Non-ideal Flame equations

Gandhali Kogekar, CSM

1. Continuity Equation

The overall continuity equation for unsteady flame can be ${ }^{c 1}$ written as

$$
\begin{equation*}
\frac{D \rho}{D t}=\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{V})=0 \tag{1}
\end{equation*}
$$

Note that $D / D t$ is the substantial derivative, given as
${ }^{c 1} S C D$: FYI - I
have added a package to enable track
changes. You can also 'annote', 'remove,' 'add',

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+\boldsymbol{V} \cdot \boldsymbol{\nabla} \tag{2}
\end{equation*}
$$

\boldsymbol{V} is the velocity vector and $\boldsymbol{\nabla}$ is the divergence operator.

2. Momentum Equation

$$
\begin{equation*}
\rho \frac{D \boldsymbol{V}}{D t}=\rho\left[\frac{\partial \boldsymbol{V}}{\partial t}+(\boldsymbol{V} \cdot \boldsymbol{\nabla}) \boldsymbol{V}\right]=\boldsymbol{f}-\boldsymbol{\nabla} p+\boldsymbol{\nabla} \cdot T^{\prime} \tag{3}
\end{equation*}
$$

Here T^{\prime} is the deviatoric stress tensor.
(Ref: Chemically reacting flows, second edition- Eq. 2.143, page 49)

3. Species Continuity Equation

$$
\begin{equation*}
\rho \frac{D Y_{k}}{D t}=-\nabla \cdot \boldsymbol{j}_{k}+\dot{\omega}_{k} W_{k} \tag{4}
\end{equation*}
$$

Where $\boldsymbol{j}_{\boldsymbol{k}}$ is the diffusive mass flux vector,

$$
\begin{equation*}
\boldsymbol{j}_{\boldsymbol{k}}=\rho Y_{k} \boldsymbol{V}_{k} \tag{5}
\end{equation*}
$$

Here \boldsymbol{V}_{k} is the diffusion velocity for species k.
(Ref: Chemically reacting flows, second edition- Sections 3.5 and 3.6)

4. Energy Equation

The thermal energy equation is written as

$$
\begin{equation*}
\underbrace{\rho \frac{D h}{D t}}_{\mathrm{I}}=\frac{D p}{D t}+\vec{\nabla} \cdot(\lambda \nabla T)-\sum_{k=1}^{K} \nabla \cdot h_{k} j_{k}+\Phi \tag{6}
\end{equation*}
$$

4.1 Term I

Now consider the term $\frac{D h}{D t}$ from Eq. 6. Since enthalpy of the mixture depends on the temperature, pressure and composition $\left(h=h\left(T, P, Y_{k}\right)\right)$, this term can be written as

$$
\begin{equation*}
\underbrace{\rho \frac{D h}{D t}}_{\mathrm{I}}=\rho(\underbrace{\left.\frac{\partial h}{\partial T}\right|_{p, Y_{k}} \frac{D T}{D t}}_{\mathrm{A}}+\underbrace{\left.\frac{\partial h}{\partial p}\right|_{T, Y_{k}} \frac{D p}{D t}}_{\mathrm{B}}+\underbrace{\left.\sum_{1}^{k} \frac{\partial h}{\partial Y_{k}}\right|_{T, p} \frac{D Y_{k}}{D t}}_{\mathrm{C}}) \tag{7}
\end{equation*}
$$

4.1.1 Term A

Define

$$
\begin{equation*}
\left.\frac{\partial h}{\partial T}\right|_{p, Y_{k}}=c_{\mathrm{p}, \text { mix }} \tag{8}
\end{equation*}
$$

(This term is calculated in a document written for Peng-Robinson EoS). Using this definition, the term A in Eq. 7 simplifies to

$$
\begin{equation*}
\mathrm{A}=\left.\frac{\partial h}{\partial T}\right|_{p, Y_{k}} \frac{D T}{D t}=c_{\mathrm{p}, \operatorname{mix}} \frac{D T}{D t} \tag{9}
\end{equation*}
$$

4.1.2 Term B

From Eq. 7, consider the term,

$$
\begin{equation*}
\left.\frac{\partial h}{\partial p}\right|_{T, Y_{k}} \tag{10}
\end{equation*}
$$

This term can be calculated using Maxwell's relations:

$$
\begin{equation*}
d h=T d s+v d p \tag{11}
\end{equation*}
$$

and:

$$
\begin{equation*}
\left.\frac{\partial v}{\partial T}\right|_{p}=-\left.\frac{\partial s}{\partial p}\right|_{T} \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left.\frac{\partial h}{\partial p}\right|_{T, Y_{k}}=\left.T \frac{\partial s}{\partial p}\right|_{T, Y_{k}}+v \tag{13}
\end{equation*}
$$

and therefore:

$$
\begin{equation*}
\left.\frac{\partial h}{\partial p}\right|_{T, Y_{k}}=v-\left.T \frac{\partial v}{\partial T}\right|_{p, Y_{k}} \tag{14}
\end{equation*}
$$

