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Why Statistics?

Predict The Stock Market

Suppose that one Monday morning you receive in the mail a letter from a firm

with which you are not familiar, stating that the firm sells forecasts about the 

stock market for very high fees. To indicate the firm’s ability in forecasting, it 
predicts that a particular stock, or a particular portfolio of stocks, will rise in value 
during the coming week. If they successfully predict 7 consecutive weeks, Are 
you going to pay them to buy another predicts?

The probability of Successfully predict for 7 weeks (1/2)7 = 0.008



Where do we use statistics?

• Scientific Research

• Weather Forecasting

• Insurance

• Quantitative Trading

• Medicine

• Disease prediction

• Quality test

• Election

• …



What included in Statistics

From Harvard University



PART1  Introduction to Probability



Probability

Contents of Probability
• Combinatorial Analysis

• Axioms of Probability

• Conditional Probability

• Random Variables

• Expectation and Variance

• Special Distributions

• The Law of Large Numbers and Central Limit Theorem

• Generating Functions

• Markov Chains

• Random Walks



Probability

 Sample Space
• The set of all possible outcomes of an experiment

 Events
• Any subset E of the sample space

[EXAMPLE]

If the experiment consists of flipping two coins, then the sample space consists
of the following four points:

S = {(H,H), (H, T), (T,H), (T, T)}

if E = {(H,H), (H, T)}, then E is the event that a head appears on the first coin



Probability

 Definition of Probability
• We suppose that an experiment, whose sample space is S, is 

repeatedly performed under exactly the same conditions. For 
each event E of the sample space S, we define n(E) to be the 
number of times in the first n repetitions of the experiment 
that the event E occurs. Then P(E), the probability of the 
event E, is defined as

𝑃 𝐸 = lim
𝑛→∞

𝑛(𝐸)

𝑛

P(E) is defined as the (limiting) proportion of time that E occurs



Probability

 Random Variables

• Let S be the sample space for an experiment. A real-valued 
function that is defined on S is called a random variable

• Including Discrete R.V. and Continuous R.V.

• we may assign probabilities to the possible values of the random 
variable

[EXAMPLE]

Suppose that our experiment consists of tossing 3 fair coins. If we let Y denote the
number of heads that appear, then Y is a random variable taking on one of the values
0, 1, 2, and 3 with respective probabilities

P{Y = 0} = P{(T, T, T)} = 
1

8

P{Y = 1} = P{(T, T,H), (T,H, T), (H, T, T)} = 
3

8

P{Y = 2} = P{(T,H,H), (H, T,H), (H,H, T)} = 
3

8

P{Y = 3} = P{(T, T, T)} = 
1

8



Probability

 Distribution

• Let X be a random variable. The distribution of X is the collection 
of all probabilities of the form Pr(X ∈ C) for all sets C of real 
numbers such that {X ∈ C} is an event.

• Probability mass function(P.M.F) and Probability density 
function(P.D.F) 

[EXAMPLE]

p(x) = cλx/x!, x = 0, 1, 2, . . . ,      Poisson distribution

Normal distribution



Probability

 Expectation

• The expectation of X is a weighted average of the possible values 
that X can take on, each value being weighted by the probability 
that X assumes it

Discrete R.V. Continuous R.V.

 Variance

• Let X be a random variable with finite mean μ = E(X).The variance 
of X, denoted by Var(X), is defined as follows:

Var(X) = E[(X − μ)2].

Var(X) = E(X2) − [E(X)]2.

Bernoulli distribution E(X)=p; Normal distribution E[X]=μ
[EXAMPLE]



Probability

Binomial distribution
• Suppose now that n independent trials, each of which results in a 

success with probability p and in a failure with probability 1 − p, are to 
be performed. If X represents the number of successes that occur in 
the n trials, then X is said to be a binomial random variable with 
parameters (n, p). X~B(n, p)

         

 
  
 

 
  
 

 
  
 

 
  
 

 
  
 

 
  
 

              

              

              

PMF

Expectation

E(x)=np

Variance

Var(x)=np(1-p)



