diff --git a/13-Difference-in-Differences.ipynb b/13-Difference-in-Differences.ipynb
new file mode 100644
index 0000000..18ff23a
--- /dev/null
+++ b/13-Difference-in-Differences.ipynb
@@ -0,0 +1,492 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 13 - Difference-in-Differences (DID)\n",
+ "\n",
+ "## Three Billboards in the South of Brazil\n",
+ "\n",
+ "제가 마케팅 일을 했을 때, 인터넷 광고가 가장 좋은 방법이었던 걸로 기억해요. 인터넷 광고가 매우 효율적이여서가 아니라(효율적이기도 하지만), 마케팅이 얼마나 효과적인지 아닌지를 파악하기가 매우 쉽기 때문입니다. 온라인 마케팅을 사용하면, 어떤 고객이 광고를 보았는지 알 수 있으며 쿠키를 사용하여 고객이 방문 페이지에 도달했는지 또는 다운로드 버튼을 클릭했는지 확인할 수 있습니다. 또한 머신러닝을 이용해서 여러분의 고객과 매우 유사한 잠재 고객을 찾고 해당 고객에게만 광고를 노출시킬 수 있습니다. 이러한 의미에서 온라인 마케팅은 매우 정확해요: 원하는 대상만 타겟팅하면, 여러분이 원하는 대로 반응하는지 확인할 수 있습니다.\n",
+ "\n",
+ "그러나 모든 사람이 온라인 마케팅에 취약한 것은 아닙니다. TV 캠페인이나 거리에 광고판을 설치하는 것과 같이 덜 정확한 기술에 의존해야 할 때도 있어요. 대개 마케팅 채널의 다양성은 마케팅 부서에서 추구합니다. 그러나 온라인 마케팅이 특정 종류의 참치를 잡는 전문 낚싯대라면 광고판과 TV는 물고기 떼에 던지는 거대한 그물이라고 볼 수 있고, 적어도 그 중에서 몇 마리는 잡기를 희망합니다. 광고판과 TV 광고의 또 다른 문제는 마케팅이 얼마나 효과적인지 알기가 훨씬 더 어렵다는 것입니다. 물론, 광고판을 어딘가에 배치하기 전후의 구매량 또는 여러분이 추진하고 어떤 것이든 측정할 수 는 있어요. 지표의 증가가 있으면 마케팅이 효과적이라는 증거가 있습니다만, 이러한 증가가 마케팅한 제품 인지도의 자연스러운 추세가 아닌지 어떻게 알 수 있을까요? 즉, 애초에 광고판을 설치하지 않았다면, 어떻게 되었을지 counterfactual인 $Y_0$를 어떻게 알 수 있나요?\n",
+ "\n",
+ "\n",
+ "\n",
+ "이러한 유형의 질문에 답하는 한 가지 방법은 이중차분법(DID, Difference-in-Difference)입니다. DID는 일반적으로 거시적 개입(macro interventations)의 효과를 평가하는 데 사용되는데요, 예를 들어 이민이 실업에 미치는 영향, 범죄율에 대한 총기법 변경의 영향 또는 단순히 마케팅 캠페인으로 인한 유저 참여 차이를 추정하는데 사용됩니다. DID는 모든 경우에 개입 전후에 기간이 있으며, 일반적인 추세에서 개입의 영향을 파악하고자 하는 방법입니다. 위에서 설명한 예시처럼, 제가 이전에 대답해야 했던 것과 비슷한 질문에 대해 같이 한 번 살펴보시죠.\n",
+ "\n",
+ "광고판이 마케팅 채널로 얼마나 좋은지 알아보기 위해, 히우그란지두술(Rio Grande do Sul) 주도인 포르투 알레그리(Porto Alegre)에 3개의 광고판을 설치했습니다. 이 실험을 통해 광고판 설치가 적금 계좌로 예금을 늘리는지 확인하고 싶었어요. 브라질 지리에 익숙하지 않은 분들께 참고로 말씀드리자면, Rio Grande do Sul은 브라질 남부에 있으며, 가장 발전된 지역 중 하나입니다.\n",
+ "\n",
+ "이를 염두에 두고, 브라질 남쪽의 다른 수도인 산타 카타리나(Santa Catarina) 주의 주도인 플로리아노폴리스(Florianopolis)의 데이터도 살펴보기로 했습니다. Florianopolis를 대조군으로 사용해서, Porto Alegre와 비교 시 counterfactual $Y_0$를 추정해볼 수 있다는 것입니다. (참고로 이 부분은 기밀인 실제 실험이 아니지만 대조군 설정의 아이디어는 매우 유사해요). 우리는 6월 한 달 동안 Porto Alegre에 광고판을 설치했습니다. 실험을 통한 데이터는 다음과 같습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "from matplotlib import style\n",
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import statsmodels.formula.api as smf\n",
+ "\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "style.use(\"fivethirtyeight\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
deposits
\n",
+ "
poa
\n",
+ "
jul
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
42
\n",
+ "
1
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
0
\n",
+ "
1
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
52
\n",
+ "
1
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
119
\n",
+ "
1
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
21
\n",
+ "
1
\n",
+ "
0
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " deposits poa jul\n",
+ "0 42 1 0\n",
+ "1 0 1 0\n",
+ "2 52 1 0\n",
+ "3 119 1 0\n",
+ "4 21 1 0"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = pd.read_csv(\"data/billboard_impact.csv\")\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "예금(deposits)은 이 실험의 결과 변수이며 광고판을 통해 늘리려고 하는 변수라는 것을 기억해주세요. POA는 Porto Alegre 시 여부인지에 대한 더미변수(Dummy variable)입니다. 0이면 Florianopolis에서 가져온 데이터를 의미해요. 7월은 7월 또는 사후 개입 기간(post intervention period)에 대한 더미변수이며, 값이 0이면 개입 전 기간(pre-intervention period)인 5월의 데이터를 나타냅니다.\n",
+ "\n",
+ "## DID 추정량 (DID Estimator)\n",
+ "\n",
+ "시간과 Treatment 사이의 혼동을 피하기 위해, 이제부터 D를 사용하여 Treatment를 나타내고 T를 사용하여 시간을 표현하겠습니다. $Y_D(T)$를 기간 T의 처치 D에 대한 잠재적 결과라고 정의한다면, 우리가 반사실을 관찰할 수 있는 이상적인 세계에서 다음과 같은 방식으로 개입에 대한 처치 효과를 추정할 수 있습니다.\n",
+ "\n",
+ "$\n",
+ "\\hat{ATET} = E[Y_1(1) - Y_0(1)|D=1]\n",
+ "$\n",
+ "\n",
+ "즉, 인과 효과는 개입 후 기간의 처치를 받은 대상의 결과에서 개입 후 기간의 처치를 받지않은 대상의 결과를 뺀 값입니다. 물론 $Y_0(1)$는 counterfactual 이기 때문에 관측할 수 없습니다.\n",
+ "\n",
+ "이렇게 DID에서 인과추론의 근본적인 문제가 존재하게 되는데요. 이 문제를 해결하는 한 가지 방법은 전후 비교입니다.\n",
+ "\n",
+ "$\n",
+ "\\hat{ATET} = E[Y(1)|D=1] - E[Y(0)|D=1]\n",
+ "$\n",
+ "\n",
+ "위 예시에서는 광고판을 배치하기 전과 후에 POA의 평균 예금액을 비교할 수 있을 거에요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "41.04775"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "poa_before = data.query(\"poa==1 & jul==0\")[\"deposits\"].mean()\n",
+ "\n",
+ "poa_after = data.query(\"poa==1 & jul==1\")[\"deposits\"].mean()\n",
+ "\n",
+ "poa_after - poa_before"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "이 DID 추정량에 따르면, 개입 후 예금이 R$ 41,04 증가할 것으로 예상됩니다. 그런데 이 수치를 믿을 수 있나요 여러분?\n",
+ "\n",
+ "$E[Y(0)|D=1]=E[Y_0(0)|D=1]$ 식에 주목해주세요. 즉, **개입 전** 처치된 대상에 대해 관찰된 결과는 개입 이전에도 처치된 대상에 대한 반사실 결과와 동일해요. 이 식을 사용해서 **개입 후** counterfactual $E[Y_0(1)|D=1]$를 추정하기 때문에, 이 추정은 $E[Y_0(1)|D=1] = E[ Y_0(0)|D=1]$를 가정합니다.\n",
+ "\n",
+ "개입이 없을 경우, 후반 기간의 결과는 시작 기간의 결과와 같을 거에요. 결과 변수가 어떤 종류의 추세를 따른다면, 위의 식은 맞지 않을 겁니다. 예를 들어, POA에서 예금이 증가한다면, $E[Y_0(1)|D=1] > E[Y_0(0)|D=1]$, 즉, 개입이 없더라도 후반 기간의 결과는 시작 기간의 결과보다 클 거에요.\n",
+ "비슷하게 반대의 경우를 살펴보면, 예금이 POA에서 감소추세라면, $E[Y_0(1)|D=1] < E[Y_0(0)|D=1]$ 가 됩니다. 이것은 전후에 대한 부분이 좋은 추정량이 아니라는 것을 보여줍니다.\n",
+ "\n",
+ "또 다른 방법은 처치를 받은 그룹과 개입을 받지 않은 미처치 그룹을 비교하는 거에요.\n",
+ "\n",
+ "$\n",
+ "\\hat{ATET} = E[Y(1)|D=1] - E[Y(1)|D=0]\n",
+ "$\n",
+ "\n",
+ "해당 예시에서는 개입 후 기간에 POA의 예금을 Florianopolis의 예금과 비교하는 것입니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "-119.10175000000001"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fl_after = data.query(\"poa==0 & jul==1\")[\"deposits\"].mean()\n",
+ "poa_after - fl_after"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "해당 추정량은 캠페인이 해로우며, 소비자들의 예금은 R$ 119.10 감소할 것이라고 이야기하고 있어요.\n",
+ "\n",
+ "$E[Y(1)|D=0]=E[Y_0(1)|D=0]$이라는 점을 주목해주세요. 그리고 $E[Y(1)|D=0]$를 사용해서 개입 후 처치에 대한 counterfactual을 추정하기 때문에, 누락된 counterfactual을 다음과 같이 대체할 수 있다고 가정해볼게요. $E[Y_0(1)|D =0] = E[Y_0(1)|D=1]$. 그런데, 이 식은 두 그룹의 수준이 매우 유사한 경우에만 해당됩니다. 예를 들어, Florianopolis가 Porto Alegre보다 예금이 훨씬 많다면 $E[Y_0(1)|D=0] > E[Y_0(1)|D=1]$이기 때문에 위 식은 맞지 않게 됩니다. 반대로, Florianopolis의 예금 수준이 Porto Alegre보다 낮으면 $E[Y_0(1)|D=0] < E[Y_0(1)|D=1]$가 되겠죠?\n",
+ "\n",
+ "거듭 말씀드리지만, 이건 좋은 생각이 아니에요. 이 부분을 해결하기 위해, 공간(space) 비교와 시간(time) 비교를 모두 사용할 수 있습니다. 이게 바로 DID에 대한 기본적인 아이디어입니다. 아래와 같이 같이 관측할 수 없는 counterfactual을 대체해 효과를 추정할 수 있습니다.\n",
+ "\n",
+ "$\n",
+ "E[Y_0(1)|D=1] = E[Y_1(0)|D=1] + (E[Y_0(1)|D=0] - E[Y_0(0)|D=0])\n",
+ "$\n",
+ "\n",
+ "위 식은 **개입 전** 처치된 그룹에 추세 구성 요소를 추가된 것을 보여주고 있어요. 대조군 $E[Y_0(1)|D=0] - E[Y_0(0)|D=0 을 사용하여 추정합니다. 다시 말해, **개입 후** 실험군이 만약 처치를 받지 않았다면, **처치 전** 실험군에 대조군의 성장과 동일한 성장 요소를 더한 것처럼 보일 것입니다.\n",
+ "\n",
+ "실험군과 대조군의 추세(trend)는 같다고 가정한다는 점은 주목할 필요가 있습니다.\n",
+ "\n",
+ "$\n",
+ "E[Y_0(1) − Y_0(0)|D=1] = E[Y_0(1) − Y_0(0)|D=0]\n",
+ "$\n",
+ "\n",
+ "여기서 왼쪽 부분은 counterfactual에 대한 추세입니다. 이제 처치 효과 정의 $E[Y_1(1)|D=1] - E[Y_0(1)|D=1]$에서 추정된 counterfactual에을 대체할 수 있게 됩니다.\n",
+ "\n",
+ "$\n",
+ "\\hat{ATET} = E[Y(1)|D=1] - (E[Y(0)|D=1] + (E[Y(1)|D=0] - E[Y(0)|D=0])\n",
+ "$\n",
+ "\n",
+ "이 식을 재정리하면, 아래처럼 DID 추정량을 얻습니다.\n",
+ "\n",
+ "$\n",
+ "\\hat{ATET} = (E[Y(1)|D=1] - E[Y(1)|D=0]) - (E[Y(0)|D=1] - E[Y(0)|D=0])\n",
+ "$\n",
+ "\n",
+ "처치 후와 처치 전의 대조군과 실험군 처치의 차이를 따서 붙여진 이름입니다.\n",
+ "\n",
+ "아래 코드를 한 번 보시죠."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "6.524557692307688"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "fl_before = data.query(\"poa==0 & jul==0\")[\"deposits\"].mean()\n",
+ "\n",
+ "diff_in_diff = (poa_after-poa_before)-(fl_after-fl_before)\n",
+ "diff_in_diff"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "위 식을 통해 추정된 DID는 예금이 고객 당 R$ 6.52만큼 증가할 것이라고 예상하고 있습니다.DID가 만드는 가정은 앞서 이야기한 다른 2개의 추정량보다 훨씬 더 그럴듯하지 않나요? 여기서는 두 도시 간의 성장 패턴이 동일하다고 가정합니다. 그러나 동일한 수준을 가질 필요도 없고 추세가 0일 필요도 없습니다.\n",
+ "\n",