Substituting above equation in 7 , the term B can be calculated as

$$
\begin{equation*}
\mathrm{B}=\left[v-\left.T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right] \frac{D p}{D t} \tag{15}
\end{equation*}
$$

4.1.3 Term C

Consider the term C in Eq. 7

$$
\begin{equation*}
\mathrm{C}=\left.\sum_{1}^{k} \frac{\partial h}{\partial Y_{k}}\right|_{T, p} \frac{D Y_{k}}{D t} \tag{16}
\end{equation*}
$$

Let Y_{k} and X_{k} be mass and mole fractions of species k respectively.

$$
\begin{equation*}
X_{k}=\frac{n_{k}}{n_{\mathrm{T}}}, Y_{k}=\frac{n_{k} W_{k}}{n_{\mathrm{T}} \bar{W}}=\frac{W_{k}}{\bar{W}} X_{k} \tag{17}
\end{equation*}
$$

where \bar{W} is a mean molecular weight of the mixture. The total mass of the system be $\mathrm{M}\left(=\bar{W} n_{\mathrm{T}}\right)$. Hence,

$$
\begin{equation*}
Y_{k}=\frac{n_{k} W_{k}}{M} \tag{18}
\end{equation*}
$$

Since $Y_{k}=f\left(n_{k}, M, W_{k}\right)$, using chain rule,

$$
\begin{equation*}
\frac{\partial h}{\partial Y_{k}}=\left.\left(\frac{\partial h}{\partial n_{k}} \frac{\partial n_{k}}{\partial Y_{k}}\right)\right|_{M, T, p}+\left.\left(\frac{\partial h}{\partial M} \frac{\partial M}{\partial Y_{k}}\right)\right|_{n_{k}, T, p} \tag{19}
\end{equation*}
$$

Partial derivative with respect to W_{k} is not considered here, since molecular weight W_{k} is constant. Also since h is an intensive property, its derivative with respect to total mass M is zero. Thus simplifying above equation,

$$
\begin{equation*}
\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p}=\left.\frac{M}{W_{k}}\left(\frac{\partial h}{\partial n_{k}}\right)\right|_{M, T, p}+0=\left.M\left(\frac{\partial h}{\partial W_{k} n_{k}}\right)\right|_{M, T, p} \tag{20}
\end{equation*}
$$

Since $m_{k}=n_{k} W_{k}$ and W_{k} is constant,

$$
\begin{equation*}
\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p}=\left.M\left(\frac{\partial h}{\partial m_{k}}\right)\right|_{M, T, p}=\left.\left(\frac{\partial M h}{\partial m_{k}}\right)\right|_{T, p}-\left.h\left(\frac{\partial M}{\partial m_{k}}\right)\right|_{h, T, p} \tag{21}
\end{equation*}
$$

Mass based individual species enthalpies are defined as

$$
\begin{equation*}
h_{k}=\left.\frac{\partial(M h)}{\partial m_{k}}\right|_{T, p, m_{j \neq k}} \tag{22}
\end{equation*}
$$

Hence,

$$
\begin{gather*}
\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p}=h_{k}-\left.h\left(\frac{\partial M}{\partial m_{k}}\right)\right|_{h, T, p} \tag{23}\\
\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p}=h_{k}-\left.h\left(\frac{\partial}{\partial m_{k}} \sum_{1}^{k} m_{k}\right)\right|_{h, T, p}=h_{k}-h \times 1 \tag{24}
\end{gather*}
$$

Hence,

$$
\begin{equation*}
\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p}=h_{k}-h \tag{25}
\end{equation*}
$$

Now considering the term C in Eq. 7 ,

$$
\begin{gather*}
\mathrm{C}=\left.\sum_{1}^{k} \frac{\partial h}{\partial Y_{k}}\right|_{T, p} \frac{D Y_{k}}{D t}=\sum_{1}^{k}\left(h_{k}-h\right) \frac{D Y_{k}}{D t} \tag{26}\\
\mathrm{C}=\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t}-h \sum_{1}^{k} \frac{D Y_{k}}{D t}=\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t}-h \frac{D}{D t} \sum_{1}^{k} Y_{k} \tag{27}
\end{gather*}
$$

Simplifying,

$$
\begin{equation*}
\mathrm{C}=\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t} \tag{28}
\end{equation*}
$$

4.2 Term I

Combining Eq.s 9, 15 and 28, the $D h / D t$ term in Eq. 7 simplifies to

$$
\begin{equation*}
\frac{D h}{D t}=c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}+\left[v-\left.T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right] \frac{D p}{D t}+\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t} \tag{29}
\end{equation*}
$$