Probability

Poisson distribution
• A random variable X that takes on one of the values 0, 1, 2, . . . is said 

to be a Poisson random variable with parameter λ if, for some λ > 0,

• E(x)=λ, Var(x)=λ
• Expresses the probability of a given number of events occurring in a 

fixed interval of time



 Other discrete distributions

• Geometric distribution

• Hypergeometric distribution

• Negative binomial distribution

Probability

Hypergeometric distributiongeometric distribution



Probability

Normal distribution
• A random variable X has the normal distribution with mean 

μ and variance σ2 (−∞<μ<∞ and σ >0) if X has a continuous 
distribution with the following p.d.f.:

Expectation

E(x)=μ

Variance

Var(x)=σ2



Probability

Uniform distribution
• X is a uniform random variable on the interval (α, β) if the 

probability density function of X is given by

Graph of (a) f(a) and (b) F(a) for a uniform (α, β) random variable



Probability

Exponential distribution
• Letβ >0. A random variable X has the exponential 

distribution with parameter β if X has a continuous 
distribution with the p.d.f.

Expectation

E(x)=
1

𝛽

Variance

Var(x)= 1/𝛽2



Probability

 Gamma distribution
• Let α and β be positive numbers.Arandom variable X has 

the gamma distribution with parameters α and β if X has a 
continuous distribution for which the p.d.f. is

 

   

   

   

   

   

                 

                
                
                
                
                
                
                



 Beta distribution
• Let α, β > 0 and let X be a random variable with p.d.f.

Probability



Probability

 Joint Distribution
• Given random variables X,Y,…, that are defined on a 

probability space, the Joint distribution for X,Y,… is a 
probability that each of X,Y,…falls in any particular range or 
discrete set of values specified for that variable.

• Bivariate distribution vs multivariate distribution

[EXAMPLE]

Bivariate normal distribution



 Law of Large Numbers
• Suppose that X1, . . . , Xn form a random sample from a 

distribution for which the mean is μ and for which the 
variance is finite. Let Xn denote the sample mean. Then

 Central Limit Theorem
• If the random variables X1, . . . , Xn form a random sample 

of size n from a given distribution with mean μ and 
variance σ2 (0 < σ2 <∞), then for each fixed number x,

Probability
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Statistics

Contents of Statistics

• Descriptive statistics

• Statistical Inference

• Point Estimation

• Interval Estimation 

• Hypothesis Testing

• Goodness of Fit

• Analysis of Variance

• Regression



Statistics

 Statistic
• Let X1,…Xn be a random sample of size n from a population 

and let T(x1,…xn) be a real-valued or vector-valued function 
whose domain includes the sample space of (X1,…,Xn),the 
random variable or vector Y=T(X1,…Xn) is called a Statistic.

 Sampling distribution
• The probability distribution of a statistic Y is called the 

sampling distribution of Y

[EXAMPLE]

sample mean ത𝑋 and Sample variance 𝑆2 =
1

𝑛−1
σ𝑖=1

𝑛 (𝑋𝑖 − ത𝑋)2 from samples of size n 

are two Statistics, If the population follows normal distribution, the sampling 

distribution of ത𝑋~N(𝜇,
𝜎2

𝑛
) ,

𝑛−1 𝑆2

𝜎2 ~χ𝑛−1
2 , 𝑑𝑓 = 𝑛 − 1

Important sampling distribution: F distribution, Chi-square distribution and t 
distribution



Statistics



Statistics

 Statistical Inference
Parameter Estimation

Point estimation
method of moments

Maximum likelihood estimation

Bayesian estimation

Interval estimation

Hypothesis Test

Goodness of fit

ANOVA and Regression



Statistics

 Point Estimates

[EXAMPLE]

 Method of moments



Statistics

 Point Estimates

Maximum Likelihood Estimation



Statistics

 Point Estimates

Maximum Likelihood Estimation

[EXAMPLE] Sampling from a Bernoulli Distribution

Likelihood function

Loglikelihood function

𝑑𝐿(𝜃)

𝑑𝜃
=0 መ𝜃 = ത𝑋



Statistics

 Hypothesis test

suppose that we partition the parameter space Θ into two
disjoint sets Θ0 and Θ1 and that we wish to test

H0 : 𝜃∈ Θ0 versus H1 : 𝜃 ∈ Θ1.