+ "DID에 대해 시각화하기 위해, 처치되지 않은 그룹에서 처치된 그룹으로의 성장 추세를 투영하여 반사실, 즉 개입이 없는 경우 예상해야 하는 예금수를 볼 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAFDCAYAAACTPg7/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABO1klEQVR4nO3deXxU1f0//tedNZPJMslkMgkkBIEQAXGByiYigiJUkS8VJW5QFGxRq2jFvR+UWkFEClWKttCfW+rSlC5U1NaKiohgLYq1ikFkLUzWyZ7Z7vn9cWfuzGSSMCGTySS8no9HHkzu3Lk5N2L78tzzfh/J6XQKEBERERF1M01PD4CIiIiITg8MnkREREQUFwyeRERERBQXDJ5EREREFBcMnkREREQUFwyeRERERBQXDJ5EREREFBcMnkREREQUFwyefmVlZT09BCIiIqKYS6SMw+BJRERERHHB4ElEREREccHgSURERERxweBJRERERHHB4ElEREREccHgSURERERxweBJRERERHHB4ElEREREccHgSURERNRHyUJAiJ4eRZCupwdARERERJ0jC4GqFhnHm3xwNCt/nmj9ukmGo9mHrWN6erRBDJ5ERERECUIWAtUuGcebZDiafG0GyhP+QOmNciazyi1176A7gcGTiIiIqJuJkEB5osmHE81KgDwRCJPNwUDpkaO7ZqZRgxyTBjnJWv+XBjmmkNfJWthNWhw+sL97b64TGDyJiIiITpEQAjWBQNkcnJEMhkkfjjfJKG/2wR1loMwwSiEBUhseLk3BQJmkS5yZzGgxeBIRERG1IoSA0y1CHm/7cML/uNvhD5fHm5XX0QZKi0FqM0zm+r+3J2uR00sDZbQYPImIiOi0EQiUgTDZXnGOo9kHly+6a6YbpLBH3Ln+GcncVo+8TX04UEaLwZOIiIh6PSEEat0i7PG2WpzTrFR4B15HGyjTDBJyTVplJjJZo77O9YfJHJMW9mQNknXsThmtkwbPNWvWYMuWLdi/fz8MBgO+973vYdmyZRg+fLh6jhACK1euxAsvvACn04nRo0dj9erVGDZsmHqO0+nEvffei7feegsAMH36dKxatQoWiyX2d0VERER9QiBQOkIDZXOg2jt8LWVLtIFSL/lnITX+WUl/oPQ//s5NZqDsLicNnh9++CFuvvlmjBo1CkIIPP744/h//+//YdeuXcjIyAAArFu3DuvXr8f69etRWFiIVatWYfbs2fjkk0+QmpoKAFi4cCGOHj2K0tJSAMAdd9yBH/3oR3jttde68faIiIgoEQkhUOcR/lnJ0MIcf6AMKdRp9kXXNyjVHyjDK72D3+f6w6ZZz0DZUySn09mpfvYNDQ0YMGAASkpKMGPGDAghcOaZZ2LRokW45557AADNzc0oLCzEz3/+cyxYsAD79u3D2LFj8dZbb2HcuHEAgJ07d2LGjBn45JNPUFhYGPs766SysrKEGAcREVFvJoRAvUeoxTit2wWpxTnNMpqibESZopPCWgQp6ylDinP8j7xTGCjblEgZp9NrPBsaGiDLsvqI/NChQ3A4HJgyZYp6jslkwoQJE7Br1y4sWLAAu3fvRkpKCsaOHaueM27cOJjNZuzatSthfhlERETUvnqPHN4uKCRchhbnNEYZKM06qVWYbF2co1R6pzJQ9hmdDp73338/Ro4ciTFjlP2XHA4HAMBms4WdZ7PZcPz4cQBAeXk5rFYrJClYzSVJErKyslBeXt7uzyorK+vs8Lok3j+PiIgoETT5gAq3hEr/V4VLQoVbQpVHeV3pllDpkdDki64qO0kjYDMIZBmCf7b12txeCvEBaABEA3ACyhd1TTwzTkcTip0Kng8++CA+/vhjvPXWW9BqtV0e2MnEcyY0kaahiYiIYqHRI4f1mwwU5IQW5ziafaj3RDdDadIGZyhzWxfnmILV3ql6KWyyiXpWImWcqIPnAw88gM2bN2PLli0YOHCgetxutwMAKioqkJ+frx6vqKhAdnY2ACA7OxtVVVUQQqh/EYUQqKysVM8hIiKi6DR65GC/ySYfjvsfdwfbBynfRxsok7QIaWSurJfMVQtzgusp0xgoqYuiCp733Xcf/vSnP2HLli0YOnRo2HsFBQWw2+3Ytm0bRo0aBQBoaWnBzp07sXz5cgDAmDFj0NDQgN27d6vrPHfv3o3GxsawdZ9ERESnsyavrPabVGYlI9dSnmjyoa4TgTLYyDx8L+/A+skckxbpBgZKio+TBs977rkHr732Gl5++WVYLBZ1TafZbEZKSgokScLixYuxZs0aFBYWYsiQIVi9ejXMZjPmzJkDACgqKsIll1yCu+66C2vXrgUA3HXXXbjssssSZuqXiIiouzR7Rcjj7WBxznF/Y/PA6zp3dIHSqEVYMU7ovt65yRo1bDJQUqI5aTul9hq833fffXjggQcABBvIP//882EN5EObzAcayL/55psAgBkzZiRUA/lEWv9ARES9Q4tXhPWbDO6ao1R3B17XRhkoDRq02S4ox7+W0u5/HG5hoKROSKSM0+k+nn1VIv1DISKintXiDe6UE/qIO7B+MrCW0hlloNSrgTKk92Sr4pwckwYZRg0DJcVcImUc7tVORESnDZdP+HtNBtdPhr32P/KucUUfKNV+kyFrKdXiHP/MZSYDJREABk8iIuoDXD5lhjJQmNM6UAZ2zal2yVFdTydBXT8ZFihDZyj9gVLDQEkUNQZPIiJKWO5AoGyWQwpzwnfLcTTJqIoyUGolqLOQgfWSOaaQ1/7iHAZKou7B4ElERHHnkYW6X/eJpvaLcypbog+UdlNoMU7kvt65yVpYkxgoiXoSgycREcWMRxYoDw2T/sfdjkBxjr8wp7JFRjSrKLUSkG3SRITJwF7eaqA0aqDVMFASJToGTyIiOilvaKD0r5cMNDlXZiiV96INlBoJsCdp2uw9GbqWMiuJgZKoL2HwJCI6jXllgYqW8PWSx/1h0hEIlM0+VDR3LlDaA4EybP1ksNG5jYGS6LTE4ElE1Af5WgfK0OKckEfhFS0y5CgSpQRlDWWgdVBOoJl5q0bntiQNdAyURNQOBk8iol7EJwtUtvhDZKv2QaGBsrwTgTK7daA0BWcoA2sps00MlETUdQyeREQJQBYhgTKs96S/OMf/urxZhi/K/eZsgTWUodXe/sfdge0Xs00a6BkoiShOGDyJiLpRIFC2bhfUujjH0YlAmdVWoDSFVnsr6yoZKIko0TB4EhGdAlkIVLXIrRqZK4+71df+mUpvlIHSatSErZfMNSlbLwYCZY5Jg2yTFgYtAyUR9U4MnkREIWQhUO2S1cfdgcKcwOsTId9HGygzA4HSFGwd1HotpZ2BkohOAwyeRHRaEP5AGVgvGVhL6QgEyubgDKUnus1ykGGU/FXd/gpvf7i0twqXRgZKIiIADJ5E1MsJIVDTRqAMrqVUinPKm31wRxkoLQYpopF567WUdpMWSToGSiKizmDwJKKEJISA0y3U9ZLH21g/ebxZeR1toExvJ1AGCnICgdLEQElE1C0YPIkoroQQqPUHytDek8EK72C1t8sX3TXTDZK6fjJ8LaVSnJPLQElElBAYPIkoJgKBMrRdUJvFOZ0IlGntBspAOyElWCbrNN17c0REFBMMnkTUISEE6jxCXS95IqzCO3RdpQ8t0QZKvaTs5R3yuNvu39c7J+RRuFnPQElE1JcweBKdpgKB0uEvvjnRHLKWslWj8+YoO5un6qWI9ZNhxTn+GcoUBkoiotMSgydRHyOEQL1H+GcildlJR5MPx5tDtmL0z1w2RdmI0qyTwtZLBgKkWpzDQElERFFg8CTqReo9cnCGMqT3ZOvinMYoA2WyTkKuv3l5sGVQ+FpKe7IWqQyUREQUA1EFzx07duDpp5/G559/juPHj2P9+vW4/vrr1fcbGhrw6KOP4o033kB1dTXy8vKwYMEC3Hbbbeo5LpcLDz/8MP74xz+ipaUFkyZNwlNPPYX+/fvH/q6IepkGjwyHvz1QcPtF5XG3+rrJh4ZOBMqwfbyTNf5ZyZBAadIiVS9BkljpTURE8RFV8GxsbMTw4cNx7bXX4sc//nHE+w899BDee+89PPvssygoKMBHH32EO++8E1arFcXFxQCABx54AFu3bsWmTZuQkZGBhx56CHPnzsX7778PrVYb27siShCNHjlsvWTrCu/A63pPdIHSpJWCe3mb/IHSX5iTYwrOUKYxUBIRUQKKKnhOmzYN06ZNAwDceuutEe/v3r0bc+fOxaRJkwAABQUFeOmll/Dpp5+iuLgYtbW1eOmll7B+/XpcfPHFAIDnnnsOI0eOxHvvvYepU6fG6n6I4qLJK4etlzzeLPubmgcbnTuafKiLMlAmaRHSyDwYKEN3yslhoCQiol4uJms8x40bh7feegvz5s1DXl4edu3ahf/85z+44447AACfffYZPB4PpkyZon4mLy8PRUVF2LVrF4MnJYwmr6w+4j7RzlrKE80+1LmjC5RGLfwzkW1tvxicuUw3MFASEVHfF5Pg+cQTT2DJkiU466yzoNMpl1y1ahWmT58OACgvL4dWq4XVag37nM1mQ3l5ebvXLSsri8Xwohbvn0fx0+IDKj0SKl0SKj0SKlwSKt3KV4U7+LreF134M0gCWQbly2Zo57VRIFULtJknBYBG5asCyhcREVF3iWfGKSwsbPe9mATP5557Drt378Yrr7yC/Px8fPTRR/jZz36GAQMG4JJLLjnl63Y08FgrKyuL68+j2GjxBnfKcfj38W5rLWVtlDOUBg38jcyVGUm7//F36OPu3GQtLJyhJCKiXiKRMk6Xg2dzczOWL1+O559/HjNmzAAAnHXWWfjiiy/w9NNP45JLLkF2djZ8Ph+qqqqQlZWlfraiogLjx4/v6hCoD3L5InfKaStQOqMMlHoN/C2DQiq9Q4tz/O9lGDUMlERERN2ky8HT4/HA4/FEVKZrtVrIsgwAOPfcc6HX67Ft2zZcffXVAIBjx45h3759GDt2bFeHQL2Iyyf8vSaV9ZMO/5pJ9bW/0XmNq3OBMtB7Uq3wbiNQahgoiYiIelRUwbOhoQEHDhwAAMiyjKNHj2Lv3r3IyMhAfn4+LrjgAjz66KMwm83Iz8/Hjh078Oqrr+LRRx8FAKSnp+PGG2/EsmXLYLPZ1HZKI0aMwOTJk7vt5ih+3GqglEMamUcW51S75Kiup5OgFuMEHm+3VZyTyUBJRETUa0hOp/OkU0vbt2/HzJkzI45fe+212LBhAxwOBx599FFs27YNNTU1yM/Px7x583D77berjy0DDeRLS0vDGsjn5eXF/q5OQSKtf0gkHln4ZyWD6ydDG50H9vKuijJQaiWoj7hD10/aQ8JljkkDaxIDJRERUSwkUsaJKnieDhLpH0o8BAJlaEFO6FrKwOvKlugDZWB2Mrj9Ynij85xkLbIYKImIiOIqkTIO92rvYzyyQHlzYD/vVv0nWwXKaP6LQxMRKEPDZHAtpdWogVbDQElERETtY/DsJbyBQOnfu7uttZSOZh8qmjsRKJNCK7yDayntIYU6WUkMlERERBQbDJ49zCsLVLTIYesljzf7QrZfVAJleScCZXZ7gTKkMMfGQElERERxxuDZTXyhgTK02tu/r/cJ/+vyFhlyFIlSApBtCsxEavwtg5RG5/bk8ECpY6AkIiKiBMTg2Uk+WaCyRY5oZO5oDmkd1MlAaUsKzEpq/D0pQ4pz/N9nmxgoiYiIqHdj8PSTBVAesn4yuJbSX5zjX0tZ3izDF2UfAFuSv01QoDjHHy6DhTlKoNQzUBIREdFpgMETwOvfNmHxRyb4xImozs9K0oQ3Mg9pFxRYV5lt0sKgZaAkIiIiCmDwBGAxaOATEqxGTdh6yUBhTmhxjp2BkoiIiOiUMHgCuLi/ETsmNGFEUWI0VyUiIiLqizQ9PYBEoNdIMPA3QURERNStGLeIiIiIKC4YPImIiIgoLhg8iYiIiCguGDyJiIiIKC4YPImIiIgoLhg8iYiIiCguGDyJiIiIKC4YPImIiIgoLhg8iYiIiCguGDyJiIiIKC4YPImIiIgoLhg8iYiIiCguogqeO3bsQHFxMYYNGwaLxYKSkpKIc/bv348bbrgBAwYMQG5uLiZNmoR9+/ap77tcLixduhSDBg1Cv379UFxcjGPHjsXuToiIiIgooUUVPBsbGzF8+HCsXLkSJpMp4v2DBw/isssuQ0FBAf76179i586dePjhh2E2m9VzHnjgAWzZsgWbNm3C1q1bUV9fj7lz58Ln88XuboiIiIgoYUlOp1N05gP9+/fHqlWrcP3116vHFi5cCEmS8Nvf/rbNz9TW1mLIkCFYv349rrnmGgDA0aNHMXLkSJSWlmLq1KlduIXYKCsrQ2FhYU8Pg4iIiCimEinjdHmNpyzLeOutt1BUVISrrroKgwcPxsUXX4zNmzer53z22WfweDyYMmWKeiwvLw9FRUXYtWtXV4dARERERL2ArqsXqKioQENDA9asWYMHH3wQy5YtwwcffIBFixbBbDbjsssuQ3l5ObRaLaxWa9hnbTYbysvL2712WVlZV4fXKfH+eURERETxEM+M09HsapeDpyzLAIDvf//7uP322wEAZ599Nj777DP89re/xWWXXXbK147ntHAiTUMTERERxUoiZZwuP2q3Wq3Q6XQoKioKOz506FAcPXoUAJCdnQ2fz4eqqqqwcyoqKpCdnd3VIRARERFRL9Dl4GkwGDBq1KiIKdz9+/cjPz8fAHDuuedCr9dj27Zt6vvHjh3Dvn37MHbs2K4OgYiIiIh6gagetTc0NODAgQMAlEfrR48exd69e5GRkYH8/HzccccdWLBgASZMmIBJkyZh+/bt2Lx5s9rvMz09HTfeeCOWLVsGm82GjIwMPPTQQxgxYgQmT57cbTdHRERERIkjqnZK27dvx8yZMyOOX3vttdiwYQMAoKSkBGvWrMGxY8cwaNAg3H333ZgzZ456rsvlwsMPP4zS0lK0tLRg0qRJeOqpp5CXlxfD2zl1ibT+gYiIiChWEinjdLqPZ1+VSP9QiIiIiGIlkTIO92onIiIiorhg8CQiIiKiuGDwJCIiIqK4YPAkIiIiorhg8CQiIiKiuGDwJCIiIqK4YPAkIiIiorhg8CQiIiKiuGDwJCIiIqK4YPAkIiIiorhg8CQiIiKiuGDwJCIiIqK4YPAkIiIiorhg8CQiIiKiuGDwJCIiIqK4YPAkIiIiorjQ9fQAiIiIKLa8Xi8aGxt7ehiUIJKSklBbWxvTa5rNZuh0nY+RDJ5ERER9iNfrRX19PSwWCyRJ6unhUAIwGo1ISkqK2fWEEHA6nUhNTe10+OSjdiIioj6ksbGRoZO6lSRJsFgspzSrzuBJRETUxzB0Unc71b9jDJ5EREREFBcMnkREREQUF1EFzx07dqC4uBjDhg2DxWJBSUlJu+cuWbIEFosFTz/9dNhxl8uFpUuXYtCgQejXrx+Ki4tx7Nixro2eiIiIiHqNqIJnY2Mjhg8fjpUrV8JkMrV73l/+8hd8+umnyM3NjXjvgQcewJYtW7Bp0yZs3boV9fX1mDt3Lnw+36mPnoiIiPqExYsXw2KxRHzt3bsXixcvxty5c3t6iBQDUdXAT5s2DdOmTQMA3HrrrW2ec/jwYdx///3485//jDlz5oS9V1tbi5deegnr16/HxRdfDAB47rnnMHLkSLz33nuYOnVqV+6BiIiI+oDJkyfjueeeCztmtVp7aDTUHWLSx9Pr9WLhwoW45557UFRUFPH+Z599Bo/HgylTpqjH8vLyUFRUhF27djF4EhEREYxGI+x2e08Pg7pRTILnihUrkJmZiZtvvrnN98vLy6HVaiP+q8Vms6G8vLzd65aVlcVieFGL988jIiKKtaSkJBiNxp4eRqf5fD74fD60tLR06j2KTnf87urq6trMcYWFhe1+psvBc/v27fj973+P7du3d/VSEToaeKyVlZXF9ecRERF1h9ra2ohdaiz/X3yLeZ0L+nf6M1qtFtu2bcPgwYPVY+PHj0dpaSm0Wi20Wm1Md985nbS0tHTL7y4tLQ35+fmd+kyXg+eHH36IEydOhD1i9/l8WLZsGTZs2ID//ve/yM7Ohs/nQ1VVFbKystTzKioqMH78+K4OgYiIiPqACRMmYN26der3DJp9T5eD58KFCzFr1qywY1dddRWuuuoqzJ8/HwBw7rnnQq/XY9u2bbj66qsBAMeOHcO+ffswduzYrg6BiIiIOnAqM5A9ITk5GYMGDerpYVA3iip4NjQ04MCBAwAAWZZx9OhR7N27FxkZGcjPz4fNZgu/qE4Hu92uPrpOT0/HjTfeiGXLlsFmsyEjIwMPPfQQRowYgcmTJ8f2joiIiIgoIUUVPPfs2YOZM2eq369YsQIrVqzAtddeiw0bNkT1g1asWAGtVosFCxagpaUFkyZNwrPPPgutVntqIyciIqLTRl1dHfbu3Rt2LD09HQUFBT00IjoVUQXPCy+8EE6nM+qLfvHFFxHHjEYjnnzySTz55JNRX4eIiIgIAHbu3IlJkyaFHbvyyivx4osv9tCI6FRITqdT9PQgEgGr2omIqC+ora1Fenp6Tw+DEkh3VbWfyt+1qLbMJCIiIiLqKgZPIiIiIooLBk8iIiIiigsGTyIiIiKKCwZPIiIiIooLBk8iIiIiigsGTyIiIiKKCwZPIiIiIooLBk8iIiIiigsGTyIiIiKKCwZPIiIi6nGLFy+GxWKBxWJBVlYWzjnnHDz88MNobGxUz/nDH/6ASy+9FP3790e/fv0wdepUvPbaa21ez+12Y/Dgwejfvz9qa2vjdRt0EgyeRERElBAmT56Mffv24bPPPsPDDz+MTZs24Wc/+xkAYNmyZbjtttvw/e9/H++99x4++OADzJw5Ez/5yU/wyCOPRFzrjTfeQEFBAc4//3yUlpbG+U6oPbqeHgARERERABiNRtjtdgDA1Vdfje3bt+ONN97A9ddfj3Xr1uHxxx/Hrbfeqp6/ZMkSGAwGPPjgg5g5cyZGjx6tvvfSSy9h7ty5SE9Px7PPPoubb7457vdDkTjjSURERAkpKSkJHo8Hr7/+OlJSUrBw4cKIc26++WaYzeawWc3Dhw/jww8/xFVXXYWZM2eirKwMX3zxRTyHTu3gjCcREVEflzJ/clx/XsML73X5Gp9++ilKS0tx0UUX4dtvv0VBQQEMBkPEeUajEQMHDsT+/fvVYyUlJbj44ouRlZUFALjiiivw4osv4sknn+zyuKhrOONJRERECeGdd95B//79Ybfbcemll2LChAlYtWpVp64hyzJKSkowd+5c9VhxcTFef/11tLS0xHrI1Emc8SQiIurjYjEDGQ8TJkzAunXroNPpkJubC71eDwAYPHgwdu7cCZfLBaPRGPYZl8uFgwcP4sILLwQAvPvuuzh69CgWLVqERYsWqef5fD789a9/xTXXXBO/G6IInPEkIiKihJCcnIxBgwZhwIABaugEgDlz5qCxsRGbNm2K+MzGjRvR2NiIq6++GoBSVDRz5kxs37497Gv+/Pl46aWX4nYv1DbOeBIREVFCO//883H77bfjkUcegdvtxhVXXAFJkvC3v/0Nv/jFL7BkyRKMHj0alZWVePPNN/H8889j+PDhYde48cYbcemll+K7777DGWec0UN3QpzxJCIiooT32GOP4Ve/+hX+9re/4cILL8TEiRPx17/+Fb/61a/UPp6vvvoqjEYjpk6dGvH50aNHo3///pz17GGS0+kUPT2IRFBWVobCwsKeHgYREVGX1NbWIj09vaeHQQmkpaUFSUlJMb/uqfxd44wnEREREcVFVMFzx44dKC4uxrBhw2CxWFBSUqK+5/F4sGzZMkyYMAH9+vVDUVERFi5ciCNHjoRdw+VyYenSpRg0aBD69euH4uJiHDt2LLZ3Q0REREQJK6rg2djYiOHDh2PlypUwmUxh7zU1NeHzzz/HPffcg/fffx+///3vcezYMcyZMwder1c974EHHsCWLVuwadMmbN26FfX19Zg7dy58Pl9s74iIiIiIElKn13j2798fq1atwvXXX9/uOV9//TXGjRuHHTt2YMSIEaitrcWQIUOwfv16tX/W0aNHMXLkSJSWlra5CDjeuMaTiIj6Aq7xpNb6/BrP+vp6AIDFYgEAfPbZZ/B4PJgyZYp6Tl5eHoqKirBr167uGAIRERERJZiY9/F0u914+OGHMX36dPTv3x8AUF5eDq1WC6vVGnauzWZDeXl5u9cqKyuL9fA6FO+fR0REFGtJSUkRu/sQdcd2oXV1dW3muI6eIMc0eHq9Xtxyyy2ora3FK6+80uXrxfPRNx+1ExFRX1BbW9stj1Wp9+quR+1paWnIz8/v1Gdi9qjd6/Xi5ptvxpdffom//OUvyMzMVN/Lzs6Gz+dDVVVV2GcqKiqQnZ0dqyEQERERUQKLSfD0eDxYsGABvvzyS2zZsgV2uz3s/XPPPRd6vR7btm1Tjx07dgz79u3D2LFjYzEEIiIiIkpwUQXPhoYG7N27F3v37oUsyzh69Cj27t2LI0eOwOv1Yv78+fjXv/6FjRs3QpIkOBwOOBwONDc3AwDS09Nx4403YtmyZXjvvffw+eef40c/+hFGjBiByZMnd+f9EREREfUoWZaxZMkSnHHGGbBYLNi+fXtPD6lD27dvh8ViiXhSHQtRBc89e/Zg0qRJmDRpEpqbm7FixQpMmjQJjz/+OI4dO4atW7fi+PHjmDx5MoqKitSvzZs3q9dYsWIFLr/8cixYsADTp0+H2WzGq6++Cq1WG/ObIiIiot6nvLwc9913H84991xkZ2dj2LBhmDNnDv7+97/HdRyLFy/G3LlzY3a9v//97ygpKcGrr74as6e9K1aswPjx42MwuviKqrjowgsvhNPpbPf9jt4LMBqNePLJJ/Hkk09GOzYiIiI6TRw6dAjTp09HSkoKli1bhrPOOguyLOP999/H3Xffjf/85z89PcRO83q90Gq1OHDgAOx2O5cXgnu1ExERUQK45557AADbtm3D7NmzUVhYiKKiItxyyy348MMPAQBHjhzB9ddfj7y8POTl5eGGG24I2367rVnAkpIStb1j6Dl//OMfce655yIvLw/XXXed+lh5xYoVeOWVV/D222/DYrGEPRr/3//+h5tuugkFBQUoKCjANddcg2+//Tbi2iUlJeqs7fz58/Hggw/i6NGjsFgsGDlyJADgnXfewYwZM1BQUICBAwfiBz/4Afbt2xc29uPHj2PRokU444wzkJubi4kTJ+KDDz5ASUkJnnjiCXz11VfqGAPbmVssFvzlL38Ju873vvc9PP300+r3zzzzjLrV+bBhw/CTn/wkqknEWIh5H08iIiKizqipqcE777yDhx9+GCkpKRHvWywWyLKM6667DiaTCVu2bAEALF26FNdffz22bdsGSZKi/nmHDx/G5s2b8fLLL6OpqQk33XQTfv7zn2Pt2rX4yU9+gm+++QY1NTV47rnnAAAZGRloamrCzJkzMWbMGLzxxhswGAx4+umnMWvWLOzevRvJyckAlJnb0tJSPP/88zAYDOjfvz/OPPNMlJSU4N1331WXGDY2NuLHP/4xzjrrLDQ3N2P16tUoLi7Grl27YDAY0NjYiMsvvxw2mw0lJSXIzc3FF198AQD4wQ9+gK+++gpvv/02/va3vwFQWhtFS6PRYMWKFRg4cCCOHDmCe++9F/feey9+85vfRH2NU8XgSURE1Mc1vju9U+drUofAdP4zEZ83T3lLPdb8ye2Q6/e3+fnQ86Jx4MABCCEwdOjQds95//338eWXX2LPnj0oKCgAAGzcuBHnnXce3n///U4VK3u9Xvz6179Wt3v84Q9/qM4YpqSkqE34Q7v0vPbaaxBC4Ne//rUacteuXYshQ4bg7bffxuzZswEoG+k899xzYe0iU1NTodFowq43a9assDGtX78e+fn5+PTTTzF+/HiUlpaivLwc//jHP9QNeM444wz1fLPZDJ1OF9FJKBq33nqr+rqgoADLly/Hddddh2effRYaTfc+DGfwJCIioh4lhDjpOfv27UNubq4aOgFg4MCByM3Nxddff92p4Jmfnx+2x3hOTg4qKys7/Mznn3+OQ4cOIS8vL+x4U1MTvvvuO/X7fv36RdWj/LvvvsMvfvEL/Otf/0JVVRVkWVY7BwHA3r17MWLEiIhdH2Ph/fffxy9/+Ut88803qKurg8/ng9vthsPhQG5ubsx/XigGTyIioj6uszOQ0Xw+dEa0qwYPHgxJkvDNN9+c0ucDM5AajSYixHq93ojz9Xp9xOdlWe7wZ8iyjJEjR+J3v/tdxHsZGRnqa7PZHNWY586di379+mHt2rXIzc2FTqfD2LFj4Xa7o/p8eyRJ6vB3cPjwYcydOxfz5s3Dgw8+iMzMTHz++ee4+eabu/yzo8HiIiIiIupRGRkZmDp1Kn7729+ioaEh4n2n04mioiIcP34chw4dUo8fPHgQx48fx5lnngkAyMrKQnl5eVjwCqyL7AyDwQCfzxd27JxzzsGBAweQmZmJQYMGhX2FBs9oVFdX45tvvsHdd9+ttqKsr68PC4hnn302vvzyy3Z7abY1RkD5HZw4cUL9vry8HA6HQ/1+z549cLvdWLFiBcaMGYMhQ4bg+PHjnRp/VzB4EhERUY9bvXo1hBC4+OKL8ec//xllZWX45ptvsGnTJkycOBGTJ0/GiBEjcMstt2DPnj3Ys2cPFi1ahHPOOQeTJk0CAEycOBE1NTV46qmn8N133+HFF1+MqPCOxoABA/DVV1+hrKwMVVVV8Hg8uPrqq5GdnY3rrrsOH374IQ4ePIgdO3bgoYceCqtsj4bFYoHVasWLL76IAwcO4MMPP8Tdd98NnS74IHrOnDnIysrCddddh48++ggHDx7E1q1b8cEHH6hjPHLkCD777DNUVVXB5XIBACZNmoSNGzdiz549+Pzzz3HrrbeG7dM+ePBgyLKMX//61zh48CBKS0vx7LPPdvp3dKoYPImIiKjHDRw4UC0SWrZsGS644AJceeWVePPNN7F27VpIkoTf//73sFqtmDlzJmbOnIns7GyUlJSoj9qLioqwZs0aPP/887jgggvw3nvv4e677+70WObPn4+hQ4fi4osvxuDBg/Hxxx8jOTkZW7duxcCBA/HDH/4QY8aMweLFi+F0OmGxWDp1fY1Gg9/97nf48ssvMX78eCxduhQPPfQQjEajeo7ZbMYbb7yBfv36obi4GOPHj8eKFSvUe73yyitx6aWXYtasWRg8eDBKS0sBAI899hgGDhyIK664AvPnz8eNN94Ytk70rLPOwsqVK/HrX/8a48aNw4svvoif//znnf4dnSrJ6XSefEXvaaCsrAyFhYU9PQwiIqIuqa2tDSucIWppaQmb9YyVU/m7xhlPIiIiIooLBk8iIiIiigsGTyIiIiKKCwZPIiIiIooLBk8iIiIiigsGTyIioj4mmi0oibriVP+OMXgSERH1IWazGU6nk+GTuo0QAk6nM+rtQUNxr3YiIqI+RKfTITU1FXV1dT09FEoQdXV1SEtLi+k1U1NTw3ZaihaDJxERUR+j0+nYRJ5U5eXlyM/P7+lhAOCjdiIiIiKKEwZPIiIiIooLBk8iIiIiigsGTyIiIiKKi6iC544dO1BcXIxhw4bBYrGgpKQk7H0hBFasWIEzzzwTOTk5uPzyy/HVV1+FneN0OnHLLbdgwIABGDBgAG655RY4nc6Y3QgRERERJbaogmdjYyOGDx+OlStXwmQyRby/bt06rF+/Hk888QTeffdd2Gw2zJ49G/X19eo5CxcuxN69e1FaWorS0lLs3bsXP/rRj2J3J0RERESU0KJqpzRt2jRMmzYNAHDrrbeGvSeEwIYNG7BkyRLMmjULALBhwwYUFhaitLQUCxYswL59+/DOO+/grbfewpgxYwAAv/zlLzFjxgyUlZWhsLAwlvdERERERAmoy2s8Dx06BIfDgSlTpqjHTCYTJkyYgF27dgEAdu/ejZSUFIwdO1Y9Z9y4cTCbzeo5RERERNS3dbmBvMPhAADYbLaw4zabDcePHwegNC61Wq2QJEl9X5IkZGVloby8vN1rl5WVdXV4nRLvn0dEREQUD/HMOB09yU7onYvi+Qiej/yJiIioL0qkjNPlR+12ux0AUFFREXa8oqIC2dnZAIDs7GxUVVVBCKG+L4RAZWWleg4RERER9W1dDp4FBQWw2+3Ytm2beqylpQU7d+5U13SOGTMGDQ0N2L17t3rO7t270djYGLbuk4iIiIj6rqgetTc0NODAgQMAAFmWcfToUezduxcZGRnIz8/H4sWLsWbNGhQWFmLIkCFYvXo1zGYz5syZAwAoKirCJZdcgrvuugtr164FANx111247LLLEmbql4iIiIi6l+R0OsXJTtq+fTtmzpwZcfzaa6/Fhg0bIITAypUr8fzzz8PpdGL06NFYvXo1hg8frp7rdDpx77334s033wQAzJgxA6tWrYLFYond3XRBIq1/ICIiIoqVRMo4UQXP00Ei/UMhIiIiipVEyjjcq52IiIiI4oLBk4iIiIjigsGTiIiIiOKCwZOIiIiI4oLBk4iIiIjigsGTiIiIiOKCwZOIiIiI4oLBk4iIiIjigsGTiIiIiOKCwZOIiIiI4oLBk4iIiIjigsGTiIiIiOKCwZOIiIiI4kLX0wMgIiIioi7weSHVVEKqdEBT5YBU5YCmqhxS1Qloqsqhuf6nPT1CFYMnERERUSJraYKm0gEpJEwq4dIBqdKhhE4ht/txQ21VHAfbMQZPIiIiop4iy5DqavyhMnTG0hGcwWysP/llLFYIqx2y1Q6RZYfIzIaclQNhzYar0R2HG4kOgycRERFRd/G4IVVXqIEy/HG4A1J1OSSPp8NLCL0eItMO2ZoNkZUDOTNbCZeB15k2QG9o//NlZbG+q1PG4ElERER0KoQAmhrCZyerlEfimqoTyixmbTUkITq+jDnNHyrtkK3KLKWcZYfI9M9eploATd+oB2fwJCIiImqL7IPkrPKHyvD1lVKVQ1l32dLU4SWEpFFCpTVbeQxutauhUs6yQ1izgaTkON1Qz2PwJCIiotOTqyWkAtwROXNZUwHJ5+vwEsKQ5J+pDA2V/vWVWXYIixXQMm4F8DdBREREfY8QQH1tcD1lpSOyeKe+9qSXkdMyIKx2/+PvHH8Bj3+tpTUbMKcBkhSHG+obGDyJiIio9/F6lRnJiFAZsr7S7erwEkKr889OKsFSWHNC1loqM5cwGON0Q6eHmARPn8+HFStW4PXXX4fD4YDdbsc111yD+++/Hzqd8iOEEFi5ciVeeOEFOJ1OjB49GqtXr8awYcNiMQQiIiLqS5obg30qQ8KkptIBqdoBqaaqw96VACCSzcFiHf+j8NDH4iI9s88U7fQWMQmea9euxcaNG7FhwwYMHz4cX375JRYvXgyDwYB7770XALBu3TqsX78e69evR2FhIVatWoXZs2fjk08+QWpqaiyGQURERL1BoHdlZRvFOoGZy6aGDi8hJAlyRlawd6XVHjFzieSUON0QRSsmwXP37t2YPn06ZsyYAQAoKCjAjBkz8OmnnwJQZjs3bNiAJUuWYNasWQCADRs2oLCwEKWlpViwYEEshkFERESJwO0K610ZCJTB3pUVkLwn611pCAmVwfWV6uuMLECnj9MNJR7ha4FwVQOyC5qUM5Rjsgeur9YAnjoYz3kMUgKuPY1J8Bw3bhw2bdqEb775BkOHDsXXX3+N7du346677gIAHDp0CA6HA1OmTFE/YzKZMGHCBOzatYvBk4iIqLcQAmisb6dox99yqLbm5JdJSQvvWRmyvlJY/b0rEzA4dbdAoBTuaghXlfLlrobsqgo7Dp/SxkkyFyB57HPKhyUdfBUfAbJLeV9n7sE7aVtMgueSJUvQ0NCAsWPHQqvVwuv14p577sHChQsBAA6HAwBgs9nCPmez2XD8+PF2r1sW50778f55RERECUf2QV/vhKG2GobaKhjqlD/1Id9rT1a0I2ngTsuAO90KT1om3OmZcKdb1T89aZmQ2yva8QJwVCpffYgkuyEJF2Rtqv/7JqTU/QMSZNRZZqvn5Ry9FxrRfNLrCejg06bB6zPjWEh+Scq4AUKThP8dOARIwRnheGacwsLCdt+LSfDcvHkzXn31VWzcuBFnnnkmvvjiC9x///0YMGAA5s2bd8rX7WjgsVZWVhbXn0dERNQjXM3+Ih1/sU7rx+E1FZDkkxTtJJmCBToh+4PL/vWVIsMKaLSQABj8X32V8LmCs5PuamVWso1ZSngboM0chaRzH1c+52lA0/b7AG0S7Offq16vuaYfhLceksEKyWiFZMyEZMhUXhsyoTEqx6FLUR+lW8NGFJllEinjxCR4/t///R9uv/12XHXVVQCAESNG4MiRI/jlL3+JefPmwW63AwAqKiqQn5+vfq6iogLZ2dmxGAIREREJAane6a8Ej2yIrqlyQGqoO+ll5PTMsPWVgZ6VSgFPjlK008cfgwshQ5KUinfhdsLreA/QGKDv/33lmM+Nph3XAd6Oi6BUkg5hO2fqzNAPWgDJmBH2s5LOfyYh12bGSkyCZ1NTE7RabdgxrVYL2f9fTAUFBbDb7di2bRtGjRoFAGhpacHOnTuxfPnyWAyBiIio7/N6wop2wkOlvzrc4+7wEkKnh8i0hRfrhK61zLD16d6VQnaHrJUMzE4qM5Oyq1p9rbONh3HY3cpn3E64y56FlJynBk9JawCEDEg6SIaMNmYnle81xkxIBiugT1XDJQBIkgTDwLkR4+vLoROIUfCcPn061q5di4KCApx55pnYu3cv1q9fj+LiYgDKL3Hx4sVYs2YNCgsLMWTIEKxevRpmsxlz5syJxRCIiIh6v6YGtU+lpjKkWKeqXJnFrK2CFDZtFkmYU9VH3oFZymCrITtEWkaf7l0p3E74nP+BpEuGNlOZ7JJdVWj57CHlkbfn5DO+AJSKcT8pyQZd/yugMeWEnZM84QVAZw4LlNSxmATPVatW4Re/+AV++tOforKyEna7HfPnz1d7eALAnXfeiebmZixdulRtIL9582b28CQiotODLENyVkGqDq6vjHgc3tzY4SWEpIGc2ap3pX99ZaBJOkyJV8ncFUL2QLhrQtZQhld3y64q6HKmwFBwDQDAV/8tXP95DJqMc2HyB09JmwzReFC5oKRRZiUDM5Ohs5Qh6yihT1PHIOnMMBbdHjE2Sc8M01mS0+ns+D+dThOJtPCWiIh6IbfLHyrD11eG9a70eTu8hDAYW4XKwPpK/1rLDBug6zu7XQtPA+Smo5C0SdCkDAQAyI1H4C57DsJdBdlVDXhOvp+6Lnea+lhcbvof3Pt/A01qIQxnXK+e46v/FhpjJqBPgyRp27tUn5RIGafv/O0lIiLqLkIAjXVKqKx0QFMdvr5SqiqHpu7kvSvlVEtIsU7k+kqkpPf6oh0he5UZyjbWUAp3NXS506DLvhAA4K34CO6v10CXMxXG4UvVa/iq/xVyRY1/DWWmf3YystpbkxQsVNYk90PS2Y9EjEubOri7bpk6gcGTiIjI54VUU9lGsU7I+kp3S4eXEFotRGZ2eJgMXV+ZmQ0Yk+J0Q7EnZB+EpwaSpINksAAAfPUH4D36FzVkyq4q/wxl+w9TNamFgD94akw50KQWQgoJjlKSHcazHw0GS4PltJuh7MsYPImIqO9raYos1gl9HF5TCUmcrHdlcrBARw2TIfuDW5Telb2NEiidYbvkBGYqdf2mQ5t+JgDAc+g1eL57EfqCa2AYfJPyYU8tvMffbnVFKVjlbYhcQ6kxF6hnajPOhun8p8M/rTVAlzW2O2+ZehCDJxER9W6yDKmuJrxYp/VWjo31J7+MxRperJMZ3B9ctmYD5t5VSCKEDxA+SBqlfbuv/lv4Kj5q1ey8CsJdC6Dt0K1JK1SDp5SUBcmQAUjB6KBJGQhD0U/Ci3P0Fki9MIBTfDB4EhFRYvO4g70rw/YFDxTtlEPyeDq8hNDrldnJ1sU6WTmQM7MhMm2AvnfsryOED8JdG1w36e89qcu5RG33496/CZ7Df4Rh6I+hz7sSACA3fAfPwZI2ruifoTSErqFUgqTWcrZ6lj53GvS508I/aciAvv/l3Xav1PcweBIRUc8RQuldWdVGsU6Vf0tHZ9XJL2NOUx95hzVDz/TPXqZaelXvSrnhIHy1X4XMSoaETE+N0ri8FU1qYbDPpDYJgAzhCe6qo00rhH7gdZFthAwZkDSMAxQf/JtGRETdR/YpvSsrWxXrhD4Ob2nq8BJC0kBk2too1gmur0RScpxuqPOEkAFPnX/fbuURty77Qkg6pd+mq+w38JV/AMPQ26CzjQcAeCs/hufA8+1fVJ+u7ogTCJCaJHvw7QFXQV8wNyxQaswFMAya1y33SBQtBk8iIjp1rpaw7RoDjdHVmcuaCkg+X4eXEIYkiCx7RAW4nJWjzFZarIA2cf/vSm4+AbnpSERj8+CfNYAI/x1oUodAmzpE+cbXAuGqhHBVqu9r04ZC5E4LPv4OK9TJgKTRdzgmSdt7q+epb0vcf5OJiKhnCQHU17ZdrBP4s/7kzb3ltIzgnuAhxTrKWstswJyWUL0rgzOUytpJbeZodUtE9/7fwuf8EoaiO6BNHQQA8Bz+I7zHtnR8UX2af0cc/yylJrgXuv6M65TZSWOmekybOUrd7pGoL2HwJCI6XXm9yoxkRKgMrq+U3K4OLyG0Ov/spL9YJ7A/eGAGMzMbMBg7vEY8CU89hKvS/9i7OqSxeVVIs/MaQAR3GEqe+Crg71spNx6FXPc1RIsD8AdPTeogaDNHRWy7GCzUyVAry9uiMWZ16z0TJRIGTyKivqq5MaQSPKRYp9IBqeqEsvZSdLxrskg2RzRDD30sLtIze7xoRwgBeOsh3LXQmPPV4+4DL0BuPAxj0U/Uhueur34JX+VHJ7+oLkUNkEL2IDAfqx90A/QD54b1otT3mwF9vxkxvCOivovBk4ioNwr0rqxso1gnMHPZ1NDhJYQkQc7ICt8bvNXMJZJT4nRDbYxPCMDboK6XlNtocK7MVNYAwgNIOiRP3gLJ/9jeV7kbcsO3kAvmQusPnprk/pDNAyAZrOHFOaFbMRoyIGnbnqXVpibGftdEvRWDJxFRInK7gr0rQwJlsHdlBSTvyXpXGkJCZXB9pfo6IwvQdVyk0h2EEICvGZIuWf3ec/gPEK5KGAp/pG6P2PLvn0Ku/W90F9WZIRmsgK8J8FeL68+4AZA9wRZDAAxDboZhyM2xvSEiihqDJxFRvAkBNNa3U7TjbzlUW3Pyy6SmQ84MPPoOX18prP7elXEs2omcoWxd3R1sdi4ZMpE84QUAgCRJ8Bz+I+Cp9RfZWJXj+nRAmxyybjIDmrA1lCFrKduo4g60JiKixMHgSUQUaz6vsn5SDZUhxTqVDmiqHZBamju8hNAEelf6w2TIVo6BGUwYTXG6oZBxyW54HR8AviZ1RxwAaP70bsj1+wHZHd11fC0QQqiPxQ0F1wCQwopwjGc9zK0XifoYBk8ios5yNfuLdMJ7VqqPw2sqIMlt730dIJJMwQKdsFCpzFyKDCvQzaFLeeTdFNJ/ssrfQsg/Q+mfpZSScmA6b4X6OfdXqwFJA13/y9XH4pA9SujUmlqtl/S3EGo9S6kLD836AVdFjI+hk6jvYfAkIgolBKR6p78S3F+4U9mqd2VD3UkvI6dnhgXK1mstkZzS7Y/Bha8Fct0+CNkNnfV8/+0JtOy5D8JVAeGqBuSO2yX5P6S+lDQG6HKnA7pkQPYCWiUcGs9+BJLWpK7bJCJqC4MnEZ1evJ6wop3wUOmvDvd0/LhY6PTh7YVa7w+eYeu23pXC2xSxXjJ0LaUmdQiMhT9SznU70bLnPkjGLOgueBmAsp5SNB2FcFcrF9QYI3pPasJ2yckMa2wOAMZhSyLGpfGvyyQi6giDJxH1LU0NyiPv6uD6ytCZS6k2it6V5tTwYp2wVkN2iLSMmPeuFLJHaUoue6FJGagc8zbBte9XYVsxwtfx2lCI4CN+yZgJTfoISEnZYacYz14GSZusBEptsrrOkoiouzF4ElHvIctK0U51cH1lxP7gzY0dXkJIGsiZrXpXhj0OzwZM5pgNWfhawtZLCldwHaU2fTj0eTOVW6v7Bi3//ik0aWfC9L21yoc1Rvgc7wMICcoaQ0jvyeC6SU1gdjLJrp4qaQwwjX4qYkzatKKY3R8RUWcweBJR4nC7/KHSoTRGr/bPUob2rvR5O7yEMBjbaIgeXF8pMmyAruv/0yd8LYDshqRPU75318BzuNT/2Du4BSN8TR1cRFaDp2S0QkrKUVsJAUpxjXHEA5D0qWrBDnRmzlASUa/F4ElE8SEE0FAbLNapDl9fKVWVQ1N38t6VcqpFCZBZOcFinZD1lUhJ71LRjjJDWR22hlK4qqCxnA1d1hgAgLf8Q7j+8xi0tguQNPJnyudkr9KLsjWNvtV6yZBqb/OA4GmmHCRPeD7i4zr7pFO+FyKiRBOz4HnixAk88sgj+Mc//oGGhgYMHDgQTz31FCZOnAhAqaRcuXIlXnjhBTidTowePRqrV6/GsGHDYjUEIupJPi+kmso2inVC1le6Wzq8hNBqITKzw8Nk6MxlZjZgjGwUHg0hZEiSsi5TdlXCV/6h/7F3eKEOvG0/qtcJWQ2eksECSHqEPgKXDBnQD/qh/7F38BE4dCmcoSQi8otJ8HQ6nbjsssswbtw4vP7667BarTh06BBsNpt6zrp167B+/XqsX78ehYWFWLVqFWbPno1PPvkEqampsRgGEXWnlqbIYp2Q9ZVSTSUkcbLelcnBAh01TIYU7VgyO927UvjcrXbGUWYntamDAACe43+Hu+w30OVMhXHoYuUzLZVwlz3b9gUlXXgfSv9MpTZ9hHqKJn04kif/NSxQShodDAOLOzV2IqLTTUyC569+9Svk5OTgueeeU48NHDhQfS2EwIYNG7BkyRLMmjULALBhwwYUFhaitLQUCxYsiMUwiOhUyTKkuprwYp3AWsvA+srG+pNfxmJtp3elv2jH3Pn/yJRdVZBr/xu2blIOeQQOb0PEZwxDFqnBU9IYlG0cA+2DoDzW1vWfGdlCyGgFdKknnaEMzJwSEVHnxCR4vvHGG5g6dSoWLFiA7du3IycnB/PmzcOiRYsgSRIOHToEh8OBKVOmqJ8xmUyYMGECdu3axeBJ1N08biVIVrUq1lGLdsoheTwdXkLo9WGzk2qxTlYO5MxsiEwboDd0eA1A2XJRuGrUEKlJPxMaY5YyzGNb4Tn6V+j7f1/djlGu/Qqu//yi/QtKuuB+3f6ZSk3KIPVtbdY4JE98DdAHQ69ksMBYdNtJx0pERLEVk+B58OBBbNq0CbfeeiuWLFmCL774Avfddx8A4JZbboHD4QCAsEfvge+PHz/e7nXLyspiMbyoxfvnEcWEENC2NMFQVw19bRUMtdUw1FbBUOf/s7Ya+obak17GazLDnW6FOy0T7nQrPOmZYd97zantF+3UNQF1hyD5GqHzlkPrq4XGVwetr1Z5Ldf5j9VCK4evoay2/hAtyaMBAOa6w0hvPIjq/32JumZl/bfO7UOq6WzI2nT4NGnwadOV19o0yNp0yBoz0HoGsgpAVet/n8uj+W0SEfVJ8cw4hYWF7b4Xk+ApyzLOO+88LFu2DABwzjnn4MCBA9i4cSNuueWWU75uRwOPtbKysrj+PKKoyT6ld2Vlq2KdKn/LoapySC0dtOwBIDQaiAxbG8U6gRnMbCBJ2epQh/D/YRCyF8Jdo6ydNBeoe2x7jr0BX8VO6PKuVItuPEf+AnfZho7vR9IoM5T+4pt+eUXQZir/7smuTAj3pUhOyoZdnaEsBHBRJ39pREQUkEgZJybB0263o6govCHx0KFDcfToUfV9AKioqEB+fr56TkVFBbKzw3fUIDrtuFrCtmsMa4Ze5YBUUwHJ5+vwEsKQBJHVTu/KLDuExQpow/91VwOluxqi/jOIyuC6yUA7IdlVBXiCs6VJo1ZDazkLACA3HYWv+l/QZJwDBKq9k/tBkzq0VXPzYKGOxpgJ6NPbXSOpMVoBbr1IRNRnxSR4jhs3Dvv37w87tn//fjVkFhQUwG63Y9u2bRg1ahQAoKWlBTt37sTy5ctjMQSixCQEUF8LTZU/TLa1vrL+5I/B5bQMpeo7K7xYR+llmQ2Y09TH4EL2QXhqIBkyIElKhbjnf29Drv0v9Pmz1PWPngMvwHP4D1HchEa5Vqv9uvW5l0KbcW7Yekqd9XzorOdH+cshIqLTTUyC56233opp06Zh9erV+MEPfoC9e/fiN7/5DX72M6WxsiRJWLx4MdasWYPCwkIMGTIEq1evhtlsxpw5c2IxBKKe4fUqM5JVjlahslwNm5Lb1eElhFYHkZmtPvJW9wcPhMzMbMBgVAOlcIW2DjoIcaRKLdQR7moItxOAgGn885BMOQAAX/Wn8JV/EBYUpSRbsKG5WpxjDWly7n8cbrCoATaUJmVQWOgkIiI6mZgEz1GjRqGkpATLly/Hk08+iby8PDz44INYuHChes6dd96J5uZmLF26VG0gv3nzZvbwpMTW3KgEycrwMKmEzBPK2kshOryESDZHNEMPm7lMS4ek1avnex3vQ248DF3/ccqjZwCufc/Ae+wNhO3Z3S4JkiEDIqQRui53GrQZ50ATske3Pu9KtXKciIgoHiSn0xnN/5P1eYm08JbiJNC7srKNYp3AzGVTZI/IUEKSIEJ7V4aur8y0wZdmhNC0BBuct9olR/m+FsmT/6z0mwTQ/OndkGv/i6TzVkGbcTYAwL1/IzyH/6jMPrZaNxm+FWMmJH0GpE42YScior4rkTIO92qnvsvtglRdEbG+Mti7sgKS92S9Kw1hRTrqjKU1G3JWDjziMISnGrqcqZC0SnB0ff0r+Cr/AFFdA6DjnXzUn+N2QkpSCu10OVMhMs5Vmpn76c+4QdmOUcN/ZYmIqPfi/4tR7yQE0FgfLNJptb5SqjoBTW3NyS+Tmg45UwmVPqsNstUCn8UIOVUHOQmQpWb/uslqCNdhCPlbJI8NbrXo/uh+iBYHtBnnQErup1zT16zs+Q0A+nR1RxylQMfqn6kMWU9pyAgLlPr+l0eMU9Ke2v7kREREiYTBkxKTz6usn1RDZUixTqUDmmoHpJbmDi8hNBqITBuENQc+qw3e7CT40k3Q2c5Xd91xHdwEue4bCPd3EO5/A8IHNEH5au+6sgeSRlmTqbVNALyNYQ3MDYNvAgbfpDwW1+jbuwwREdFph8GTeoar2f/4+0Swh2XoWsuaCkhyx4+p5aQk+HJs8Nkz4Ms0w5duhGzWQjbKkLUuwJSOpBHKDlpCCDS9dyUgPEgefrM6gyg3HoJc/03wovo0SAb/vt2tq7sDe3mHVHgbC38UMS5Nki3iGBERETF4UncQAlK9018JfkLdHzysd2VDXfsfByCMgCfLAq0xV11f2ZT1HXxGF2RNC4RogPA4AVEBoCL4Ya//CwCaLephSZKgzRipfONrAfzB0zBkISB8/sffGWqBDxEREcUegyd1ntfjL9rxF+uEhUr/jKXHHfGxQKD0Jkvw5esh29LgzUiGnGqAZMyEMWUKhDUbPksyGvfdBeh0ME8Kbr/o3nkTRPP/wi+qS1HXTWqModXemWHFOQCQdO7jEWPSphVFHCMiIqLuweBJkZoalHWV1cH1lVLVieDr2vDelQKA0AEa/0yjkICG0cnwWUyQU/XwmQBZ74GQWgCEbv3Y6P8CNClJ0I6ZoXxeyMABCyRDGoTsVQtvDIMXAEB403MtZyiJiIh6CwbP040sK0U71cH1lcG1lv79wZuVMCgACAMgJ0vwmSR4kwE5T4ImQwtjrbKFozs3FXUDP4cGFqRk3QFhtcOXaUPT7usBuTHy5+vMwRnJwFpKoxWSKVc9RZI0MF/4auRHsy/srt8KERERxQGDZ1/jdvlDpb8ZenW5f61lSO9Kn1c9XeiAlgEaeJIl+PpJkAdLkM1G+FK0kI0C0ETuL6DNHAPfucuVz7udwIfFEEl6+M4ZBwCQAOgHXgtJawwLmZIxk22BiIiITmMMnr2JEEBDbbBYpzp8fSWqHJCaneoMpZwMoF5AX6GER7dNQt0sPbT1yUjbnw9htcOblYE6+9tt/DB/Rbk2Wa3mlgwZ0Bit0KQMDp6mT0fyRX+OCJSGgcXd8zsgIiKiXovBM5H4vJBqKtso1lHWV4racnjT3JCTAdkkKUU6JglylgR5AOAzSYCuVQB0DYJs+j6E1Q6PuQW+g7+AnDMAzTcoTdCFENB95Q3ZitEavhXjSWYoJUlSK8SJiIiIOsLgGU8tTWHFOkq/yv9B1P8PorkS2hNO6OuVmUZXrgaN5+igr5WR+oXyaNxrkeC8zNjxz9CawvbxRsZ58PabBgCQZDdMOZsgGTLV0yVJgnH40u65XyIiIqIQDJ6xIsuQ6mr8odIBqfIoRO1hoOEE5JZKwOeErHXDnSxB9j8G96VJgFVSL2HeI0F72Ko8Ai/Qw2PfB5FdgOaLFihFO+nJ0Hy7Rp2ZDDY5D6ny1iW3O0RJY4CU3D8evw0iIiKiCAye0fK4IVWXQ6o4AlH1HTQ19dBVOiFVOeCVjqAlqxbGYz6Y9ivtglz9NKi91ADYQy/S1q9bB402HTBa4blmGpryrwAACE8dkhq+g5Rkh8+UA0Ap2jGNerJbb5OIiIiouzB4AoAQ0DVVA/s/gqg+CNQdhWh0QLirIXx1kKVmyAYv5GQJQq/MUKZ94YHeHzLdQ7VwDdRDEjoYPP0hrNmQ7WZo5D2Q9OmQjDZIKTlAar9g+yD/TCW0yco6yVYkfRq0GefE87dARERE1K0YPAHI769BtvwPNFb5D2gApLY+S6P84ZOg8RnhPed7aJk4RnkEngoYddXA+UPRnBqs+DbFYexEREREvQWDJwCk5ADVAhq3DhrZCI2UChgyoDHZgNR+QEYBpMwzIJlsSgN0/wxloBumBP4iiYiIiE6GeQmAdN5c/G//91BYxH27iYiIiLqLpqcHkAgkrQ7Q8FdBRERE1J2YtoiIiIgoLhg8iYiIiCguGDyJiIiIKC66JXiuWbMGFosFS5cGt2IUQmDFihU488wzkZOTg8svvxxfffVVd/x4IiIiIkpAMQ+en3zyCZ5//nmMGDEi7Pi6deuwfv16PPHEE3j33Xdhs9kwe/Zs1NfXx3oIRERERJSAYho8a2trsWjRIjzzzDOwWCzqcSEENmzYgCVLlmDWrFkYPnw4NmzYgIaGBpSWlsZyCERERESUoGIaPAPBctKkSWHHDx06BIfDgSlTpqjHTCYTJkyYgF27dsVyCERERESUoGLWQP6FF17AgQMH8Jvf/CbiPYfDAQCw2Wxhx202G44fP97uNcvKymI1vKjE++cRERERxUM8M05hYWG778UkeJaVlWH58uV46623oNfrY3FJAB0PPNbKysri+vOIiIiI4iGRMk5MHrXv3r0bVVVVGDduHKxWK6xWK3bs2IGNGzfCarUiMzMTAFBRURH2uYqKCmRnZ8diCF2WKP9AiIiIiGIpkTJOTGY8L7/8cpx33nlhx2677TYMHjwYd999N4YMGQK73Y5t27Zh1KhRAICWlhbs3LkTy5cvj8UQiIiIiCjBxSR4WiyWsCp2AEhOTkZGRgaGDx8OAFi8eDHWrFmDwsJCDBkyBKtXr4bZbMacOXNiMQQiIiIiSnAxKy46mTvvvBPNzc1YunQpnE4nRo8ejc2bNyM1NTVeQyAiIiKiHiQ5nU7R04MgIiIior6Pe7UTERERnWZWrFiB8ePHx/3n9snguXjxYlgsFtx+++0R7y1btgwWiwVz587tgZERERERxd7ixYt7Rbbpk8ETAPLy8vDnP/8ZjY2N6jGv14tXX30VeXl5PTgyIiIiotNTnw2eI0aMwKBBg/CnP/1JPfb222/DaDRi4sSJ6rF///vfmD17NgYNGoT8/HxMnz4du3fvVt+/7bbbIv4LQpZlnHXWWXjmmWe6/0aIiIiIOqGt2c+eerTeWp8NngBw4403oqSkRP3+5ZdfxvXXXw9JktRj9fX1mDt3Lt58803885//xMiRI3H11VejuroaADB//ny88847OHHihPqZbdu2weFwoLi4OH43Q0RERNTL9engefXVV2PPnj349ttv4XA48M9//hPXXXdd2DkXXXQRiouLUVRUhKFDh2LVqlVISkrCP/7xDwDAmDFjMHToULzyyivqZ15++WXMmDEDWVlZcb0fIiIiot6sTwdPi8WCK664Ai+//DJeeeUVTJw4Efn5+WHnVFRUYMmSJRg9ejQGDBiAvLw8VFRU4OjRo+o58+bNU2dOa2pqsHXrVtx4441xvRciIiKi3i5uDeR7yg033IDFixfDbDbjwQcfjHh/8eLFKC8vx+OPP44BAwbAaDTiyiuvhNvtVs8pLi7GI488gp07d2Lv3r3IysrC1KlT43kbRERERFHRaDQQIrxNu9fr7aHRhOvzwfOiiy6CXq9HVVUVLr/88oj3P/74Y6xcuRKXXXYZAKC8vBwOhyPsnIyMDMycORMvv/wy9u7di2uvvRYaTZ+eLCYiIqJeKisrC1988UXYsdbf95Q+HzwlScKOHTsghIDRaIx4f/DgwXj99dfxve99D01NTfi///s/GAyGiPPmzZuHOXPmwOPx4KWXXorH0ImIiIg6bdKkSVi3bh1eeuklXHDBBdiyZQs+/vhj9O/fv6eH1rfXeAakpqYiLS2tzfeeeeYZNDY2YvLkybjppptwww03YMCAARHnXXjhhejXrx8mTpyIgQMHdvOIiYiIiKInyzK0Wi0AYOrUqbjvvvvw2GOPYfLkyTh8+DAWLlzYwyNUcK/2KDU3N2PYsGFYtWoVrrnmmp4eDhEREZFq9uzZOOOMM7BmzZqeHkqHTosZz66QZRkVFRVYvXo1TCYTZs+e3dNDIiIiIgIAVFVV4Y033sCOHTswefLknh7OSfX5NZ5ddeTIEZxzzjno378/1q9fD71e39NDIiIiIgIA/PCHP8SBAwdwxx13YObMmT09nJPio3YiIiIiigs+aiciIiKiuGDwJCIiIqK4YPAkIiIiorhg8CQiIiKiuGDwJCIiIqK4YPAkIiIiorj4/wGS2bhgdRv1BgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,5))\n",
+ "plt.plot([\"May\", \"Jul\"], [fl_before, fl_after], label=\"FL\", lw=2)\n",
+ "plt.plot([\"May\", \"Jul\"], [poa_before, poa_after], label=\"POA\", lw=2)\n",
+ "\n",
+ "plt.plot([\"May\", \"Jul\"], [poa_before, poa_before+(fl_after-fl_before)],\n",
+ " label=\"Counterfactual\", lw=2, color=\"C2\", ls=\"-.\")\n",
+ "\n",
+ "plt.legend();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "빨간색 선과 노란색 점선 사이의 작은 차이가 보이시나요? 만약 여러분이 이 차이에 정말 주목하신다면, Porto Alegre에 대한 작은 처치 효과를 확인하실 수 있습니다.\n",
+ "\n",
+ "\n",
+ "\n",
+ "이제, 여러분이 스스로에게 이렇게 물어볼 수 있을 거에요. \"과연 내가 추정량을 얼마나 신뢰할 수 있을까요? 해당 추정량에 대한 표준오차를 갖는 건 내 권리에요!\". 표준 오차가 없는 추정량은 어리석게 보일 수 있기 때문에 의미가 있어요. 이 부분을 해결하기 위해, 회귀(regression)를 사용하는 깔끔한 방법을 사용해보려고 합니다. 구체적으로는 다음 선형 모델을 추정합니다.\n",
+ "\n",
+ "$\n",
+ "Y_i = \\beta_0 + \\beta_1 POA_i + \\beta_2 Jul_i + \\beta_3 POA_i*Jul_i + e_i\n",
+ "$\n",
+ "\n",
+ "$\\beta_0$는 대조군에 대한 기준선이며, 이 경우에는 5월 Florianopolis의 예금 수준을 나타냅니다. 처치된 도시의 더미변수가 1인 경우를 보면, $\\beta_1$를 얻게 됩니다. 따라서 $\\beta_0 + \\beta_1$는 개입 전 5월의 Porto Alegre 기준선이고 $\\beta_1$는 Florianopolis 위의 Porto Alegre 기준선의 증가분입니다. POA 더미변수가 0이고 7월 더미변수가 1인 경우를 고려한다면, 개입 기간 후 7월 Florianópolis 수준인 $\\beta_0 + \\beta_2$를 얻습니다. $\\beta_2$는 대조군의 추세를 나타냅니다. 왜냐하면 개입 후, 기간에 통제 수준을 얻기 위해 기준선 위에 추가하기 때문입니다. \n",
+ "요약하자면, $\\beta_1$은 대조군에서 처치된 그룹으로 이동해 얻을 수 있는 증분이고, $\\beta_2$는 개입 전 기간에서 개입 후 기간으로 이동하여 얻는 증분입니다. 마지막으로 두 더미변수가 모두 1이라면, $\\beta_3$가 나타나게 됩니다. $\\beta_0 + \\beta_1 + \\beta_2 + \\beta_3$는 개입 후 Porto Alegre의 수준입니다. 따라서 $\\beta_3$는 5월에서 7월로, Florianopolis에서 Porto Alegre 이동할 때의 증분 영향입니다. 즉, 이 부분은 DID 추정량이 됩니다.\n",
+ "\n",
+ "믿기 힘드시다면, 직접 확인해 보세요. 위에서 얻은 것과 수치를 얻어야 해요. 또한 앞서 추가적으로 알고 싶었던 표준 오차를 얻는 방법에 주목해주세요."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
\n",
+ "
coef
std err
t
P>|t|
[0.025
0.975]
\n",
+ "
\n",
+ "
\n",
+ "
Intercept
171.6423
2.363
72.625
0.000
167.009
176.276
\n",
+ "
\n",
+ "
\n",
+ "
poa
-125.6263
4.484
-28.015
0.000
-134.418
-116.835
\n",
+ "
\n",
+ "
\n",
+ "
jul
34.5232
3.036
11.372
0.000
28.571
40.475
\n",
+ "
\n",
+ "
\n",
+ "
poa:jul
6.5246
5.729
1.139
0.255
-4.706
17.755
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "smf.ols('deposits ~ poa*jul', data=data).fit().summary().tables[1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 평행하지 않은 추세 (Non Parallel Trends)\n",
+ "\n",
+ "DID의 한 가지 분명한 문제는 평행 추세 가정을 만족하기가 쉽지 않다는 것입니다. 처치를 받은 그룹의 증가 추세가 대조군의 경향과 다르면 DID는 편향될 거에요. 특정 지역에 처치를 하는 결정이 처치에 잘 반응할 가능성을 기반으로 하거나, 처치가 잘 수행되지 않는 지역을 대상으로 하는 경우 무작위가 아닌 데이터에서 나타날 수 있는 일반적인 문제입니다. 우리가 다루고 있는 마케팅 사례를 살펴보시죠. 광고판의 전반적인 효과를 확인하기 위해서가 아닌 Porto Alegre에서 광고판을 테스트하기로 했습니다. 그 이유는 단순히 판매 실적이 좋지 않기 때문입니다. 아마도 온라인 마케팅이 작동하지 않을 거에요. 이 경우 광고판이 없는 Porto Alegre에서 볼 수 있는 성장은 다른 도시에서 관찰한 성장보다 낮게 관찰될 수 있겠죠? 이는 Porto Alegre에 있는 광고판의 효과를 과소평가하게 만들 수 있을 거에요.\n",
+ "\n",
+ "이러한 평행 추세가 아닌 경우가 발생하는지 확인하는 한 가지 방법은 과거 기간을 이용해 추세를 그려보는 거에요. 예를 들어, Porto Alegre는 약간의 감소 추세를 보였지만 Florianopolis는 가파른 상승세를 보였다고 가정해 보겠습니다. 이 경우, 이전의 기간을 표시하면 아래 그림과 같이 추세가 나타날 것이고, 우리가 구한 DID 추정량이 신뢰할 수 있는 값이 아님을 알 수 있습니다."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAAFDCAYAAACTPg7/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABXIklEQVR4nO3deXxU9aH//9eZNfu+sCSAQEA2RVA2ZREEoZZ6URTUqqUuLV5bsVes2y3W1qKUUr0tIlb7a6vU2i/ltteqWKgIyBIQ2dwwiiyBkISEBLLMZJbz+2PCJGNYgkwmk+T9fDx4kDnnzJnPCZ/Am89qVFRUmIiIiIiItDBLaxdARERERDoGBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFz3oFBQWtXQSRiFKdl45I9V46omiq9wqeIiIiIhIRCp4iIiIiEhEKniIiIiISEQqeIiIiIhIRttYuwNfhdrtxuVxhvWdMTAyVlZVhvae0XTExMTidztYuhoiISLvS5oJndXU1AElJSRiGEbb7Op1OYmJiwnY/abtM06Smpgav10t8fHxrF0dERKTdaHNd7SfDQDhDp0hjhmEQHx+P1+tt7aKIiIi0K20ueIqIiIhI26TgKSIiItJOmabZ2kUI0ebGeIqIiIjI6dV4/bx72M3Kgy7WF7n508DWLlEDBU8RERGRNq6oxsfbB128daCWtUVuXL6Gc9uPWxjUekULoeAZIbNnz+bVV19tcnzdunUsWbKE8vJyXnvttVYomYiIiLQ1pmmys8zDyoMuVh50saPME3J+aIadybkxTO4Wi/PovtYp5CkoeEbQuHHjWLp0acix9PT0ViqNiIiItCW1XpN1RW5WHqzl7YMuDtf4g+dirQbjujiZ0i2GSTkxdIqzBs8VlLVGaU9NwTOCnE4n2dnZrV0MERERaSOKa3y8XejirQMu1ha5qfE2TBbqEmfh6twYJufGMqazk1hb9C812W6CZ8r/dyiin1cxq2tEP09ERETaP9M02V3e0IX+wdHQLvTB6fVd6LkxXJxub3Prmreb4NkWrF69mq5dGwLryJEjWb58eSuWSERERFqby2vy3hF3MGwWVjfMDIqxwtguMUzJDXShd4m3nuFO0e+swXPRokW8/vrrfP755zgcDi699FLmzZtH//79g9eYpslTTz3FH//4RyoqKhg6dCgLFy6kX79+wWsqKip48MEHWblyJQCTJ09mwYIFpKSkhOVBzrcF0uVytfiWmaNGjeLZZ58NvtYWnSIiIh1TaW2gC33lARdrDrupbtSFnh17sgs9hnFdnMTZ2s+y62cNnu+99x533HEHQ4YMwTRNfvGLX/Af//Ef5Ofnk5qaCsCzzz7L4sWLWbx4MXl5eSxYsIBp06axdetWEhMTAbjzzjspLCwMtvD98Ic/5Hvf+16HmskdFxdHz549W7sYIiIiEmGmafLxMW99q2Yt75d6aLy0+6C0QBf6lNwYBmfYsbSxLvTmOmvwXLFiRcjrpUuX0q1bNzZv3syUKVMwTZMlS5YwZ84crr32WgCWLFlCXl4ey5cvZ9asWezZs4fVq1ezcuVKhg0bBsCvf/1rpkyZQkFBAXl5eS3waCIiIiKtx+0z2XDEzVsHXbx90MWBqoYudKcVxnRyMrlbDFfnxJCT0DFGP57zU1ZVVeH3+4Nd5Pv376e4uJjx48cHr4mNjWXUqFHk5+cza9YstmzZQkJCAsOHDw9eM2LECOLj48nPz1fwBI4fP86uXbtCjiUnJ9O9e/dWKpGIiIicqzKXj38VBpY8eueQmxOehnbNzJjQLvQEe/vpQm+ucw6eDz30EIMGDQq2XBYXFwOQmZkZcl1mZiZFRUUAlJSUkJ6eHjLzyjAMMjIyKCkpOe1nFRQUNDkWExOD0+k812I3i8vlapH7Avh8Pnw+3yk/w+fzsWnTJsaMGRNy/JprruGll15qsTLJmR0/fvyM9bM9ONXPmEh7p3ov4WSa8GWtwfpyK+vLrew+bsFPQ97pHednTLqP0Wk++if4sRhVUAdF+yJbzkjW+zM1KJ5T8HzkkUfYvHkzK1euxGpt+VlVpyp4ZWVli0zKaenJRS+88MIZz53pvLSOpKQkcnNzW7sYLUbDXKQjUr2XcPD4TTbWd6GvPOhi34mGLnS7BcZ1ctbvGhRDtyjoQo+met/s78bDDz/MihUreP311+nRo0fw+MkF0UtLS0P+kS4tLSUrKwuArKwsysrKME0z2OppmiZHjx4NXiMiIiISrY65/fyrfhb6vw+5ON6oCz3daWFSfRf6+K5OEjtgF3pzNSt4/vjHP+Z///d/ef311+nTp0/Iue7du5Odnc2aNWsYMmQIEGg93LRpE0888QQAw4YNo6qqii1btgTHeW7ZsoXq6uqQcZ8iIiIi0aKg0sNbB1y8ddBFfkkd/kbT0Pul2IILuV+a6cBqaZ+z0MPtrMHzgQce4LXXXuOVV14hJSUlOKYzPj6ehIQEDMNg9uzZLFq0iLy8PHr37s3ChQuJj49n+vTpAPTt25errrqK+++/n2eeeQaA+++/n6uvvjpqmn5FRESkY/P4TTYX1wWXPPrieEMXus2A0Z0De6FPzo2hR2Lrd6G3RWf9rr344osAwaWSTvrxj3/Mww8/DMB9991HbW0tc+fODS4gv2LFiuAanifv8+CDD3L99dcDMGXKFBYsWBC2BxERERE5VxVuP6sPBcZqrip0UVnX0KyZ6jSYmBNYW3N81xiSHepCP19GRUWFefbLokdlZSXJyclhv28kdi6StqWl6lq0iKbB5iKRonovAF9UennrYC0rD7rYVFyHr1ES6pPc0IU+LMuBrR10oUdTvVc7sYiIiLRrXr/JlpK64Cz0gkpv8JzVgNGdHEzuFsuU3Bh6JikatSR9d0VERKTdqazz886hwMSgVYUujrkbmjWTHQ1d6BO6xpDiVBd6pCh4ioiISLuw74SXtw4EWjU3HHHjbdSF3ivJyuTcWCbnxjAi24G9HXSht0UKniIiItIm+fwmW0tPzkJ38WlFQxe6xYBR2Q6m1C/knpdsb8WSykkKniIiItJmnPD4eeeQm7cO1LKq0E2Z2x88l2Q3uConMDFoYk4MqepCjzoKnhEye/ZsXn31VQBsNhtdu3Zl6tSpPPzww8THxwPw//7f/+OFF17g448/xjRN+vXrx913382MGTOa3K+uro5+/frhcrn4+OOP2/XsaxER6dgOVHlZWd+F/t4RN3UNWZMeiVYm5wbGa47MduKwqgs9mil4RtC4ceNYunQpHo+HTZs28cMf/pCamhoWLVrEvHnzWLJkCQ8//DDPPfcchmHwz3/+kx/84Ad88sknPP744yH3euONN+jevTtJSUksX76cO+64o3UeSkREJMz8psm2Ug8rD9by1kEXHx8L7UIfkeUI7oXeN9kW3I5bop+CZwQ5nc7g3vY33HAD69ev54033uCWW27h2Wef5Re/+AX33HNP8Po5c+bgcDh45JFHmDp1KkOHDg2ee/nll5kxYwbJyck8//zzCp4iItKmVXn8rDnsZuVBF/866KLU1dCsmWg3GN/VyeTcWCblOEmPsbZiSeV8tJvgmXD7uPN7/zleX/XHd8/r8wBiYmLweDz89a9/JSEhgTvvvLPJNXfccQdPPvkky5cvDwbPAwcO8N577/HCCy8QGxvLf/3Xf7F7924GDRp03mUSERGJlMIqL28XunjrgIv1R9y4G3aopFtCQxf65Z3Uhd5etJvg2dZs27aN5cuXM3bsWL744gu6d++Ow+Focp3T6aRHjx58/vnnwWPLli3jyiuvJCMjA4BvfvOb/OlPf+KXv/xlxMovIiJyrvymyY6jnuBC7rvLPcFzBnBZpj245FH/VHWht0ftJniebwtkJLbMXL16NV27dsXr9eLxePjGN77BggULmD17drPv4ff7WbZsGU888UTw2MyZM/nOd77Dz372M237KSIiUaXG6+fd+i70tw+6KK5t6EKPtxlc2cXJ5G4xXJ0TQ2asutDbu3YTPNuCUaNG8eyzz2Kz2ejcuTN2e2BNsV69erFp0ybcbjdOpzPkPW63m3379jF69GgA3nnnHQoLC7nrrru46667gtf5fD7+7//+jxtvvDFyDyQiInIKh6t9vH3QxcqDtawtcuNq1IWeE28N7oV+RScnMTa1anYkCp4RFBcXR8+ePZscnz59OkuXLuWll14KmVwE8OKLL1JdXc0NN9wABCYVnVyGqbGlS5fy8ssvK3iKiEjEmabJzrKGLvSdZZ6Q80Mz7PWz0GMZqC70Dk3BMwpcdtll3HvvvTz++OPU1dXxzW9+M7ic0pNPPsmcOXMYOnQoR48e5a233uIPf/gD/fv3D7nHrbfeysSJE/nyyy+54IILWulJRESko6j1mqwrcrPyYC0rD7ooqmnoQo+1Gozr4mRKtxgm5cTQKU5d6BKg4Bklfv7znzNw4EBefPFFnn76aQD69+/P//zP/zBz5kwA/vKXv+B0OpkwYUKT9w8dOpSuXbvy8ssv85Of/CSiZRcRkY6huMYXnIX+7mE3tb6GzdC7xFm4OjeGybmxjOnsJFZd6HIKRkVFhXn2y6JHZWVli+zSE4nJRdK2tFRdixYFBQXk5eW1djFEIkr1/tyYpsnuck9wL/QPjoZ2oQ9OtwfHa16cblcXepSKpnqvFk8REREJcnlN1h9pmIVeWN0wMyjGCmO7BNbWnJQTQ5d4daHLuVHwFBER6eBKawNd6CsPuFhz2E21t6EzNDvWEmzVHNvFSZzN0oollbZOwVNERKSDMU2Tj49567vQa3m/1EPjcXeD0uzBXYMGZ9ixqAtdwkTBU0REpANw+0w2HHEHlzw6WNXQhe60wphODQu55yQoHkjLUM0SERFpp466fPyrPmi+c8hNVaMu9MyYk7PQYxjXxUmCXV3o0vIUPEVERNoJ0zT5tMIbnIW+paQupAu9f6qNb+TGMrlbDEPUhS6toFn/vdmwYQMzZ86kX79+pKSksGzZspDzVVVVzJ07l/79+9OpUycuvfRSFi9eHHKN2+1m7ty59OzZky5dujBz5kwOHToUvicRERHpgOp8JmsPu3gov4JL/lbMyL+X8NNtx8kvqcNmgfFdnCwYnsyuG7LZ+B/ZPDY0iUszHQqd0iqa1eJZXV1N//79uemmm/j+97/f5Pyjjz7Ku+++y/PPP0/37t3ZuHEj9913H+np6cHFzx9++GHefPNNXnrpJVJTU3n00UeZMWMGa9euxWrVcgwiIiLNVe7yseqQm5UHXPz7kIvjnoZ2zXSnhUn1XejjuzpJVBe6RJFmBc9JkyYxadIkgCZ7iQNs2bKFGTNmMGbMGAC6d+/Oyy+/zLZt25g5cyaVlZW8/PLLLF68mCuvvBII7C0+aNAg3n333VPuxCMiIiINCio9vHXAxVsHXeSX1OFv1IfeL8UWXPLo0kwHVotaMyU6heW/QSNGjGDlypUUFhYCkJ+fz4cffhgMlDt27MDj8TB+/Pjge3Jycujbty/5+fnhKIK0Mr/fz5w5c7jgggtISUlh/fr1rV2kM1q/fj0pKSmUlZW1dlFERE7J4zdZX+Tm0S2VDP3bES5bUcJP3j/OpuI6LMDYzk6eGp7MjunZbJqWzbxLkxme7VTolKgWlslFTz/9NHPmzGHgwIHYbIFbLliwgMmTJwNQUlKC1WolPT095H2ZmZmUlJSc9r4FBQVNjsXExOB0OsNR7CZcLleL3Lex0tJSnn32WVatWkVRURFpaWn069ePO+64g6uuuqrFP/+kH/7wh5SXl/PKK6+E5X7/+te/WLZsGStWrKB79+6kpKSc9/fzl7/8Jf/85z9Zu3ZtWMrYWF1dHRD4Mz9dOY8fP37G+tkenOpnTKS9i+Z6f9wLm45ZWV9uZWO5lRO+hhCZbDMZlepjdJqPkak+Emw1AHiOQMGR1iqxtBWRrPdn2p4zLMFz6dKlbNmyhVdffZXc3Fw2btzIf//3f9OtW7fzClOnKnhlZWWL7Kkeib3a9+/fz+TJk0lISODxxx9n4MCB+P1+1q5dy0MPPcSHH37Yop/fmNVqxWq1nvcze71erFYrhYWFZGdnM3r06DCVEGw2GxaLpUX+XBwOBxD4j8zp7p+UlERubm7YPztaRNPevSKREo31/otKL28drGXlQRebiuvwNepC75Pc0IU+LMuBTa2Z8jVEU70/76722tpannjiCX76058yZcoUBg4cyN133811113Hb37zGwCysrLw+XxNujVLS0vJyso63yK0GQ888AAAa9asYdq0aeTl5dG3b1/uvvtu3nvvPQAOHjzILbfcQk5ODjk5OXz7298Omf0/f/58Ro4cGXLfZcuW0bVr1ybX/O1vf2Pw4MHk5ORw8803B7//8+fP59VXX+Xtt98mJSUlpGv88OHDfPe736V79+50796dG2+8kS+++KLJvZctW8bgwYPJysri9ttv55FHHqGwsJCUlBQGDRoEwOrVq5kyZQrdu3enR48eXHfddezZsyek7EVFRdx1111ccMEFdO7cmSuuuIJ169axbNkynn76aT755JNgGU+uppCSksI//vGPkPsMGjQoWN8Afvvb3zJq1Ci6dOlCv379+MEPfkBFRcW5/6GJiISZ1x9YyP2/t1Zy2Ypihq4o5rGtx3nvSKAnZnQnB08OS+aD67PZcl02T1yWzKhOToVOaRfOu8XT4/Hg8XiazEy3Wq34/X4ABg8ejN1uZ82aNdxwww0AHDp0iD179jB8+PDzLQIA1e9MPqfrLYm9ib3st8HXvo3/QTUQP35l8Fjt1nvxn/j8lO9vfF1zHDt2jNWrV/PYY4+RkJDQ5HxKSgp+v5+bb76Z2NhYXn/9dQDmzp3LLbfcwpo1azDOYemLAwcOsGLFCl555RVqamr47ne/y89+9jOeeeYZfvCDH/DZZ59x7Ngxli5dCkBqaio1NTVMnTqVYcOG8cYbb+BwOPjNb37Dtddey5YtW4iLiwMCLbfLly/nD3/4Aw6Hg65du3LhhReybNky3nnnnWBdqK6u5vvf/z4DBw6ktraWhQsXMnPmTPLz83E4HFRXV3PNNdeQmZnJsmXL6Ny5M7t37wbguuuu45NPPuHtt9/mn//8JxBogWwui8XC/Pnz6dGjBwcPHuTBBx/kwQcf5IUXXmj2PUREwqWyzs87h1y8dcDFqkMujrkbmjWTHQYTcwLbU07oGkOKU7PQpf1qVvCsqqpi7969QGASSWFhIbt27SI1NZXc3Fwuv/xyfvrTnxIfH09ubi4bNmzgL3/5Cz/96U8BSE5O5tZbb2XevHlkZmYGl1MaMGAA48aNa7GHiyZ79+7FNE369Olz2mvWrl3LRx99xPbt2+nevTsAL774Ipdccglr1649p++V1+vlueeeIzk5GYDvfOc7wRbDhISE4FjZ7Ozs4Htee+01TNPkueeeC4bcZ555ht69e/P2228zbdo0IDA+cunSpSGt1YmJiVgslpD7XXvttSFlWrx4Mbm5uWzbto2RI0eyfPlySkpKWLVqVXD87wUXXBC8Pj4+HpvNFnLP5mq8+kL37t154oknuPnmm3n++eexWPSXuoi0vH0nvLx1ILCQ+4YjbhptGkSvJCuTc2OZnBvDiGwHdrVmSgfRrOC5fft2pk6dGnw9f/585s+fz0033cSSJUv4/e9/z09/+lPuvvtujh07Rm5uLo8++ih33313yHusViuzZs3C5XIxZswYnn/++bCt4XmuLZBfZR319yZj/Rq3iJ4v0zTPes2ePXvo3LlzMHQC9OjRg86dO/Ppp5+eU/DMzc0Nhk6ATp06cfTo0TO+Z+fOnezfv5+cnJyQ4zU1NXz55ZfB1126dGnWEIkvv/ySJ598kvfff5+ysjL8fn/wPy4Au3btYsCAAU0mnYXD2rVr+fWvf81nn33G8ePH8fl81NXVUVxcTOfOncP+eSIiPr/J1tK64K5Bn1Z4g+csBozKdjAlN4bJ3WLIS7a3YklFWk+zgufo0aPPOD4uOzub55577oz3cDqd/PKXv+SXv/zlORWwvejVqxeGYfDZZ599rfefbIG0WCxNQqzX621yvd0e+peaYRjBoQ+n4/f7GTRoEL///e+bnEtNTQ1+HR8f36wyz5gxgy5duvDMM8/QuXNnbDYbw4cPD84o/7oMwzjj9+DAgQPMmDGD2267jUceeYS0tDR27tzJHXfccd6fLSLS2AmPn3cOuXnrQC2rCt2UuRv+nk2yG1yVE5gYNDEnhlR1oYtor/ZISU1NZcKECfzud7/je9/7XpNxnhUVFfTt25eioiL2798fbPXct28fRUVFXHjhhQBkZGRQUlKCaZrBMHpyXOS5cDgc+Hy+kGMXX3wxy5cvJy0tjZSUlK/xlA3Ky8v57LPPWLhwYXBjgR07doQExIsuuojXXnuNsrKyU7Z6nqqMEPgeHDnSsHZISUlJyOvt27dTV1cXbGUHWLny/FrERUROOlDlZWX9Qu7vHXHjafR/+gsSrfWz0GMZ1Uld6CJfpf9+RdDChQsxTZMrr7ySv//97xQUFPDZZ5/x0ksvccUVVzBu3DgGDBjA3Xffzfbt29m+fTt33XUXF198cTC8XXHFFRw7doxf/epXfPnll/zpT39qMsO7Obp168Ynn3xCQUEBZWVleDwebrjhBrKysrj55pt577332LdvHxs2bODRRx8NmdneHCkpKaSnp/OnP/2JvXv38t577/GjH/0ouM4rwPTp08nIyODmm29m48aN7Nu3jzfffJN169YFy3jw4EF27NhBWVkZbrcbgDFjxvDiiy+yfft2du7cyT333BMyTKJXr174/X6ee+459u3bx/Lly3n++efP+XskIgLgN022ltTxs22VjPp7MRf9v2IezK9kzWE3PhNGZDl4fGgSm6dl8cH12cwfnsLYLk6FTpFTUPCMoB49egQnCc2bN4/LL7+cb33rW7z11ls888wzGIbBn//8Z9LT05k6dSpTp04lKyuLZcuWBVs3+/bty6JFi/jDH/7A5ZdfzrvvvsuPfvSjcy7L7bffTp8+fbjyyivp1asXmzdvJi4ujjfffJMePXrwne98h2HDhjF79mwqKirOuQXUYrHw+9//no8++oiRI0cyd+5cHn300ZDF/+Pj43njjTfo0qULM2fOZOTIkcyfPz/4rN/61reYOHEi1157Lb169WL58uUA/PznP6dHjx5885vf5Pbbb+fWW28lIyMjeN+BAwfy1FNP8dxzzzFixAj+9Kc/8bOf/eycv0ci0nFVefy8vr+W/3zvGH3/coSJb5Tyq11VfHzMS6Ld4NoeMSwZnUrBzE6svCaTORclcmGK/ZxWHxHpiIyKioqzz3qJIpWVlSGTZsIlEgvIS9vSUnUtWkTTgsIikXKmel9Y5Q1ODFp/xI270UifbgmBLvQpuTFc3smJw6qAKW1HNP19rzGeIiLSIflNk+1HPbxVHzY/LPcEzxnAsEwHk7sFJgf1S7GpNVMkDBQ8RUSkw3D54M0Dge0p3z7oori2YWZQvM3gyi5OJneL4eqcGDJjw7Pcn4g0UPAUEZF2yeU1+bTCw65yD7vLPOwu97D9aCxuf3nwmpx4a3Av9Cs6OYmxqVVTpCUpeIqISJt3zO1nV5mH3eV17K4PmnsqvfiazGIwGJphD4TNbrEMTFUXukgkKXiKiEibYZomB6p8gXBZ7qkPmx4Kq5uu+WsxoG+yjYvS7QxKC/xKqDzIZf2jY5KFSEfUJoNn48XTRVpCc7Y4FZGW5fGb7KnwsqusLhg0d5d7qKxr+vMZZzMYkGpjUJqDQWl2Lkq30y/VRpwtdNXAgppIlV5ETqXNBc/4+PjgupIKn9ISTNOkoqKCxMTE1i6KSIdxvM7Ph43C5a4yD59WeKg7xU6/GTEWLqoPlydbMnsl2bBqwXaRqNfmgqfNZiMxMZHjx4+H9b7Hjx8nKSkprPeUtisxMTFklyURCQ/TNCmq8TcKmIHWzC9PNO0qB+iZaOWidEcwYF6Ubic71qKGB5E2qk3+y2qz2cK+sHdJSQm5ublhvaeISEfm85t8ftwbHId58tdRV9NmTIcF+qfaQwLmgDQ7iXZtsCfSnrTJ4CkiItGlxuvno3JvfbisY1eZh4+PealtOq2cFIdRHy4bWjL7pNi0t7lIB6DgKSIi56S0tums8s+Pe/GfYk5eboKVi9JCWzJz4q3qKhfpoBQ8RUTklPymyb4TvpCxmLvLPRTVNO0qtxnQL9UWCJjpjmDYTHGqq1xEGih4iogIbp/JJ8fqd/mpX4D9w3IPVd6mzZiJdoOBjVoxB6XZuTDFrl1/ROSsFDxFRDqYY+6ms8o/q/ByioxJ5zhLfeulg0Hpdi5Ks9M90YpFXeUi8jUoeIqItFOmaXKw2tdkVvnBqtPv8jOofm3Mi9LsDEyzkxlrbYWSi0h7peApItIOnNzlp/Gs8tPt8hNrNRiQZuOi+l1+BqXb6X+KXX5ERMJNwVNEpI05Xufno2OBcZgnx2R+cuzMu/ycDJgXaZcfEWlFCp4iIlHKNE2O1PobBcw6dpd52HuGXX4CXeX1s8rT7XTSLj8iEkWaFTw3bNjAb37zG3bu3ElRURGLFy/mlltuCbnm888/5/HHH2fdunV4PB7y8vL43e9+R9++fQFwu9089thj/O1vf8PlcjFmzBh+9atf0bVr1/A/lYhIG3Nyl5+TM8p3nWWXn36p9pCWzAGpdpIc6ioXkejWrOBZXV1N//79uemmm/j+97/f5Py+ffu4+uqrmTlzJv/3f/9HSkoKn332GfHx8cFrHn74Yd58801eeuklUlNTefTRR5kxYwZr167FatXgdRHpOGq8fj4+5q0PmIFZ5R+Vn3qXn2SHEWy9PNmSqV1+RKStalbwnDRpEpMmTQLgnnvuaXL+5z//OePHj+fJJ58MHuvRo0fw68rKSl5++WUWL17MlVdeCcDSpUsZNGgQ7777LhMmTDifZxARiVpHXb6QFszdZR4KzrDLT3CHn/qwmatdfkSkHTnvMZ5+v5+VK1cyZ84crr/+enbs2EG3bt34wQ9+wHXXXQfAjh078Hg8jB8/Pvi+nJwc+vbtS35+voKniLR5jXf52V1WP7P8NLv8WA3on2qrD5eOYNDULj8i0t6dd/AsLS2lqqqKRYsW8cgjjzBv3jzWrVvHXXfdRXx8PFdffTUlJSVYrVbS09ND3puZmUlJSclp711QUHC+xTsnkf48kdamOv/11Plhb43BZ1UW9lRb+KzaQkG1hWpf05bJOKtJn3h/8FffBD8XxJmEZMwqKK2C0sg9Qoemei8dUSTrfV5e3mnPhaXFE+Ab3/gG9957LwAXXXQRO3bs4He/+x1XX3311773mQoebgUFBRH9PJHWpjrfPBX1u/zsKvewu36Xnz1n2OUn2FVe35LZQ7v8RBXVe+mIoqnen3fwTE9Px2azBWevn9SnTx9WrFgBQFZWFj6fj7KyMjIyMoLXlJaWMnLkyPMtgojIeTNNk8Kv7PKz6zS7/BhAn2QbF6WH7leuXX5ERM7svIOnw+FgyJAhTZpwP//8c3JzcwEYPHgwdrudNWvWcMMNNwBw6NAh9uzZw/Dhw8+3CCIi58TjN/msfpefXfVrY+4u91Bxhl1+BtXvV35Rup1+KTbi7RqPKSJyrpoVPKuqqti7dy8Q6FovLCxk165dpKamkpubyw9/+ENmzZrFqFGjGDNmDOvXr2fFihUsW7YMgOTkZG699VbmzZtHZmZmcDmlAQMGMG7cuBZ7OBGREx4/H5V7QloyP6nw4D7FGuzpTkuwFfPk772SbNi0dJGISFgYFRUVpxipFGr9+vVMnTq1yfGbbrqJJUuWALBs2TIWLVrEoUOH6NmzJz/60Y+YPn168NqTC8gvX748ZAH5nJycMD7O1xdN4x9EIqG91fnGu/wEu8rL6k67y88Fidb6cOkIBk3t8tP+tbd6L9Ic0VTvmxU8O4Jo+kMRiYS2XOd9fpMv6nf5adySWXqGXX4aJv1ol5+OrC3Xe5GvK5rqvfZqF5GoVuP188kxb6OAWcdHx7zUnGJaebLDaDKrvE+yDYdVrZgiItFAwVNEosbJXX4auspPv8tPTry1yazybgna5UdEJJopeIpIxPlNk/0nfPVrYwZaMXeXezh8hl1+vtqSmapdfkRE2hwFTxFpUW6fyacVoWMxPyz3cMLTtBkzwWYw8GQLZnpgG8kLU+zE2NSKKSLSHih4ikjYnNzlp/Gs8tPt8tMp1tKoqzywPqZ2+RERad8UPEXknJ3c5eers8oPnGGXn8azygem2cnSLj8iIh2OgqeInJHHb1JQ6Q0JmLvL6zjmbtqMGWOFAamhYzH7p2qXHxERCVDwFJGgKo+fD8tDZ5U3Z5efk2Mye2uXHxEROQMFT5EO6mgd7Ct0Neour2PvcR+n2lHigkRrk1nlneO0y4+IiJwbBU+RDqLM5WN9UR1ri1ysPexm74k4oCzkGrsF+qU0zCgflGZnQJqdZO3yIyIiYaDgKdJOVXn8bCquY+1hN2uL3HxY7glpzYy3mgzOdAYD5qB0B321y4+IiLQgBU+RdqLOZ/J+aR1ri9ysK3LzfmkdnkbrsTutMDzLydjOTsZ2cRJ/bD/9+uS0XoFFRKTDUfAUaaP8psnucg/r6ls0NxXXUd1owUyLAUMz7IztEgibw7KcxDZaiL2gohUKLSIiHZqCp0gbYZome4/7WFvkZm2Ri/VFdZS7Q7eYvDDFxpjOgaB5eScnKdpWUkREooiCp0gUK6rxsa7IzdrDge7zwurQdY1y4q3BFs0xnZ10itOi7CIiEr0UPEWiSIXbz3tHAl3n6w672VPpDTmf5rQEWzTHdnFyQaJVSxqJiEiboeAp0opqvSabi9313edudpZ58Deaeh5vM7i8k4PR9WFzYJpde5mLiEibpeApEkFev8kHRxuWONpSUkddo2GadguMyHIEu8+HZjqwaycgERFpJxQ8RVqQaZp8fMwbbNHceMTNCU9Dk6YBXJxuD3adj8hyaF9zERFptxQ8RcJs3wlvyISgUlfozPPeSTbGdglMBhrdyUFajCYEiYhIx6DgKXKeSmvrZ57Xh839VaEzzzvHNUwIGtPZSU6CfuxERKRj0r+AIufoeJ2fjcXu4DjNj4+FzjxPdhiM7uQMjtPMS7Zp5rmIiAjQrMFkGzZsYObMmfTr14+UlBSWLVt22mvnzJlDSkoKv/nNb0KOu91u5s6dS8+ePenSpQszZ87k0KFD51d6kQhw+0zWF7n5+QfHmfTPUi74cxEzV5ez5ONqPj7mJdZqcGUXJ48PTWLN1Ez23tSZVyakc1e/BPqk2BU6RURE6jWrxbO6upr+/ftz00038f3vf/+01/3jH/9g27ZtdO7cucm5hx9+mDfffJOXXnqJ1NRUHn30UWbMmMHatWuxWjXGTaKHz2+yq9wTbNHcXFxHra9hQpDVgGGZDsYEt6J04LQqXIqIiJxNs4LnpEmTmDRpEgD33HPPKa85cOAADz30EH//+9+ZPn16yLnKykpefvllFi9ezJVXXgnA0qVLGTRoEO+++y4TJkw4n2cQOS+maVJQ6Q2O0Vx/xE1lnRlyTf9UW3Dm+ahsJ0kOzTwXERE5V2EZ4+n1ernzzjt54IEH6Nu3b5PzO3bswOPxMH78+OCxnJwc+vbtS35+voKnRFxhVcMSR+uL3BTVhM48754QuhVlZqxa5UVERM5XWILn/PnzSUtL44477jjl+ZKSEqxWK+np6SHHMzMzKSkpOe19CwoKwlG8Zov050nkVHhgW6WVrRUWtlZYOeAKbbFMs5tcmuzjshQfl6X46RpjAifABxWFUNEqpW55qvPSEaneS0cUyXqfl5d32nPnHTzXr1/Pn//8Z9avX3++t2riTAUPt4KCgoh+nrSsao+fTcV1we7z3eUeGneeJ9oNRnUKtGiO6+KkX0rHm3muOi8dkeq9dETRVO/PO3i+9957HDlyJKSL3efzMW/ePJYsWcLHH39MVlYWPp+PsrIyMjIygteVlpYycuTI8y2CCB6/yfulDVtRvl9ah6dR77nDAsOzHIztEsPYzk4uybBj01aUIiIiEXXewfPOO+/k2muvDTl2/fXXc/3113P77bcDMHjwYOx2O2vWrOGGG24A4NChQ+zZs4fhw4efbxGkA/KbJh+We1hb5GbdYTcbi+uo9ja0aVoMGJLRsBXl8CwnsTYFTRERkdbUrOBZVVXF3r17AfD7/RQWFrJr1y5SU1PJzc0lMzMz9KY2G9nZ2cFm3eTkZG699VbmzZtHZmZmcDmlAQMGMG7cuPA+kbRLpmny5QlfsEVzfZGbMnfohKC+ybbgEkdXdHKS4tTMcxERkWjSrOC5fft2pk6dGnw9f/585s+fz0033cSSJUua9UHz58/HarUya9YsXC4XY8aM4fnnn9cannJaR2pCt6IsrA7dijIn3hrYirJ+3/POcapLIiIi0cyoqKgwz35Z+xdNA287qgq3nw1HAkFzXZGbTytCt6JMc1oY3dnB2M6BcZo9k6wdbkJQOKnOS0ekei8dUTTVe+3VLq2m1muSX9Kw5/mOMg/+Rv8NirMZjMp2BNbS7OJkUJodi4KmiIhIm6XgKRHj9ZtsP+qp7zp3saW0Dnej3nObAcOzHYHu885OLs104NBWlCIiIu2Ggqe0GNM0+aTCG2zR3HjEzXFP6MiOQWkNM89HZjtIsGtCkIiISHul4Clhtf+ENzhGc12Rm5La0JnnPRNPbkUZw+jODtJjNCFIRESko1DwlPNy1OVjXX2L5toiN/tOhM48z461BMdoju3sJDdBVU5ERKSjUgqQc3LC42fjkTrWFrlYe9jNR8dCZ54nOQxG129FOaaLk77JHW8rShERETk1BU85I7fPZGv9VpTritxsK62j0QZBxFhhRHYgaI7t7OTidDtWbUUpIiIip6DgKSF8fpPd5Z7gou2biuuo9TUkTasBl2XaGds5hjFdnAzLdBCjrShFRESkGRQ8OzjTNPn8uDdkK8qKutCZ5/1TGraiHNXJSbJDM89FRETk3Cl4dkCHqn2sPewKBs3DNaEzz7slWINLHI3p7CQrVjPPRURE5PwpeHYAx9z+4PJGaw+7+fx46ISgjBhLcNH2sV2c9EhUtRAREZHwU8Joh6o9fjaX1AW7z3eVeWjceZ5gM7i8k4MxXQJ7nvdPtWkrShEREWlxCp7tgMdvsq20LjghaGtpHZ5GvecOC1yW5QjOPB+S6cCumeciIiISYQqebZDfNPnomJe1h12sK3Kz8UgdVY3WODKAwekNW1GOyHYQZ9OEIBEREWldCp5tgGma7DvhC7ZorityU+YOnRDUJ9nG2M5ORtf/SnUqaIqIiEh0UfCMUsU1vsBkoPpfB6tCt6LsGmcNLnE0prOTLvGaeS4iIiLRTcEzSlTW+dlwpKFF85OK0Jnnqc76rSjrw2avJG1FKSIiIm2LgmcrcXlN8ksCrZnritx8cNSDv9HU8zibwchsR7BF86J0u2aei4iISJum4BkhXr/JjjJPcImj/BI37ka95zYDhmU5gt3nl2Y6cFoVNEVERKT9UPBsIaZp8mmFNzghaMMRN8c9oVtRDkyzB5c4GtnJQaJdE4JERESk/VLwDKMDVd7gGM11RW6Ka0Nnnl+Q2LAV5ejOTjJiNCFIREREOg4Fz/Nw1OVjfX2L5toiN1+eCJ15nhVrCY7RHNvFSbcEfbtFRESk41ISOgdVHj8bj9QFlzj6sNwTcj7JbnB5o5nnF6Zo5rmIiIjISc0Knhs2bOA3v/kNO3fupKioiMWLF3PLLbcA4PF4+PnPf86qVavYt28fiYmJjB49mnnz5pGbmxu8h9vt5rHHHuNvf/sbLpeLMWPG8Ktf/YquXbu2zJOFQZ3PZGv9VpTrDrt5v7SORhsE4bTC8CxnsPt8cLodm7aiFBERETmlZgXP6upq+vfvz0033cT3v//9kHM1NTXs3LmTBx54gEGDBnH8+HEee+wxpk+fzoYNG7DZAh/x8MMP8+abb/LSSy+RmprKo48+yowZM1i7di1Wa3SMdfSbJrvKPMGF2zcV11HTKGlaDBiaYQ+2aA7LchJrU9AUERERaQ6joqLCPPtlDbp27cqCBQuCLZ6n8umnnzJixAg2bNjAgAEDqKyspHfv3ixevJgbb7wRgMLCQgYNGsTy5cuZMGHC+T3FeVpX5OaZrUfYXmXnmDv023Fhii0wRrOzk8s7OUnRVpTSThQUFJCXl9faxRCJKNV76Yiiqd63yBjPEydOAJCSkgLAjh078Hg8jB8/PnhNTk4Offv2JT8/v9WDZ3GNj3fKbIBJboI1uMTR6M5OOsVFR2usiIiISFsX9uBZV1fHY489xuTJk4PjN0tKSrBaraSnp4dcm5mZSUlJyWnvVVBQEO7inVJ3Dzzc28qwZD9dY0wM4wT44cQhOBGREoi0jkj9jIlEE9V76YgiWe/P1Loa1uDp9Xq5++67qays5NVXXz3v+0WyWTg1ipqhRSIhmrpeRCJF9V46omiq92EbsOj1ernjjjv46KOP+Mc//kFaWlrwXFZWFj6fj7KyspD3lJaWkpWVFa4iiIiIiEgUC0vw9Hg8zJo1i48++ojXX3+d7OzskPODBw/GbrezZs2a4LFDhw6xZ88ehg8fHo4iiIiIiEiUa1ZXe1VVFXv37gXA7/dTWFjIrl27SE1NpXPnztx+++1s376dV199FcMwKC4uBiApKYnY2FiSk5O59dZbmTdvHpmZmcHllAYMGMC4ceNa7OFEREREJHo0K3hu376dqVOnBl/Pnz+f+fPnc9NNN/HQQw/x5ptvAjQJkY0Xmp8/fz5Wq5VZs2YFF5B//vnno2YNTxERERFpWee8jmd7FU0Db0UiQXVeOiLVe+mIoqneazV0EREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYkIBU8RERERiQgFTxERERGJCAVPEREREYmIZgXPDRs2MHPmTPr160dKSgrLli0LOW+aJvPnz+fCCy+kU6dOXHPNNXzyySch11RUVHD33XfTrVs3unXrxt13301FRUXYHkREREREoluzgmd1dTX9+/fnqaeeIjY2tsn5Z599lsWLF/P000/zzjvvkJmZybRp0zhx4kTwmjvvvJNdu3axfPlyli9fzq5du/je974XvicRERERkahma85FkyZNYtKkSQDcc889IedM02TJkiXMmTOHa6+9FoAlS5aQl5fH8uXLmTVrFnv27GH16tWsXLmSYcOGAfDrX/+aKVOmUFBQQF5eXjifSURERESi0HmP8dy/fz/FxcWMHz8+eCw2NpZRo0aRn58PwJYtW0hISGD48OHBa0aMGEF8fHzwGhERERFp35rV4nkmxcXFAGRmZoYcz8zMpKioCICSkhLS09MxDCN43jAMMjIyKCkpOe29CwoKzrd45yTSnyfS2lTnpSNSvZeOKJL1/kw92ecdPFtSJLvg1eUvHY3qvHREqvfSEUVTvT/vrvbs7GwASktLQ46XlpaSlZUFQFZWFmVlZZimGTxvmiZHjx4NXiMiIiIi7dt5B8/u3buTnZ3NmjVrgsdcLhebNm0KjukcNmwYVVVVbNmyJXjNli1bqK6uDhn3KSIiIiLtV7O62quqqti7dy8Afr+fwsJCdu3aRWpqKrm5ucyePZtFixaRl5dH7969WbhwIfHx8UyfPh2Avn37ctVVV3H//ffzzDPPAHD//fdz9dVXR03Tr4iIiIi0rGYFz+3btzN16tTg6/nz5zN//nxuuukmlixZwn333UdtbS1z586loqKCoUOHsmLFChITE4PvefHFF3nwwQe5/vrrAZgyZQoLFiwI8+OIiIiISLQyKioqzLNf1v5F08BbkUhQnZeOSPVeOqJoqvfaq11EREREIkLBU0REREQiQsFTRERERCJCwVNEREREIkLBU0REREQiQsFTRERERCJCwVNEREREIkLBU0REREQiQsFTRERERCJCwVNEREREIkLBU0REREQiQsFTRERERCJCwVNEREREIsLW2gUQERERkTCrqcL2/jpsu/Jh4s2tXZogBU8RERGR9sDrwborH9vG1dh2bMDweABIzBsCffu2cuECFDxFRERE2iq/H8vnH2LfuArblrUY1ccBMA0D74WD8Y6aSHVaTisXsoGCp4iIiEgbYxzeHwibm1ZjOXokeNyX2wvvyKvwjpiAmZ4FgL+goLWK2YSCp4iIiEgbYFSUYdv8b2wbV2Pd/1nwuD8tE++Iq/COvAp/t16tWMKzU/AUERERiVa1Ndi2rQuEzY8/wDD9AJhx8XgvHYt31ER8fS8GS9tYqEjBU0RERCSaeL1YP9yCbeMqbNs3YtS5ATCtNryDL8cz8ip8F48Ah7OVC3ruFDxFREREWptpYvniY2wbV2HfsgbjRGXwlK/vxXhGXoX3srGQkNSKhTx/Cp4iIiIircQoOoB902psG1djKT0cPO7r0gPvqIl4R07AzOjUiiUMr7AET5/Px/z58/nrX/9KcXEx2dnZ3HjjjTz00EPYbIGPME2Tp556ij/+8Y9UVFQwdOhQFi5cSL9+/cJRBBEREZE2wagsx5b/DraNq7B+uSd43J+SgXfEeLyjJuLv1hsMoxVL2TLCEjyfeeYZXnzxRZYsWUL//v356KOPmD17Ng6HgwcffBCAZ599lsWLF7N48WLy8vJYsGAB06ZNY+vWrSQmJoajGCIiIiLRyVWDbdt72DatwvrRNgx//SShmDi8l43FO/IqfP0Gg8Ua1o816ycjRYuwBM8tW7YwefJkpkyZAkD37t2ZMmUK27ZtAwKtnUuWLGHOnDlce+21ACxZsoS8vDyWL1/OrFmzwlEMERERkejh82L9cBu2TauwbXsPo84FgGm14r3k8sB6m5eMCvskIdNzAl/ZFrxH8/FX7MbIfDSs9z8fYQmeI0aM4KWXXuKzzz6jT58+fPrpp6xfv577778fgP3791NcXMz