4.3 Energy equation: Revisited

Substituting Eq. 29 in Eq. 6, the energy equation becomes

$$
\begin{gather*}
\rho\left[c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}+\left[v-\left.T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right] \frac{D p}{D t}+\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t}\right]=\frac{D p}{D t}+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} \nabla \cdot h_{k} j_{k}+\Phi \tag{30}\\
\rho c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}+\rho\left(\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t}\right)=\frac{D p}{D t}\left[1-\rho v+\left.\rho T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right]+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} \nabla \cdot h_{k} j_{k}+\Phi \tag{31}
\end{gather*}
$$

Note that $\rho v=1$,

$$
\begin{equation*}
\rho c_{\mathrm{p}, \operatorname{mix}} \frac{D T}{D t}+\rho\left(\sum_{1}^{k} h_{k} \frac{D Y_{k}}{D t}\right)=\frac{D p}{D t}\left[\left.\rho T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right]+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} \nabla \cdot h_{k} j_{k}+\Phi \tag{32}
\end{equation*}
$$

The species continuity equation can be given as

$$
\begin{equation*}
\rho \frac{D Y_{k}}{D t}=-\nabla \cdot j_{k}+\dot{\omega} W_{k} \tag{33}
\end{equation*}
$$

Substituting Eq. 33 in energy equation,

$$
\begin{equation*}
\rho c_{\mathrm{p}, \operatorname{mix}} \frac{D T}{D t}+\sum_{1}^{k} h_{k}\left(-\nabla \cdot j_{k}+\dot{\omega} W_{k}\right)=\frac{D p}{D t}\left[\left.\rho T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right]+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} \nabla \cdot h_{k} j_{k}+\Phi \tag{34}
\end{equation*}
$$

Now expanding enthalpy-flux term on the right hand side as

$$
\begin{equation*}
\sum_{k=1}^{K} \nabla \cdot h_{k} j_{k}=\sum_{k=1}^{K} j_{k} \cdot \nabla h_{k}+\sum_{k=1}^{K} h_{k} \nabla \cdot j_{k} \tag{35}
\end{equation*}
$$

The energy equation becomes

$$
\begin{array}{r}
\rho c_{p, \text { mix }} \frac{D T}{D t}+\sum_{1}^{k} h_{k}\left(-\nabla \cdot j_{k}+\dot{\omega} W_{k}\right) \tag{36}\\
=\frac{D p}{D t}\left[\left.\rho T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right]+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} j_{k} \cdot \nabla h_{k}-\sum_{k=1}^{K} h_{k} \nabla \cdot j_{k}+\Phi
\end{array}
$$

Canceling common terms from both sides,

$$
\begin{align*}
& \rho c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}+\sum_{1}^{k} h_{k}\left(\dot{\omega} W_{k}\right)=\frac{D p}{D t}\left[\left.\rho T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right]+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} j_{k} \cdot \nabla h_{k}+\Phi \tag{37}\\
& \rho c_{\mathrm{p}, \operatorname{mix}} \frac{D T}{D t}=\frac{D p}{D t}\left[\left.\rho T \frac{\partial v}{\partial T}\right|_{p, Y_{k}}\right]-\sum_{1}^{k} h_{k}\left(\dot{\omega} W_{k}\right)+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} j_{k} \cdot \nabla h_{k}+\Phi \tag{38}
\end{align*}
$$

Now consider the enthalpy flux term from Eq. 38,

$$
\begin{equation*}
\sum_{k=1}^{K} j_{k} \cdot \nabla h_{k} \tag{39}
\end{equation*}
$$

This term can be written as Since $h_{k}=f\left(p, T, n_{i}\right), i=1,2, \ldots, \mathrm{~K}$, this term can be written as

$$
\begin{equation*}
\sum_{k=1}^{K} \boldsymbol{j}_{k} \cdot \nabla h_{k}=\sum_{k=1}^{K} \boldsymbol{j}_{k} \cdot\left[\left(\frac{\partial h_{k}}{\partial T}\right) \nabla T+\left(\frac{\partial h_{k}}{\partial p}\right) \nabla p+\sum_{i=1}^{K}\left(\frac{\partial h_{k}}{\partial n_{i}}\right) \nabla n_{i}\right] \tag{40}
\end{equation*}
$$

Since

$$
\begin{equation*}
h_{k}=\left.\frac{\partial(M h)}{\partial m_{k}}\right|_{T, p, m_{j \neq k}} \tag{41}
\end{equation*}
$$

The last term in Eq. 40 can also be represented as

$$
\begin{equation*}
\sum_{i=1}^{K}\left(\frac{\partial h_{k}}{\partial n_{i}}\right) \nabla n_{i}=\sum_{i=1}^{K} \frac{\partial}{\partial m_{k}}\left(\frac{\partial M h}{\partial m_{i}}\right) \nabla m_{i}=\sum_{i=1}^{K} \frac{\partial h_{i}}{\partial m_{k}} \nabla m_{i} \tag{42}
\end{equation*}
$$

