—— =02 p=025
—— =07 p=2
—— ou=2,p=2

—e— =600, 5=400

" Beta(0.7,2)

Beta(600,400)

Density
POX = k)

Beta(0.2,0.25

0.00 005 0.10 015 020 025 030 035

Probability density function of Beta Distribution Probability mass function of Beta Binomial Distribution
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Generalized Beta Binomial Distribution

] Generalized Beta Distribution

_ 1 R(ne-B-n+tLl) 4 1.4 sa—1 1B+n
fp(p) B B(a,B) ,F1 (—n,a,—ﬁ—n+1;1)p (1 p) [{A+(1_A)p}a+ﬁ+n

With 0<p<1 and o,3,A>0
Where ,F,is the Gaussian hypergeometric function

] Generalized Beta Binomial Distribution

Binomial(n,p) /B GeneralizedBeta(a, 8, 1)

/'[x

n)B(a+x,n+,8—x)

FannCe @ B.2) = fi R

X

1
fo = JF1 (—n,a;—B-n+1;1)

where

N
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Generalized Beta Binomial Distribution

 The PMF of the BB distribution and its generalization only
differ by a scale factor and the factor A*.

 While A=1, Generalized beta binomial distribution degraded
to beta binomial distribution

;{X

n)B(a+x,n+,B—x)

n)B(a+x,n+,B —X)
B(a, B)

VS f(x)=fo( B(a,5)

e =(

X X

1
fo o ,F1 (—m,a;—L—n+1;4)
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Generalized Beta Binomial Distribution

J Parameter A extended the beta binomial distribution

(1 GBB concentrates probability in high values of the variable if A > 1 or
in low values ifA< 1

i () i
g % —8— =1 L —B—= A=
- h=12 = —o- h=12
o e h=0.8 — e h=0.8
L ]
¢

) / <
== S E S A
g C B 0 >

[ad] .
S o] - BN
o o~ |lIn' O o o DHDM_‘: ’o,*orro__o

= : JEE é“‘ O -2

1 [ t. - E -—_
! o oA DHD“‘D
E - ~ . ,-'O — Toe --ﬂ"--& -\_\-\-DED
~ O H - O " -
- o, Lol i iy at
o 0--%--%12@;@?55‘?@...%.-.e:x.-" o B fhp
o = -
[ [ | [ [ [ o [ [ | [ [ [
0 2 4 6 8 10 0 2 4 6 8 10
X X
Figure: PMF of GBB,,(0.2,0.25,0.8), Figure: PMF of GBB,,(0.8,1.2,0.8),
BB,,(0.2,0.25) and GBB,,(0.2,0.25,1.2) BB,,(0.8,1.2) and GBB,,(0.8,1.2,1.2)
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PART3 Alcohol Drinking days Sample
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Alcohol drinking days data

] Description of dataset:

The daily alcohol consumption data were collected from general population
surveys conducted in Netherlands in 1983, 399 respondents was asked to keep
a diary for consecutive days.

Table 1. Number of alcohol drinking days

Number of days per week O 1 2 3 4 5 6 7

Observed frequencies in week one 47 54 43 40 40 41 39 95

Observed frequencies in week two 42 47 54 40 49 40 43 84
Significance

the alcohol drinking days model can help retailers to analyze the alcohol
consumption behavior, help health care provider to better predict the
relationship between alcohol consumption and disease.

Methods: Beta Binomial Distribution and Generalized Beta Binomial Distribution

©
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Model fitting

 MLE is used to derive the estimator of a,B,A

Q Log likelihood function log. Like-function(p,x)
{
library(hypergeo)
log.lik=-(-1length(x)*log(hypergeo(-7,p[1],-6-p[2]
log{L(a, B,1)} ,p[31))+sum(log(beta(p[1]+x,p[2]+7-x)))-length(x)*1

n og(beta(p[1],7+p[2]))+1log(p[3])*sum(x))
= z [log ( ) + log{beta(a + xi,f + n — xi)} }
X; p<-c(0.722,0.581,0.3)
i optim(p, fn=log.lik,method="L-BFGS-B",x=x1)
+ xilog(/l)] — Nlog{beta(a, B + n)} + Nlog(f,) s
par
## [1] 1.3506945 0.3245518 0.7005232