We call H0 the null hypothesis and H1 the alternative hypothesis

事先对总体参数作出某种假设，然后利用样本信息来判断假设是
否成立，有参数假设检验和非参数假设检验，均采用逻辑上的反
证法，依据统计上的小概率原理

• 将受保护的对象置为零假设
• 如果你希望“证明”某个命题, 就取相反结论或者其中一部分作为零假设



Statistics

 Hypothesis test

因为犯第I类错误危害更大, 需要尽量避免犯第I类错误. 因此，这种在只限
制第一类错误的原则下的检验方法，就称为“显著性检验“

具体地, 给定一个允许的犯第一类错误概率的最大值α, 选取τ使得

PH0 (T < τ ) ≤α

称α为显著性水平（significant level）. 通常将取为0.1, 0.05, 0.01 
等较小的数



p-value. In general, the p-value is the smallest level α0 such that we would reject 

the null-hypothesis at level α0 with the observed data.

Statistics

 Hypothesis test



Statistics

 Hypothesis test steps



Statistics

• Goodness of fit

The goodness of fit of a statistical model describes how well it fits a set of 
observations.

Pearson's chi-squared test uses a measure of goodness of fit which is 
the sum of differences between observed and expected outcome 
frequencies (that is, counts of observations), each squared and divided 
by the expectation:

Oi = an observed frequency (i.e. count) for bin I

Ei = an expected (theoretical) frequency for bin i, asserted by the null hypothesis.

Likelihood ratio test and Wald test

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Null_hypothesis
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PART1  Problem with Beta Binomial Distribution



Beta Binomial Distribution

▪ The beta-binomial distribution is the binomial distribution in which the 
probability of success at each trial is fixed but randomly drawn from a beta 
distribution prior to n Bernoulli trials.

▪ Application area

RNA-seq experiments(C.A. Kapourani,2018)

Methylation analysis(Dolzhenko et al., 2014)

Purchasing and consumption 

behavior
Alanko and Lemmens, 1996

Danaher and Hardie, 2005

Chatfield and Goodhart,1970

Bioinformatic researchSpatial heterogeneity

Yang et al., 2005

Shiyomi et al., 2009



Beta Binomial Distribution

3

BB distribution fit better in count datasets with overdispersion

Beta distribution is the conjugate prior of BB distribution

Expanded the choice of models

𝑓𝐵(𝑥; 𝛼, 𝛽) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

B(𝛼, 𝛽)
𝑓𝐵𝐵(𝑥; 𝛼, 𝛽) =

𝑛

𝑥

𝐵(𝛼 + 𝑥, 𝑛 + 𝛽 − 𝑥)

B(𝛼, 𝛽)
𝑓𝐵(𝑥; 𝑛, 𝑝) =

𝑛

𝑥
𝑝𝑥 1 − 𝑝 𝑛−𝑥

Binomial distribution
X~Binomal(20,0.5)

Beta distribution Beta binomial distribution
X~Beta binomial(20,0.2,0.25)



Beta Binomial Distribution

Difficulties with Beta Binomial Models

 We need a new distribution
• Fit better
• Flexible
• More parameters
• Based on Beta binomial distribution 

35
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Drinking days in week one

Alcohol Drinking Days in Week 1

1 2 3 4 5 6 70

Beta binomial model



PART2  Generalized Beta Binomial Distribution



Beta Binomial Distribution 

 Beta Binomial distribution is a beta mixture of the binomial distribution

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝) ∧ 𝐵𝑒𝑡𝑎(𝛼, 𝛽)
p (Johnson et al., 1992)

Probability mass function of Beta Binomial DistributionProbability density function of Beta Distribution

D
en

si
ty

Beta(0.7,2)

Beta(0.2,0.25)

Beta(600,400)



Generalized Beta Binomial Distribution

𝑓𝑃(𝑝) =
1

𝐵(𝛼,𝛽)
2𝐹1 (−𝑛,𝛼,−𝛽−𝑛+1;1)

2𝐹1 (−𝑛,𝛼,−𝛽−𝑛+1;𝜆)
𝑝𝛼−1(1 − 𝑝)𝛼−1[

𝜆𝛽+𝑛

{𝜆+ 1−𝜆 𝑝}𝛼+𝛽+𝑛]

With 0<p<1 and α,β,λ>0
Where 2F1 is the Gaussian hypergeometric function

 Generalized Beta Distribution

 Generalized Beta Binomial Distribution

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝑝 ∧ 𝐺eneralized𝐵𝑒𝑡𝑎(𝛼, 𝛽, 𝜆)
p

