
Unity Lewis Number Model Derivation

1 Governing equations
The two equations from the set of governing equations for reactive flows that
are relevant with respect to the current discussion are the conservation equation
for species mass fractions (Yk), Eq. 3.111 in Kee et al. [1], and thermal energy,
Eq. 3.203 in [1], here expressed in terms of enthalpy (h):

ρ
DYk

Dt
= −∇ · jk + ω̇kWk (1)

ρ
Dh

Dt
= Dp

Dt
+∇ · (λ∇T )−

∑
∇ · (hkjk) + Φ , (2)

where ω̇k, Wk, hk and jk are the chemical source term, molecular weight, specific
enthalpy and diffusive mass flux for species k, respectively, and λ is the thermal
conductivity. The mass density is denoted by ρ and D

Dt is the total derivative.
Neglecting the pressure

(
Dp
Dt

)
and viscous dissipation (Φ) terms for the following

discussion, the energy equation simplifies to:

ρ
Dh

Dt
= ∇ · (λ∇T )−

∑
∇ · (hkjk) . (3)

2 Diffusive mass flux
Introducing the average velocity of species k1 relative the fixed laboratory frame
of reference Ṽk and the mass-averaged velocity V =

∑
YkṼk, the mass flux of

species k relative to the mass-averaged velocity is then defined as (Eq. 12.155 in
[1])

jk = ρYk

(
Ṽk −V

)
= ρYkVk , (4)

where Vk denotes the mass diffusion velocity of species k relative to the mass-
averaged velocity.

2.1 Mixture-averaged formulation
Starting from the Stefan-Maxwell equations (Eq. 12.170 in [1], where the terms
due to temperature gradients (Soret effect) and pressure gradients are neglected),

∇Xk = −
∑ XkXj

Dk,j
(Vk −Vj) , (5)

1i.e. the average over all molecules of species k at a given location

1



the Hirschfelder-Curtiss approximation [2] for the ordinary diffusion velocity of
species k can be derived by applying the simplifying approximation that the
velocities of all species j 6= k are equal. Here, Xk and Dk,j denote the molar
fraction and binary diffusion coefficients. Substituting the approximation

Vj = V′ ∀j 6= k ,

with V′ denoting the common velocity for all species j 6= k, into Eq. (5), and
subsequently replacing Vk with the ordinary diffusion velocity V̂k, yields

∇Xk = −Xk

(
V̂k −V′

)∑
j 6=k

Xj

Dk,j
. (6)

Rearranging the constraint
∑
YkVk = 0 as∑

j 6=k

YjVj = −YkVk

and applying the same approximation and substitutions as in Eq. (6) yields

V′ = − YkV̂k

1− Yk
. (7)

Substituting Eq. (7) into Eq. (6) yields the Hirschfelder-Curtiss approximation
for the ordinary diffusion velocity

V̂k = − 1
Xk

1− Yk∑
j 6=k

Xj

Dk,j

∇Xk , (8)

and by defining a mixture-averaged diffusion coefficient2 (Eq. 12.180 in [1])

D′k,m := 1− Yk∑
j 6=k

Xj

Dk,j

, (9)

we obtain a Fickian expression for the ordinary diffusion velocity expressed in
terms of the mole fraction gradient (Eq. 12.179 in [1]):

V̂k = − 1
Xk

D′k,m∇Xk . (10)

The mass diffusion velocity of species k is then defined as (Eq. 12.182 in [1])

Vk = V̂k + Vc , (11)

where Vc is a correction velocity [3, 4] to ensure that the net species diffusion
flux is zero (

∑
jk = 0) and is defined by (Eq. 12.183 in [1])

Vc = −
∑

YkV̂k . (12)
2adopting the notation by Kee et al. [1] (Chapter 12.7.4)
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Diffusive mass flux: Finally, substituting Eqs. (10)–(12) into Eq. (4) yields
the following expression for the diffusive mass flux in terms of the mole fraction
gradient:

jk = ρYkVk

= ρYk

(
V̂k −

∑
YkV̂k

)
= ρYk

(
− 1
Xk

D′k,m∇Xk +
∑

Yk
1
Xk

D′k,m∇Xk

)
= ρ

[
−Wk

W
D′k,m∇Xk + Yk

(∑ Wk

W
D′k,m∇Xk

)]
,

(13)

where the identity Yk/Xk = Wk

/
W has been used to obtain an equivalent

formulation for a stable numerical implementation. The mean molecular weight
W is defined as W = (

∑
Yk/Wk )−1.