Since m_{i} does not depend on m_{k}, this term simplifies to

$$
\begin{equation*}
\sum_{i=1}^{K}\left(\frac{\partial h_{k}}{\partial n_{i}}\right) \nabla n_{i}=\frac{\partial}{\partial m_{k}} \sum_{i=1}^{K} h_{i} \nabla m_{i} \tag{43}
\end{equation*}
$$

Thus the enthalpy flux term becomes

$$
\begin{equation*}
\sum_{k=1}^{K} \boldsymbol{j}_{\boldsymbol{k}} \cdot \nabla h_{k}=\sum_{k=1}^{K} \boldsymbol{j}_{\boldsymbol{k}} \cdot\left[\left(\frac{\partial h_{k}}{\partial T}\right) \nabla T+\left(\frac{\partial h_{k}}{\partial p}\right) \nabla p+\frac{\partial}{\partial m_{k}} \sum_{i=1}^{K} h_{i} \nabla m_{i}\right] \tag{44}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Phi_{k}=\sum_{k=1}^{K} \boldsymbol{j}_{\boldsymbol{k}} \cdot \frac{\partial}{\partial m_{k}} \sum_{i=1}^{K} h_{i} \nabla m_{i} \tag{45}
\end{equation*}
$$

Since expression for h_{k} depends on the choice of equation of state (EoS), the term Φ_{k} with partial derivatives of h_{i} can not be generalized further. Also calculation of this term at each grid point and for each species is computationally expensive. Instead, evaluating h_{k} at each grid point and taking its gradient directly will be more beneficial. ${ }^{c 1}$ If you want to expand ∇h_{k}, I think there are additional terms, analogous the the expansion of $D h / \overline{D t}$, since in general $h_{k}=f\left(T, p, Y_{k}\right)$. However, I don't think this expansion is necessary. When solving this equation, we can always evaluate h_{k} from the at each grid point and take the gradient directly. It's only where time derivatives of h appear that we need to eliminate them in order to have T as the state variable. ${ }^{\text {c2 }}$ Yes, after Franklin raised the point, Gandhali and I worked out the additional terms here. If I remember correctly, the only term that remained was another pressure term with an expansion coefficient (which we would neglect, at least for now). Gandhali - can you add those extra terms in? Regarding expanding ∇h_{k} vs. evaluating it directly, the only possible concern is that state evaluations can tend to be expensive, for the real gas EoS. Would it be cheaper to evaluate a single state to get $c_{\mathrm{p}, k}$ at an interface, rather than h_{k} at each volume center? Not certain, but it is a concern...
Now using the definition of specific heat,

$$
\begin{equation*}
c_{\mathrm{p}, k}=\left.\left(\frac{\partial h_{k}}{\partial T}\right)\right|_{p, Y_{k}} \tag{46}
\end{equation*}
$$

Equation 40 can be further simplified as

$$
\begin{equation*}
\sum_{k=1}^{K} \boldsymbol{j}_{\boldsymbol{k}} \cdot \nabla h_{k}=\sum_{k=1}^{K} c_{\mathrm{p}, k}\left(\boldsymbol{j}_{\boldsymbol{k}} \cdot \nabla T\right)+\sum_{k=1}^{K} \boldsymbol{j}_{\boldsymbol{k}} \cdot\left(\frac{\partial h_{k}}{\partial p}\right) \nabla p+\Phi_{k} \tag{47}
\end{equation*}
$$

Hence, the energy equation 38 becomes

$$
\begin{align*}
\rho c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}=\left[\left.\rho T \frac{\partial v}{\partial T}\right|_{P, Y_{k}}\right] \frac{D p}{D t}-\sum_{1}^{k} h_{k} \dot{\omega} W_{k} & +\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} c_{\mathrm{p}, k}\left(\boldsymbol{j}_{\boldsymbol{k}} \cdot \nabla T\right) \tag{48}\\
& -\sum_{k=1}^{K} \boldsymbol{j}_{\boldsymbol{k}} \cdot\left(\frac{\partial h_{k}}{\partial p}\right) \nabla p-\Phi_{k}+\Phi
\end{align*}
$$

Note that the term $\left.\frac{\partial v}{\partial T}\right|_{p, Y_{k}}$ is calculated as

$$
\begin{equation*}
\left.\frac{\partial v}{\partial T}\right|_{p, Y_{k}}=\frac{\left.\frac{\partial p}{\partial T}\right|_{V, Y_{k}}}{\left.\frac{\partial p}{\partial v}\right|_{T, Y_{k}}} \tag{49}
\end{equation*}
$$

Also note that volume expansivity (or coefficient of thermal expansion) is defined as

$$
\begin{equation*}
\alpha_{v}=\left.\frac{1}{v} \frac{\partial v}{\partial T}\right|_{p, Y_{k}} \tag{50}
\end{equation*}
$$