𝑓𝐺𝐵𝐵(𝑥; 𝛼, 𝛽, 𝜆) = 𝑓0

𝑛

𝑥

𝐵(𝛼 + 𝑥, 𝑛 + 𝛽 − 𝑥)

B(𝛼, 𝛽)
𝜆𝑥

where 𝑓0 =
1

2𝐹1 (−𝑛,𝛼;−𝛽−𝑛+1;𝜆)



8

Generalized Beta Binomial Distribution

 The PMF of the BB distribution and its generalization only 
differ by a scale factor and the factor λx. 

 While λ  , Generalized beta binomial distribution degraded 
to beta binomial distribution

𝑓 (𝑥) = 𝑓0

𝑛

𝑥

𝐵(𝛼 + 𝑥, 𝑛 + 𝛽 − 𝑥)

B(𝛼, 𝛽)
𝜆𝑥𝑓 (𝑥) =

𝑛

𝑥

𝐵(𝛼 + 𝑥, 𝑛 + 𝛽 − 𝑥)

B(𝛼, 𝛽) VS

𝑓0 =
1

2𝐹1 (−𝑛,𝛼;−𝛽−𝑛+1;𝜆)



Generalized Beta Binomial Distribution

Figure: PMF of GBB10(0.8,1.2,0.8), 
BB10(0.8,1.2) and GBB10(0.8,1.2,1.2) 

P r meter λ exte  e  the bet  bi omi l  istributio 

GBB concentrates probability in high values of the variable if λ > 1 or 
in low values if λ < 1

Figure: PMF of GBB10(0.2,0.25,0.8), 
BB10(0.2,0.25) and GBB10(0.2,0.25,1.2) 



PART3  Alcohol Drinking days Sample



Alcohol drinking days data

 Description of dataset:

 The daily alcohol consumption data were collected from general population 
surveys conducted in Netherlands in 1983, 399 respondents was asked to keep 
a diary for consecutive days. 

 Significance

the alcohol drinking days model can help retailers to analyze the alcohol 
consumption behavior, help health care provider to better predict the 
relationship between  alcohol consumption and disease.

 Methods: Beta Binomial Distribution and Generalized Beta Binomial Distribution

Number of days per week 0 1 2 3 4 5 6 7

Observed frequencies in week one 47 54 43 40 40 41 39 95

Observed frequencies in week two 42 47 54 40 49 40 43 84

Table 1. Number of alcohol drinking days 



Model fitting

 MLE is used to derive the estimator of  α,β,λ

Parameters ො𝛼 ෠𝛽 መ𝜆 Log-likelihood

This Project 1.35069 0.32455 0.70052 -809.2767

Article 1.3508 0.3245 0.7005 -809.2767

 Estimates of parameters

log{𝐿(𝛼, 𝛽, 𝜆)}

= ෍

𝑥𝑖

൤

൨

𝑙𝑜𝑔
𝑛

𝑥𝑖

+ log 𝑏𝑒𝑡𝑎 𝛼 + 𝑥𝑖, 𝛽 + 𝑛 − 𝑥𝑖

+ 𝑥𝑖log 𝜆 − 𝑁log 𝑏𝑒𝑡𝑎 𝛼, 𝛽 + 𝑛 + 𝑁log(𝑓0)

log.lik<-function(p,x)
{
library(hypergeo)
log.lik=-(-length(x)*log(hypergeo(-7,p[1],-6-p[2]

,p[3]))+sum(log(beta(p[1]+x,p[2]+7-x)))-length(x)*l
og(beta(p[1],7+p[2]))+log(p[3])*sum(x))
}
p<-c(0.722,0.581,0.3)
optim(p, fn=log.lik,method="L-BFGS-B",x=x1)

