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Mathematical Model Development 
for Well-Stirred Reactors 
Paul Blum 
 
A well-stirred reactor (also known as a continuously-stirred reactor, perfectly-stirred reactor, 
etc.), is an ideal combustion model where perfect mixing is achieved within a reactor defined as 
a control volume. In this document, I’ll derive the mathematical model for a well-stirred reactor, 
to be used in the implementation of a Cantera solver for reactors of this type. 
 

 
A schematic of a well-stirred reactor [Turns, 2012]. 

 
 
Assumptions 

 

1. Steady-state, steady flow 
2. Perfect mixing is achieved within the reactor. This implies that all thermodynamic 

properties are constant at any point within the control volume, and that no diffusional 
flux will occur. 

3. The properties at the outlet of the control volume are the same as those within the control 
volume. 

4. Changes in kinetic and potential energy in flowing through the reactor are negligible. 
 
Required Inputs 

 

• A defined gas to flow into the reactor (a Cantera Solution object will likely be used). 
• The volume of the reactor, V. 
• The mass flowrate through the reactor, 𝑚̇. 
• The rate of heat loss, 𝑄̇ (if the reactor isn’t adiabatic). 
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Mathematical Model 
 

Derivation 
Begin with the mass conservation equation for an individual chemical species inside of a control 
volume. For an arbitrary species i: 
 

 d𝑚!,#$

d𝑡 	= 		 𝑚̇!
%%%𝑉	 +		 𝑚̇!,&' 	− 		 𝑚̇!,()* [1] 

 

Terms utilized in the above equation are defined as follows: 
 

d𝑚!,#$

d𝑡  The rate at which the total mass of species i accumulates within the control 
volume. 

 

𝑚̇!
"""𝑉 The total mass generation rate of species i through chemical reactions within 

the control volume. 
  

 𝑚̇!
""" The mass generation rate per unit volume of species i through 

chemical reactions. 
  

 𝑉 The amount of volume defined within the reactor’s control volume. 
 

𝑚̇! The mass flowrate of species i at some location. 
  

 𝑚̇!,$% The mass flowrate of species i through the inlet of the reactor. 
  

 𝑚̇!,&'( The mass flowrate of species i through the outlet of the reactor. 
 
To make the mass conservation equation more usable, the following equivalencies are presented: 
 

 𝑚̇!
%%% =	 𝜔̇!𝑀𝑊! [2] 

 

 𝑚̇!,&' =	 𝑚̇𝑌!,&' [3] 
 

 𝑚̇!,()* =	 𝑚̇𝑌!,()* [4] 
 

Terms utilized in the above equations are as follows: 
 

𝜔̇!𝑀𝑊! 
The mass generation rate per unit volume of species i through chemical 
reactions. 

  

 𝜔̇! 
The total molar generation rate per unit volume of species i through 
chemical reactions. 

  

 𝑀𝑊!  The molar weight of species i.  
 

𝑚̇𝑌! The mass flowrate of species i at some location. 
  

 𝑚̇ The total mass flowrate through the reactor. 
  

 𝑌!,$% The fraction made up by species i of the total mass of the gaseous 
mixture entering the reactor.  

  

 𝑌!,&'( 
The fraction made up by species i of the total mass of the gaseous 
mixture exiting the reactor. 

 
Since steady-state operation of the reactor has been assumed, the mass of any species i within the 
control volume must remain constant over time: 
 

 d𝑚!,#$

d𝑡 	= 		0 [5] 
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Considering equation [5], substituting the presented equivalencies [2 – 4] into equation [1], and 
then simplifying the result gives the final mass conservation equation for some arbitrary species i 
within the reactor: 
 

 0 = 	 𝜔̇!𝑀𝑊!𝑉 + 𝑚̇(𝑌!,&' − 𝑌!,()*) [6] 
 
All terms used in this equation have been defined previously. It should be noted that in 
traditional solutions of a well-stirred reactor problem, each species production rate, 𝜔̇!, may be 
independently calculated as a function of the molar concentration of i within the reactor and the 
global reactor temperature, T. However, in the implementation of this solver, production rates 
will likely be obtained via a Cantera Solution object that iteratively models the gas mixture 
within the reactor based on successive estimates of reactor temperature.  
 
Equation [6] will be applied once for each of the N chemical species present, which will result in 
N equations with a combined total of N + 1 unknown values (namely, Y1,out, Y2,out, …, YN,out, T ). 
One more equation will be required to find a unique solution set for the model. For this, the 
steady-state, steady-flow conservation of energy equation will be applied to the reactor: 
 

 𝑄̇ = 𝑚̇(ℎ()* − ℎ&') [7] 
 

Terms utilized in the above equation are as follows: 
 

𝑄̇ The rate that heat is lost to the surroundings via heat transfer through the 
reactor walls. This will rate be equal to zero in adiabatic reactors. 

 

𝑚̇ The total mass flowrate through the reactor. 
 

ℎ&'( The total enthalpy of the gaseous mixture leaving the reactor. 
 

ℎ$% The total enthalpy of the gaseous mixture entering the reactor. 
 
It should be noted that in traditional solutions of a well-stirred reactor problem, the total enthalpy 
of a gaseous mixture may be calculated by summing the products of each species’ standardized 
enthalpy with its mass fraction. However, in the implementation of this solver, total enthalpies 
will likely be obtained via Cantera Solution objects that model the gases entering and leaving 
the reactor. 
 
Final Model 
The final mathematical model of a well-stirred reactor to be used in the implementation of this 
solver is as follows: 
 

0 = 	 𝜔̇+𝑀𝑊+𝑉 + 𝑚̇(𝑌+,&' − 𝑌+,()*) 
0 = 	 𝜔̇,𝑀𝑊,𝑉 + 𝑚̇(𝑌,,&' − 𝑌,,()*) 

… 
0 = 	 𝜔̇-𝑀𝑊-𝑉 + 𝑚̇(𝑌-,&' − 𝑌-,()*) 

0 = 𝑚̇(ℎ()* − ℎ&') − 𝑄̇ 
 

In the above equations, a numerical subscript i ∈{1, 2, …, N } indicates a property specific to 
chemical species i, where a total of N species are present in the reactor. These N + 1 nonlinear 
algebraic equations will need to be solved simultaneously using a capable numerical analysis 
technique, such as Newton’s method. Once the system has converged to a solution, all properties 
of the combustion reaction within the well-stirred reactor can easily be derived. 
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