Using this definition, the energy equation reduces to

$$
\begin{equation*}
\rho c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}=\left(T \alpha_{v}\right) \frac{D p}{D t}-\sum_{1}^{k} h_{k} \dot{\omega} W_{k}+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} c_{\mathrm{p}, k} \boldsymbol{j}_{\boldsymbol{k}} \cdot \nabla T-\sum_{k=1}^{K} \underbrace{\boldsymbol{j}_{k} \cdot\left(\frac{\partial h_{k}}{\partial p}\right) \nabla p}_{D}-\Phi_{k}+\Phi \tag{51}
\end{equation*}
$$

4.3.1 Term D

Consider the term

$$
\begin{equation*}
D=\sum_{k} j_{\boldsymbol{k}} \cdot\left(\frac{\partial h_{k}}{\partial p}\right) \nabla p \tag{52}
\end{equation*}
$$

As calculated in Sec. 4.1.2,

$$
\begin{equation*}
\left.\frac{d h}{d p}\right|_{T, Y_{k}}=v-\left.T \frac{\partial v}{\partial T}\right|_{p, Y_{k}} \tag{53}
\end{equation*}
$$

Similarly, we have,

$$
\begin{equation*}
\left.\frac{d h_{k}}{d p}\right|_{T, Y_{k}}=v_{k}-\left.T \frac{\partial v_{k}}{\partial T}\right|_{p, Y_{k}} \tag{54}
\end{equation*}
$$

Define coefficient of thermal expansion for a species k as

$$
\begin{equation*}
\alpha_{v, k}=\left.\frac{1}{v_{k}} \frac{\partial v_{k}}{\partial T}\right|_{p, Y_{k}} \tag{55}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
D=\sum_{k} j_{k} \cdot v_{k}\left(1-T \alpha_{v, k}\right) \nabla p \tag{56}
\end{equation*}
$$

Since $v_{k}=1 / \rho_{k}$ and $\boldsymbol{j}_{\boldsymbol{k}}=\rho Y_{k} \boldsymbol{V}_{\boldsymbol{k}}$, we get

$$
\begin{equation*}
D=\sum_{k} \frac{1}{\rho_{k}}\left(1-T \alpha_{v, k}\right) \rho Y_{k} \boldsymbol{V}_{\boldsymbol{k}} \cdot \nabla p \tag{57}
\end{equation*}
$$

Using $\rho_{k}=\rho Y_{k}$,

$$
\begin{equation*}
D=\sum_{k}\left(1-T \alpha_{v, k}\right) \boldsymbol{V}_{\boldsymbol{k}} \cdot \nabla p \tag{58}
\end{equation*}
$$

Simplifying,

$$
\begin{equation*}
D=\left[\sum_{k} \boldsymbol{V}_{\boldsymbol{k}}-\sum_{k} T \alpha_{v, k} \boldsymbol{V}_{\boldsymbol{k}}\right] \cdot \nabla p \tag{59}
\end{equation*}
$$

4.4 Energy equation

$$
\begin{align*}
\rho c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}=\left(T \alpha_{v}\right) \frac{D p}{D t}-\sum_{1}^{k} h_{k} \dot{\omega} W_{k} & +\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} c_{\mathrm{p}, k} \boldsymbol{j}_{\boldsymbol{k}} \cdot \nabla T \\
& -\sum_{k=1}^{K}\left(1-T \alpha_{v, k}\right)\left(\boldsymbol{V}_{\boldsymbol{k}} \cdot \nabla p\right)+\Phi \tag{60}
\end{align*}
$$

For Ideal gas $\operatorname{EoS}, \alpha_{v}=1 / T$, hence energy equation in this case becomes

$$
\begin{equation*}
\rho c_{\mathrm{p}, \operatorname{mix}} \frac{D T}{D t}=\frac{D p}{D t}-\sum_{1}^{k} h_{k} \dot{\omega} W_{k}+\nabla \cdot(\lambda \nabla T)-\sum_{k=1}^{K} c_{\mathrm{p}, k} j_{k} \cdot \nabla T-\Phi_{k}+\Phi \tag{61}
\end{equation*}
$$

Usually at atmospheric conditions, $\alpha_{v} \approx 10^{-3}$. However, in case of near-critical flows, we might need to consider the pressure term. ${ }^{c 1}$ Handling the case where this is important would be quite an undertaking - this would require solving a compressible formulation of the flame governing equations, $\underline{\text { which I suspect would lead to some interesting numerical challenges. }}$

5. 1D Flame equations

Consider a one dimensional co-ordianate system with axial direction z. Using Eq.s 1, 3, 4 and 60 and ignoring other two directions, we get simplified governing equations as follows:

Continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial z}=0 \tag{62}
\end{equation*}
$$

Momentum equation

$$
\begin{equation*}
\rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial z}=-\frac{\partial p}{\partial z}+\frac{\partial}{\partial z}\left(2 \mu \frac{\partial u}{\partial z}+\kappa \boldsymbol{\nabla} \cdot \boldsymbol{V}\right) \tag{63}
\end{equation*}
$$