## $par
## [1] 1.3506945 0.3245518 0.7005232

 Log likelihood function



Model fitting

 Estimates of Frequencies of alcohol drinking days 

#Estimates of week 1 frequencies
library(hypergeo)
coeff1=1/hypergeo(-7,1.3506945,-0.3245518-6,0.
7005232)
fact1=factorial(7)/(factorial(freq)*factorial(
7-freq))
expo1=(0.7005232)^freq
betanum1=beta(1.3506945+freq,0.3245518+7-freq)
ptms1=coeff1*fact1*betanum1*expo1/beta(1.35069
45,0.3245518+7)
est1=length(x1)*ptms1
## [1] 47.87456+0i 50.13635+0i 46.51678+0i 42.
07990+0i 38.57649+0i 37.32221+0i
## [7] 41.78505+0i 94.70867+0i

Numbers of drinking days 0 1 2 3 4 5 6 7

Project
Week 1 47.87 50.14 46.52 42.08 38.58 37.32 41.79 94.71

Week 2 41.18 49.90 49.55 46.32 42.90 41.12 44.31 83.71

Article
Week 1 47.87 50.13 46.52 42.08 38.58 37.32 41.79 94.78

Week 2 41.17 49.89 49.55 46.32 42.90 41.12 44.31 93.74

P(𝑋 = 𝑥𝑖)

=
𝑛

𝑥𝑖

𝐵( ො𝛼 + 𝑥, 𝑛 + ෠𝛽 − 𝑥𝑖)

2𝐹1 (−𝑛, ො𝛼; − ෠𝛽 − 𝑛 + 1; 𝜆)B( ො𝛼, ෠𝛽)
መ𝜆𝑥𝑖

Where 𝑥𝑖 =0,1,2,…,7

Estimated frequency = 𝑛 ∗ 𝑃(𝑋 = 𝑥𝑖)

 Probability of drinking days 

 Estimates of frequency



Goodness of fit
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 Chi-square test

χ2 statistics for week 1: χ2 = σ𝑖=0
7 𝑂𝑖−𝐸𝑖

2

𝐸𝑖
= 1.2839 (𝑑𝑓 = 8 − 1 − 3 = 4)

χ2 statistics for week 2: χ2 = σ𝑖=0
7 𝑂𝑖−𝐸𝑖

2

𝐸𝑖
= 2.3821 (𝑑𝑓 = 8 − 1 − 3 = 4)

Figure: Observed frequency and fitted frequency by the GBB model



Comparing BB and GBB model 

 Wald statistic

To test the hypothesis that the Beta Binomial Model is adequate (λ=1)

Wald statistics for week 1: 𝑇𝑤 =
෢𝜆

1
−1 2

𝑉ar(෢𝜆
1
)

= 10.1086

𝐻0: 𝜆 = 1 𝑣. 𝑠 𝐻1: 𝜆 ≠ 1

Wald statistics for week 2: 𝑇𝑤 =
෢𝜆

2
−1 2

𝑉ar(෢𝜆
2
)

= 42.2308

The Wald test statistic is very significant when compared with χ2(1). We 

reject the null hypothesis, so the BB model is inadequate for this dataset



Comparing BB and GBB model 

 Likelihood ratio test

𝐻0: 𝐵𝐵 𝑖𝑠 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 𝑣. 𝑠 𝐻1: 𝐵𝐵 𝑖𝑠 𝑖𝑛𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒

likelihood ratio test is used to contrast the BB distribution against GBB 

distribution,

null hypothesis assumes BB distribution is adequate in this case

LR test statistics for week 1:𝑇𝐿𝑅 = 2 × 𝑙𝐺𝐵𝐵 − 𝑙𝐵𝐵 = 8.3608

LR test statistics for week 2:𝑇𝐿𝑅 = 2 × 𝑙𝐺𝐵𝐵 − 𝑙𝐵𝐵 = 7.3626

𝑇𝐿𝑅 is very significant when compared with χ2(1). Thus, we reject null hypothesis.

Therefore, GBB is more appropriate for fitting this kind of data



Summary

 The fits that were obtained by means of the GBB distribution are a substantial 
improvement on those obtained by the BB distribution

 Pearson, Wald and Likelihood Ratio test also gives the same conclusion

 Estim te  λ is less th    , probability concentrates in low values which the variable 
could take

 The   r meter λ coul  be use  to  etect overdispersion of data, and GBB could 
better fit some overdispersion data
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𝑓 (𝑥) = 𝑓0

𝑛

𝑥

𝐵(𝛼 + 𝑥, 𝑛 + 𝛽 − 𝑥)

B(𝛼, 𝛽)
𝜆𝑥
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