Mass fraction gradient: The diffusive mass flux can alternatively be formu-
lated in terms of mass fraction gradient by expressing the ordinary diffusion
velocity (Eq. 10) as

V̂k = − 1
Yk

Wk

W
D′k,m∇

(
Yk

Wk
W

)
= − 1

Yk

1
W
D′k,m

(
W∇Yk + Yk∇W

)
= − 1

Yk
D′k,m∇Yk −

1
W
D′k,m∇W .

(14)

The diffusive mass flux in terms of mass fraction gradient reads then

jk = ρYkVk

= ρYk

(
V̂k −

∑
YkV̂k

)
= ρYk

[
− 1
Yk
D′k,m∇Yk −

1
W
D′k,m∇W

−
∑

Yk

(
− 1
Yk
D′k,m∇Yk −

1
W
D′k,m∇W

)]
= −ρD′k,m∇Yk

− ρYk

[
1
W
D′k,m∇W +

∑
Yk

(
− 1
Yk
D′k,m∇Yk −

1
W
D′k,m∇W

)]
= −ρD′k,m∇Yk

− ρYk

[
D′k,m

∇W
W
−
∑

D′k,m∇Yk −
∇W
W

(∑
D′k,mYk

)]
. (15)

2.2 Lewis number approximation
The Lewis number is defined as the ratio of the thermal and mixture-averaged
diffusion coefficient of specie k as

Lek = α

D′k,m
, (16)
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where α = λ/(cpρ) denotes the thermal diffusion coefficient and cp being the
heat capacity of the mixture at constant pressure. The diffusive mass flux (Eq.
15) can thus be written as

jk = −ρ α

Lek
∇Yk − ρYkα

[
1

Lek

∇W
W
−
∑ ∇Yk

Lek
− ∇W

W

(∑ Yk

Lek

)]
. (17)

It is readily seen that in case of equal Lewis numbers for all species (Lek = Le),
such as in case of the unity Lewis number assumption (Lek = 1), the second
term on the right hand side vanishes and the diffusive mass flux simplifies to

jk = −ρ αLe∇Yk . (18)

2.2.1 Unity Lewis number model properties

The model transport equations for the species mass fractions and thermal
energy that follow from the equal Lewis number approximation are obtained by
substituting Eq. (18) into Eqs. (1) and (3):

ρ
DYk

Dt
= ∇ ·

(
ρ
α

Le∇Yk

)
+ ω̇kWk

ρ
Dh

Dt
= ∇ · (λ∇T ) +∇ ·

[
ρ
α

Le

(∑
hk∇Yk

)]
= ∇ ·

[
λ∇T + ρ

α

Le

(∑
hk∇Yk

)]
.

Using the identities ∇ (hkYk) = hk∇Yk +Yk∇hk and dhk = cp,kdT further yields

ρ
Dh

Dt
= ∇ ·

[
λ∇T + ρ

α

Le

(∑
∇ (hkYk)−

∑
Ykcp,k∇T

)]
= ∇ ·

[
λ∇T + ρ

α

Le (∇h− cp∇T )
]

= ∇ ·
[(

1− 1
Le

)
λ∇T + ρ

α

Le∇h
]
.

With the unity Lewis number assumption (Le = 1) the transport equations
further simplify to

ρ
DYk

Dt
= ∇ · (ρα∇Yk) + ω̇kWk (19)

ρ
Dh

Dt
= ∇ · (ρα∇h) . (20)

A key property of the unity Lewis number model is thus that Dh
Dt = 0 if ∇h = 0.
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