Using Stokes' hypothesis,

$$
\begin{gather*}
\kappa+\frac{2}{3} \mu=0 \tag{64}\\
\rho \frac{\partial u}{\partial t}+\rho u \frac{\partial u}{\partial z}=-\frac{\partial p}{\partial z}+\frac{\partial}{\partial z}\left(\frac{4}{3} \mu \frac{\partial u}{\partial z}\right) \tag{65}
\end{gather*}
$$

Species continuity equation

$$
\begin{equation*}
\rho \frac{D Y_{k}}{D t}=-\frac{\partial}{\partial z} j_{k}+\dot{\omega}_{k} W_{k} \tag{66}
\end{equation*}
$$

Where j_{k} is the diffusive mass flux in axial direction,

$$
\begin{equation*}
j_{k}=\rho Y_{k} u_{k} \tag{67}
\end{equation*}
$$

Here u_{k} is the diffusion velocity for species k .

Energy equation

$$
\begin{equation*}
\rho c_{\mathrm{p}, \text { mix }} \frac{D T}{D t}=\left(T \alpha_{v}\right) \frac{D p}{D t}-\sum_{1}^{k} h_{k} \dot{\omega}_{k} W_{k}+\frac{\partial}{\partial z}\left(\lambda \frac{\partial T}{\partial z}\right)-\sum_{k=1}^{K} c_{\mathrm{p}, k} j_{k} \frac{\partial T}{\partial z}+\Phi \tag{68}
\end{equation*}
$$

The dissipation function Φ can be given as

$$
\begin{equation*}
\Phi=(2 \mu+\kappa)\left(\frac{\partial u}{\partial z}\right)^{2}=\frac{4}{3} \mu\left(\frac{\partial u}{\partial z}\right)^{2} \tag{69}
\end{equation*}
$$

(Ref: Chemically reacting flows, second edition- Eq. 3.201, page 113)
At very high pressures, the pressure derivative is often small and can be neglected. The dissipation rate Φ, being very small can also be ignored.

$$
\begin{equation*}
\rho c_{\mathrm{p}, \operatorname{mix}} \frac{D T}{D t}=-\sum_{1}^{k} h_{k} \dot{\omega}_{k} W_{k}+\frac{\partial}{\partial z}\left(\lambda \frac{\partial T}{\partial z}\right)-\sum_{k=1}^{K} c_{\mathrm{p}, k} j_{k} \frac{\partial T}{\partial z} \tag{70}
\end{equation*}
$$

6. Appendix

6.1 Molar and mass based enthalpies and specific heats

Let mass and molar based mixture enthalpies be h and \bar{h}. The mixture molecular weight is \bar{W}. Converting to mass based quantities,

$$
\begin{equation*}
h=\frac{\bar{h}}{\bar{W}} \tag{71}
\end{equation*}
$$

Define mass based individual enthalpy as

$$
\begin{equation*}
h_{k}=\left.\frac{\partial(M h)}{\partial m_{k}}\right|_{p, V, m_{j} \neq m_{k}}=\left.\frac{1}{W_{k}} \frac{\partial\left(n_{\mathrm{T}} \bar{W} h\right)}{\partial n_{k}}\right|_{p, V, n_{j} \neq n_{k}} \tag{72}
\end{equation*}
$$

Using Eq. 71,

$$
\begin{equation*}
h_{k}=\left.\frac{1}{W_{k}} \frac{\partial\left(n_{\mathrm{T}} \bar{h}\right)}{\partial n_{k}}\right|_{p, V, n_{j} \neq n_{k}} \tag{73}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
h_{k}=\frac{\bar{h}_{k}}{W_{k}} \tag{74}
\end{equation*}
$$

Define specific heat capacities at constant pressure as

$$
\begin{equation*}
\bar{c}_{\mathrm{p}, k}=\left.\frac{\partial \bar{h}_{k}}{\partial T}\right|_{p, V, n_{j}}, c_{\mathrm{p}, k}=\left.\frac{\partial h_{k}}{\partial T}\right|_{p, V, m_{j}} \tag{75}
\end{equation*}
$$

Consider

$$
\begin{gather*}
c_{\mathrm{p}, k}=\left.\frac{\partial h_{k}}{\partial T}\right|_{p, V, m_{j}}=\frac{\partial}{\partial T}\left(\frac{\bar{h}_{k}}{W_{k}}\right) \tag{76}\\
c_{\mathrm{p}, k}=\frac{1}{W_{k}} \frac{\partial \bar{h}_{k}}{\partial T}=\frac{1}{W_{k}} \bar{c}_{\mathrm{p}, k} \tag{77}
\end{gather*}
$$