O Estimates of parameters

This Project 1.35069 0.32455 0.70052 -809.2767
Article 1.3508 0.3245 0.7005 -809.2767

©
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Model fitting

] Estimates of Frequencies of alcohol drinking days

D PrObablllty Of drinking dayS #I?stimates of week 1 frequencies
library(hypergeo)
. coeffl=1/hypergeo(-7,1.3506945, -0.3245518-6,0.
P(X = xi) 7005232)
n B(é\f +x,n+ B _ Xi) . factl=factorial(7)/(factorial(freq)*factorial(
— ( ) — — 7-freq))
X; 2F1 (—Tl, &; —'3 —-n+1; A)B(C’f’ 'B) expol=(0.7005232)"freq
betanuml=beta(1.3506945+freq,0.3245518+7-freq)
Where X; =0,1,2,...,7 ptmsl=coeffl*factl*betanuml*expol/beta(1.35069
45,0.3245518+7)
i estl=1length(x1)*ptmsl
D EStImateS Of frequency ## [1] 47.87456+0i 50.13635+0i 46.51678+0i 42.

## [7] 41.78505+0i 94.70867+0i

umbersotarnkngars | 0 | 1 | 2 | 3 | & | 5 | & | 7

Week 1 47 .87 50.14 46.52 42.08 38.58 37.32 41.79 94.71

Project
Week 2 41.18 49.90 49,55 46.32 42.90 41.12 44 .31 83.71
I Week 1 47 .87 50.13 46.52 42.08 38.58 37.32 41.79 94.78
Article
Week 2 41.17 49.89 49,55 46.32 42.90 41.12 44.31 93.74

©
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Goodness of fit

O Chi-square test

2
X
95

85

Frequency
S o (e2]
(8, (8, (&) ]

w
()]

statistics for week 1: x? = Z=O% =1.2839 (df =8—1-3=4)
L\2

statistics for week 2: y2 = Z:o@ =2.3821 (df =8—1-3 =4)
l

1 —o— observed frequency ? 95 1 —<O— Observed frequency

) <--- GBB Est frequency ‘h 85 - -—--<--- GBB Est frequency

~
()]
1

Frequency
D
[$,]

. 55 .
_ 45
<
35
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of Drinking Days Number of Drinking Days
Figure: Observed frequency and fitted frequency by the GBB model umvv oF
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Comparing BB and GBB model

] Wald statistic

To test the hypothesis that the Beta Binomial Model is adequate (A=1)
HyA=1v.s H:A+1

Wald statistics for week 1: T, % = 10.1086

_ (-

varGl) 42.2308

Wald statistics for week 2: T,, =

The Wald test statistic is very significant when compared with x?(1). We
reject the null hypothesis, so the BB model is inadequate for this dataset
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Comparing BB and GBB model

J Likelihood ratio test

likelihood ratio test is used to contrast the BB distribution against GBB
distribution,

null hypothesis assumes BB distribution is adequate in this case
H,: BB is adequate v.s H,:BB is inadequate

LR test statistics for week 1:T;p = 2 X (I;55 — lzz) = 8.3608

LR test statistics for week 2:T; g = 2 X (.55 — lgp) = 7.3626

T, g is very significant when compared with x?(1). Thus, we reject null hypothesis.
Therefore, GBB is more appropriate for fitting this kind of data
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Summary

U The fits that were obtained by means of the GBB distribution are a substantial
improvement on those obtained by the BB distribution

[ Pearson, Wald and Likelihood Ratio test also gives the same conclusion

[ Estimated A is less than 1, probability concentrates in low values which the variable
could take

L The parameter A could be used to detect overdispersion of data, and GBB could
better fit some overdispersion data
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