6.2 Derivative of \bar{W}

The mean molecular weight of the mixture is given as

$$
\begin{align*}
\bar{W} & =\sum_{i=1}^{K} \frac{n_{i}}{n_{\mathrm{T}}} W_{i} \tag{78}\\
\frac{\partial \bar{W}}{\partial n_{k}}=\frac{\partial}{\partial n_{k}} \sum_{i=1}^{K} \frac{n_{i}}{n_{\mathrm{T}}} W_{i} & =\frac{\partial n_{k}}{\partial n_{k}} \frac{W_{k}}{n_{\mathrm{T}}}+\frac{\partial n_{\mathrm{T}}}{\partial n_{k}} \sum_{i=1}^{K} \frac{-n_{i}}{n_{\mathrm{T}}^{2}} W_{i} \tag{79}\\
\frac{\partial \bar{W}}{\partial n_{k}} & =\frac{W_{k}}{n_{\mathrm{T}}}-\frac{1}{n_{\mathrm{T}}} \bar{W} \tag{80}\\
\frac{\partial \bar{W}}{\partial n_{k}} & =\frac{W_{k}-\bar{W}}{n_{\mathrm{T}}} \tag{81}
\end{align*}
$$

7. RLS Note: Energy Equation Term C

I think there are a couple of issues in the derivation of the energy equation, specifically involving term C in Eq. 7. First, I think there is a problem with what is held constant when taking $\partial h / \partial Y_{k}$, and the inconsistency in trying to hold all other mass fractions constant and also satisfying $\sum Y_{k}=1$. As an alternative, the specific enthalpy h can be considered as a function of species masses m_{k} rather than mass fractions Y_{k} :

$$
\begin{equation*}
h=h\left(p, T, m_{1}, \ldots, m_{K}\right) \tag{82}
\end{equation*}
$$

The substantial derivative of the enthalpy can then be written as:

$$
\begin{equation*}
\underbrace{\rho \frac{D h}{D t}}_{\mathrm{I}}=\rho(\underbrace{\left.\frac{\partial h}{\partial T}\right|_{p, m_{1} \ldots K} \frac{D T}{D t}}_{\mathrm{A}}+\underbrace{\left.\frac{\partial h}{\partial p}\right|_{T, m_{1} \ldots K} \frac{D p}{D t}}_{\mathrm{B}}+\underbrace{\left.\sum_{k=1}^{K} \frac{\partial h}{\partial m_{k}}\right|_{T, p, m_{i \neq k}} \frac{D m_{k}}{D t}}_{\mathrm{C}}) \tag{83}
\end{equation*}
$$

which avoids the inconsistency of trying to take derivatives with respect to Y_{k} while holding all other mass fractions constant and also satisfying the constraint that $\sum Y_{k}=1$.

For the purpose of evaluating term C , we can write:

$$
\begin{align*}
H & =m h=\left(\sum_{k=1}^{K} m_{k}\right) h \tag{84}\\
\left.h_{k} \equiv \frac{\partial H}{\partial m_{k}}\right|_{T, p, m_{i \neq k}} & =\frac{\partial}{\partial m_{k}}\left[\left(\sum_{k=1}^{K} m_{k}\right) h\right]_{T, p, m_{i \neq k}} \tag{85}\\
& =\left.m \frac{\partial h}{\partial m_{k}}\right|_{T, p, m_{i \neq k}}+\left.\frac{\partial m}{\partial m_{k}}\right|_{T, p, m_{i \neq k}} h \tag{86}\\
h_{k} & =\left.m \frac{\partial h}{\partial m_{k}}\right|_{T, p, m_{i \neq k}}+h \tag{87}
\end{align*}
$$

Therefore, the first part of term C can be written as

$$
\begin{equation*}
\left.\frac{\partial h}{\partial m_{k}}\right|_{T, p, m_{i \neq k}}=\frac{h_{k}-h}{m} \tag{88}
\end{equation*}
$$

We can also write

$$
\begin{equation*}
\frac{D m_{k}}{D t}=m \frac{D Y_{k}}{D t} \tag{89}
\end{equation*}
$$

Then term C becomes:

$$
\begin{align*}
C & =\left.\sum_{k=1}^{K} \frac{\partial h}{\partial m_{k}}\right|_{T, p, m_{i \neq k}} \frac{D m_{k}}{D t} \tag{90}\\
& =\sum_{k=1}^{K}\left(h_{k}-h\right) \frac{D Y_{k}}{D t} \tag{91}\\
& =\sum_{k=1}^{K} h_{k} \frac{D Y_{k}}{D t}-h \sum_{k=1}^{K} \frac{D Y_{k}}{D t} \tag{92}\\
& =\sum_{k=1}^{K} h_{k} \frac{D Y_{k}}{D t} \tag{93}
\end{align*}
$$

with the last step utilizing the constraint that $\sum D Y_{k} / D t=0$. So, in the end, term C works out to be the same thing, but not in quite the same way.

As an aside, the way I approached this was from trying to resolve some confusion I had about Eq. 26 , which does not seem to work out even in the case of a simple ideal mixture of two components. For example, let

$$
\begin{equation*}
h=a Y_{a}+b Y_{b} \tag{94}
\end{equation*}
$$

for which the partial species enthalpy of species a is simply $h_{a}=a$. The right hand side of Eq. 26 is then

$$
\begin{equation*}
h_{a}-h=a-\left(a Y_{a}+b Y_{b}\right) \tag{95}
\end{equation*}
$$

We can evaluate $\partial h / \partial Y_{a}$ either holding Y_{b} constant or holding $\sum Y_{k}$ constant. For these two methods, we get:

$$
\begin{array}{r}
\left.\frac{\partial h}{\partial Y_{a}}\right|_{Y_{b}}=a \\
\left.\frac{\partial h}{\partial Y_{a}}\right|_{\sum Y}=a-b \tag{97}
\end{array}
$$

Neither of which are equivalent to Eq. 95. Instead, $\partial h / \partial Y_{k}$ can be found from:

$$
\begin{align*}
h_{k} & \left.\equiv \frac{\partial H}{\partial m_{k}}\right|_{T, p, m_{i \neq k}}=\frac{\partial}{\partial m_{k}}\left[\left(\sum_{i=1}^{K} m_{i}\right) h\right]_{T, p, m_{i \neq k}} \tag{98}\\
& =\left.\left.m \frac{\partial h}{\partial Y_{k}}\right|_{T, p, m_{i \neq k}} \frac{\partial Y_{k}}{\partial m_{k}}\right|_{T, p, m_{i \neq k}}+h \tag{99}
\end{align*}
$$

${ }^{\mathrm{c} 1} \mathrm{c} 2 \mathrm{c} 3$ We can find $\partial Y_{k} / \partial m_{k}$ by writing:

$$
\begin{align*}
Y_{k} & \equiv \frac{m_{k}}{\sum_{i=1}^{K} m_{i}} \tag{100}\\
\left.\frac{\partial Y_{k}}{\partial m_{k}}\right|_{T, p, m_{i \neq k}} & =\frac{1}{m}-\frac{m_{k}}{m^{2}}=\frac{1-Y_{k}}{m} \tag{101}
\end{align*}
$$

From which it follows that

$$
\begin{gather*}
h_{k}=\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p, \sum Y}\left(1-Y_{k}\right)+h \tag{102}\\
\left.\frac{\partial h}{\partial Y_{k}}\right|_{T, p, \sum Y}=\frac{h_{k}-h}{1-Y_{k}} \tag{103}
\end{gather*}
$$

which is clearly not the same as Eq. 26. In addition, this equation does work with the EOS given in Eq. 94.

8. RLS: Enthalpy flux term

I think the species partial enthalpy h_{k} (Is there a more correct term for this? I would say "partial molar enthalpy" if we were working on a molar basis, but we're not) is also dependent on m_{k} or Y_{k}, and so these gradients also need to be included in the expansion of the enthalpy flux term (assuming that you want to expand it in the first place). Consider a binary mixture with an interaction term:

$$
\begin{equation*}
h=a Y_{a}+b Y_{b}+\alpha Y_{a} Y_{b} \tag{104}
\end{equation*}
$$

To find h_{a}, write this in terms of actual masses:

$$
\begin{gather*}
h=a \frac{m_{a}}{m_{a}+m_{b}}+b \frac{m_{b}}{m_{a}+m_{b}}+\alpha \frac{m_{a} m_{b}}{\left(m_{a}+m_{b}\right)^{2}} \tag{105}\\
H=\left(m_{a}+m_{b}\right) h=a m_{a}+b m_{b}+\alpha m_{a} m_{b}\left(m_{a}+m_{b}\right)^{-1} \tag{106}\\
h_{a} \equiv \frac{\partial H}{\partial m_{a}}=a+\alpha m_{b}\left(m_{a}+m_{b}\right)^{-1}-\alpha m_{a} m_{b}\left(m_{a}+m_{b}\right)^{-2} \tag{107}\\
h_{a}=a+\alpha Y_{b}-\alpha Y_{a} Y_{b} \tag{108}
\end{gather*}
$$

So, in general, $h_{k}=f\left(T, p, Y_{1}, \ldots, Y_{K}\right)$ and the expansion of ∇h_{k} by the chain rule is something like

$$
\begin{equation*}
\nabla h_{k}=\left.\frac{\partial h_{k}}{\partial T}\right|_{p, Y_{i}} \nabla T+\left.\frac{\partial h_{k}}{\partial p}\right|_{T, Y_{i}} \nabla p+\left.\sum_{j=1}^{K} \frac{\partial h_{k}}{\partial Y_{j}}\right|_{p, T, Y_{i \neq j}} \nabla Y_{j} \tag{109}
\end{equation*}
$$

Which again leaves us with the conflicting demands of satisfying both $\sum Y_{k}=1$ and holding the other Y_{i} constant. In any case, calculating the derivatives of h_{k} with respect to T, p, and Y_{j} (or perhaps m_{j}) is an additional burden that I imagine we would like to avoid.