48eOD74mNjWXUqFHk5+creIqIiEj7YJpY9n4aCJv5a7AcPxY85csbiGfkRLzDxkJiSlg/1l99EF9ZfiBsVn4EjVo6HXV7gYFh/byvKyzBc86cOVRVVTF8+HCsViter5cHHniAO++8E4Di4mIAMjMzQ96XmZlJUVHRae9bEOGV9iP9eSKtTXVeOiLVe2kJjvIS0j7cTOrufGKOlQSPu9I7UT5wOMcGDqcutT4HHSkN/AoTq6eU7CNPBF+bWKhz9sEVOwhX7AB8tsyI1vu8vLzTngtL8FyxYgV/+ctfePHFF7nwwgvZvXs3Dz30EN26deO222772vc9U8HDraCgIKKfJ9LaVOelI1K9l7A6XoE9/53AuM0vPgke9ien4h0+ITBJqEcfkgyDcC2C5HeXU/f57zDrjhF7yVMAmGZvXDUXYsR2wZYxAmv6UBJs8cH3RFO9D0vw/MlPfsK9997L9ddfD8CAAQM4ePAgv/71r7ntttvIzs4GoLS0lNzc3OD7SktLycrKCkcRRERERFqe24Xtgw2BsLl7S8MkIWcM3qFjAjsJ9b8ErOFZsdJfcxh/zQFsGSMAMGwJ+Eo3gt+N312GxZmOYRjEXvpMWD6vpYXlu1JTU4PVGjoLy2q14q//w+jevTvZ2dmsWbOGIUOGAOByudi0aRNPPPFEk/uJiIiIRA2fF+vH2wM7CX2wHsNVC4BpseC9eATekRPxDhkFztjz/ijT78N//BN8RzfjPZqPWXMQrLFYR7+GYXFgWB04B/wYS3x3LM708/68SAtL8Jw8eTLPPPMM3bt358ILL2TXrl0sXryYmTNnAmAYBrNnz2bRokXk5eXRu3dvFi5cSHx8PNOnTw9HEURERETCxzSx7NuDbeNqbPn/xlLZaJJQr/54R03EM+xKSEo5/4/yVuMr24b36GZ8ZVvBe6LhpC0Ba/ql4K0GhyNwKHPUeX9mawlL8FywYAFPPvkk//Vf/8XRo0fJzs7m9ttvD67hCXDfffdRW1vL3LlzgwvIr1ixQmt4ioiISNQwSg5j27Qa+6ZVWIoOBo/7s3PwnNxJKDvnvD/HX1uE72g+3qOb8VfsBtPXUIbYrlgzhmPLGI4leQCGpf1sNGlUVFSYrV2IaBBNA29FIkF1Xjoi1Xs5papKbPnvYt+4CuvnHwYP+xNT8I6YgHfkVfh7Xhi2nYQ8hf9H3WfPNTpiwZLcvz5sjsASn3va934d0VTv20+EFhEREWmuOje27RsD21buzsfwBVocTUcM3qFX4B05Ed+AoWA7v6jkO74Hb+HrWJIuxJ7zTQAsyf3BGoc1/VJsGcOxpl+GYQ/XvPfopuApIiIiHYPfh/WTHYFJQu+vw3DVAGAaFryDhgV2Ehp6BcTEff2PqC0G04MlLtAdb7pK8R5ZjaX2cEPwTOhF3OjXMCz283+mNkbBU0RERNov08Ry4PNA2Nz8DpaKo8FTvgsuxDtqIt7hV2Imp33N2/vxH98THK9pVu/Dmn0lMQN+DIA1bSj2Xt/FljE8+B7DMMDoeKETFDxFRESkHTKOHsG26d+BrvTD+4LH/ZldAjPSR12F2enrjaU0vbX4jn1QHza3gKei4aQ1FsPSsPe6YYvF0f3Gr/kU7Y+Cp4iIiLQPVcexbV0bmCT02a7gYTMhCc/w8YGdhHr1/1qThPyuUnxH8/Ed3YyvYif4PcFzRkwW1owRWNOHY00dhGFxhOVx2iMFTxEREWm76txYd24OhM2dmzF8XgBMuwPvkCvwjroK38Bh5zVJyPXhfHwlaxsdMbAkXYg1YwS2jOEY8T0C3edyVgqeIiIi0rb4/Vj37KyfJLQWo6YaqJ8kNODSwLjNoaMh9twnCXnLtuErWY+9+41Y4roAYInthM8agzVtCNb0EdgyLsNwpIb1kToKBU8RERFpEywHvsC2aTW2zauxlJcGj/u69wmEzRHjMVPObRtJv7sMw5aIYQ10j3uL/oWvZC2WhO5Y4qYBYO92A/YetwSvka9PwVNERESillFWgm1z/SShwr3B4/6MTnhHXoVn1ETMLt2bfT/TNPGf+DwwVrMsH/+Jz3EOmoctcyQAts6TsMR3x5p+WUMZ7Anhe6AOTsFTREREokv1CWzvrwuEzT07MczAJotmfCLeYVfiGTURf97AZk8SMn1ufMd2BMLm0S2YdWUNJy1OTHdD66ktfSikDw3r40gDBU8RERFpfZ46rDvzsW9ahXXnJgxPYNa4abfjGXw53lET8V00DGzNW//S7y7Dd3QLvrLN+Mp3gN8dPGc40rFmDA/8Sh2MYXWe/kYSVgqeIiIi0jr8fiyf7ca+aTW2LWswaqoAMA0Db/8heEdOxHvpaIhrfle36anCteMR/Cc+CzluScwLhk1LQm/NQm8lCp4iIiISUZbCLwOThDatxlJWHDzu69YrEDZHTMBMyzzrfUy/F9+xHfhPfI6jx8zAQVs8prcKLA6sqYMbwqYzo6UeR86BgqeIiIi0OKO8NDBJaNNqrAc+Dx73p2UF9kgfdRX+nJ5nvY/prcWwxda/8OPe/TPwu7F1moAlJhPDMIi5aB5GTDaGNaalHke+JgVPERERaRm11di2rsO2aRXWT7Y3TBKKS8B72bjAJKE+g8BiOe0tTNPErP4S79F8fEfz8VcfIG70XzAsDgyrA3vOVLA4wLAG32OJb/4sd4ksBU8REREJH68H664tga707RswPHUAmDY73sEj8YyciO/i4WA//ZqYpr8O37Hd+MoCW1SarpKGk4Ydf9U+rEl9AHD0vrNFH0fCS8FTREREzo9pYin4MDBJKH8NRvXx4CnfhRfjGTkR72VjIT7x9Leoq8BbtjWwH3r5NvDVNpy0p2DLGFY/C31IQ1e7tDkKniIiIvK1GIf3Y9+4Ctvmf2MpLQoe9+VcUL+T0ATM9Owz3sNX8RF1X7yEv/ITwGy4d3wPbBkjAhODkvpiGKfvjpe2Q8FTREREms2oKMO2+Z3AuM19DUsW+VMzApOERk7E363XKd9r+r34K3YDJta0IYGDVif+yo/BsGNNHYQ1YwTW9OFYYs8cWKVtUvAUERGRM6utwbZtfWBG+kfbMEw/AGZsPN7LxgYWd+97EVisTd5qmv5ga6WvLB/37p9hSepHbH3wtCT0wjloHtbUizFscZF7JmkVCp4iIiLSlNeL9cOtgUlCH7yHURfY+ce02vBePBLPqIn4Lh4JjtBdf0zTxKwpxHt0M76j+VhiO+Hs/wAA1tQhWBJ6YU29GNM0MQwDwzCC+6RL+6fgKSIiIgGmieWLj7FtWo09/x2ME5XBU74+g/CMmoj3snGQkBT6Nr8Xf+VHwbBp1h5uOFd7KNjqadhiiR22OFJPI1EobMHzyJEjPP7446xatYqqqip69OjBr371K6644gog8D+gp556ij/+8Y9UVFQwdOhQFi5cSL9+/cJVBBEREfkajCMHsW9cjW3TKiwlDaHR36V7IGyOmICZ2TnkPabnBL6y9wNhs3wbeKsaTtoSsaZfFpgclD5UE4MkKCzBs6KigquvvpoRI0bw17/+lfT0dPbv309mZsN2V88++yyLFy9m8eLF5OXlsWDBAqZNm8bWrVtJTDz98goiIiISfkZlObb8Ndg2rsL65afB4/6UdLwjJuAdNRF/t97wlT3NvUfW4Dn8Fv7KD6F+rCeAEZeLLWM41owRWJL6YZxivKdIWILn//zP/9CpUyeWLl0aPNajR4/g16ZpsmTJEubMmcO1114LwJIlS8jLy2P58uXMmjUrHMX4+rye4AK3IiIi7Za7Ftu29wJh86P3Mfz1k4RiYvFeOiYwSajfJcFJQqbfh7/yE4zYLlicaQD4q/fhr9gFhgVLysUNYTOuS6s9lrQdYQmeb7zxBhMmTGDWrFmsX7+eTp06cdttt3HXXXdhGAb79++nuLiY8ePHB98TGxvLqFGjyM/Pb/Xgaf1wK4N//QhmTCxmUmr9rxTMpLT63xuO+ZNSMZNTIS7xjFt8iYiIRAWfF+tH27BtXBWYJOR2AWBarXgHjwystzl4FDib7mtet+dZvEX/wpH3PSy50wCwdboKS3wPrOmXYtjVYynnJizBc9++fbz00kvcc889zJkzh927d/PjH/8YgLvvvpvi4mKAkK73k6+Lioqa3O+kgoKCcBTvrFK/3Es3qw2LqxbDVQuNxrecjmlY8MYn4o1LxBOfFPg6vv7ruKSGr+MT8cYnYdrsEXgSkXMTqZ8xkWjSIeq9aRJXtI/U3fmkfrwFe/WJ4KmqnF4cGzicY/0vxRcXCI7WvR8QU/shMbUfUpV4Je7YgQDEujuTaMui4mglNa7G37ccOHEEOBLBh5LzEcl6n5eXd9pzYQmefr+fSy65hHnz5gFw8cUXs3fvXl588UXuvvvur33fMxU8rPLy2DlgGHk5XTCOH6v/VYFRWf/1iQosleWBYyeOBY7XVGGvqsReVUlzNu4yY+MDraeJgRbTxi2p/qTQ18QnNhlTIxJuBQUFkfsZE4kS7b3eG8WHAjPSN63GcuRg8Li/U25wkhDZXUkxfSRVforv6Hq8Rzdj1hwIXhufdgHOvEDrpmn2wjBuIjniTyLhFE31PizBMzs7m759+4Yc69OnD4WFhcHzAKWlpeTm5gavKS0tJSsrKxxFOH+GAXEJmHEJmJ1yz3691xMIoo2DasjX5Y2OVWDUVmPUVkPxobPe2rRaAwH1K938Zn03f/BccipmYgrYHef//CIi0jYdr8C+pX6S0BcfBw/7k1PxDh8fmCTUoy+mrwZf+Qf4Pn4Vb9lW8DQslYQ1rn4W+nCs6ZcFD2s2uoRbWILniBEj+Pzzz0OOff7558GQ2b17d7Kzs1mzZg1DhgR2KnC5XGzatIknnngiHEWIPJsdMy0TMy3z7NeaJtRUBUJo5bFAq+nxCizB1xWh52qqMSqOQsXRZhXFjItv1JIaCKNmcuOW1IaxqsQlqDVVRKStc7uwbd8QCJsfbsXw+QAwnTF4h44OTBLqPwTTYuAt/CfeHX8KTAgyvcFbGLGdsWaMwJY+HEvKQAyLlvaWlheWWnbPPfcwadIkFi5cyHXXXceuXbt44YUX+O///m8ADMNg9uzZLFq0iLy8PHr37s3ChQuJj49n+vTp4ShCdDMMiE/EjE/E7Nzt7Nd76kJbS0NaT7/aulofVGuqobjwrLc2rbavtKSeomU1OS0QXpNSQGNTRUSig9+H9ePtgUlC29YF5iQApsWC96LheEdNxHPJSPyeYqyJPQPvMU08hX/HrC0CLFiS+wfCZsZwjLhuGGqIkAgLS/AcMmQIy5Yt44knnuCXv/wlOTk5PPLII9x5553Ba+677z5qa2uZO3ducAH5FStWaA3PU7E7MNOzMNObMQzB729oTa0PpZbK8tBW1MZjU101GMeOwrFmtqbGJ4aMTfU3alH96ux/YuPVmioiEk6miWV/QSBs5r+DpaIseMrXs19gRvrwKwN/H5t+ajfdgekqInbUy1hiMjEMA3uPWwCwpV+G4dBoTWldRkVFhdnahYgG0TTwtkXVuQOhtPIM41GPN0yqOrnGW3OYdvspxqaeZqxqYgrY1K3TmjpMnRdppK3Ue6O0KDBJaOMqLEUNE3/82V3xjrwK96VD8Rr78ZV/gHPgwxiWwFh/164n8Fd9gbP/XKwpA1ur+BJloqne61/+jsbhxEzPxkzPPvu1fj9UH28Yj9o4mDYaqxr82lWLUV4C5SXNKooZnxScJOVPbNTNf4rZ/8TEqTVVRNq3qkpsW97FvnEV1oIPg4f9iSl4RlxJ3ZA+eJwl+Mry8Re8FjzvO7YLW/qlADj7PwDWWHWhS9RS8JTTs1ggMQUzMQVf1x5nv97taginJxp18zcej3ry9YlKjOrjGNXHoegAZ9tYzbQ7TtN62nSRfzMxGayq2iLSBtS5se7YFAibu/IxfIHJP6bDiefSUbiGdMcTX46vfDPmkbca3meNwZo2FGvGcKxJDavKGLa4SD+ByDnRv84SPs4YzMzOmJmdz36t3wdVJ7Ccrpv/q0MA3C6MsmIoKz7rrU3DgISkRq2ojWf7p4V095vJqeCMVWuqiESO34f1052BcZvvrwsstUdgY5K6wZdQO7QLnoRj+I5vgxOboH7td8OZGQiaGSOwplyEYdVSetL2KHhK67BYISkFf1JK865314Z2858cgxrydX1QrarEOFGJ9UQlnH0TKkyH8/Stp18dq5qYHNzDWESk2UwTy8EvAmFz07+x1C+XZwKePr3xX3p1YM1N6zFcW++FisDbLEl9sabX74WecIG60KXNU/CUtsEZi5kZ2+zWVONE5em7+Ru3qFYew6hzYxwthqPNa001E5K/suxUanAx/+DX9UEVZ3P2tRKR9sooK8a2aXVgvc1D+4LH/ZmdcV0xlKq09zHiEom99AYALGYatk4TsaQMwJo+DIszrZVKLtIyFDyl/bFYA6EwuRl/YZtmoDX1qwv5H//q6wosJ45B1XEsJyrgRAU0+kfktLd3xpx5PGqjbVNJSFRrqkh7UH0C29a1gXGbe3YC4IuFmoHxeHvlYRt0J/7eAzB9Lsz1N4L7KKbPjWF1YhgGzv7/1coPINJyFDylYzMMiInDjInDzO569ut93lO0pp5ukf/ywNjU0iIoLTrrrU3DgpmYfPpu/pDtUtPA4QzDN0BEwqLOjXVXfiBs7twMXg/eNIPaSxy48hLxxVYDPrAVEterH4ZhYNhiiR2+FCO2s7rQpcNQ8BQ5F1YbZko6Zkr62a81TXDVNATRkCWoyoOtqMHZ/9XHMY4fg+PHmlUUMyY2dNmpxNSvLOzfsG0q8UmBVQpEJHz8fiyf7cK+cRW2re+Cq5q6zhZqLrXi7pGI3+mpv7AaLA6sqZdgzRgOpg/q1/KwxHVprdKLtAoFT5GWYhgQG48ZG4+ZnXP2673ehu79M22RevK1qzawZV7p2WdQmRZLwxjU+jDa1QeOnZ0w7Y7A+q4OJ9id4HAEvzYdgdfYHZh2Z6PrAse0GoB0RJbCvcFJQmZNCXU5VqqHW3B3jQXryT1ZPBiOtPpZ6MOxpg7GsMa0arlFooGCp0i0sNkwUzMwUzPOfq1pQm11027++rGqlq8u8l99AqOyHCrLg7doxoasZy6CYdQHUCfmyXAaDK8nj50Mr85AwP1KyDUdgdeNQ65pdzbcy/GVr602hV1pFUZ5CbbN72Dd+C+shXsx6vPl8cuTqe3trr/KxJLQK7DcUcZwLIm9MQz1NIg0puAp0hYZBsQlYMYlYHZqTmuqp35h/4Zu/rIvPycjKRHDUxfYSrXODR431NUFvzbqAq/x1GF43IHrTl7j9UBd/bHqln9kCIyDpT6smnZH08DaOOQ2+r1xyDW/EoxPeX3wOoc2I+jIaqqwvb8uMCP90x24elo4PsxGXFocjrQJeEZOxMy2Y93/50DYTB+GJSaztUstEtX0N6pIR2CzY6ZlYqY1/KNYkt2T5PPZu9fvg2BorQ+nTQLrya/dgYD7lZBr1NU1CrPu+ns0et9Xg7DPB25XYJesMHxbmsO0WgPBNRhKTzHs4GRQDbbOniYIh1x/+tZfjcdtRV4P1l35WPPfxFv+PtZyD7ajJqbdjr9HH/wJX1A7YTjmxYGZ51bAmvKz1i2zSBui4CkiX4/FGlin1BnLyVFt5hnfEAY+b9MW2GBgPRleGwfaujMH4cbvPVUQrqsLhF1fDYarpqWfLsi02etDbONW2VOMv7U7Th+ET1538pozDIPo8ON1/X6Mgt1Y3v87vqP51GZ78fQxwLDgLMkipsvteIeOxnRaiKk+iCWpT2uXWKTNUvAUkbbDaoNYG8TGRSbsmmYg7IYE27pG4bVxi2xoyG0Ir+6vDGeoC76vccht3NJreD2B4RG1ERrDAJh2e6NAe7rxt42C8FfG3waHJthPNTntFGN9oyHsFn6O8f5r+Mryqctw4etsgc4AFjAtWBMHYPa7Gm/nqwAwAGvyha1ZYpE2T8FTROR0DANs9sBQhdj44OEWD7v142fPOP72ZItt3Zlaf+u+Eo6bhtzANXUYHg94PBg1VS35dA2P+dXJaY3G355qktmpxt82rLDQdKzvqYY1YLVhrzyM+a//h7d8K56UGswkA5IALBh+B9bkIVi7X4U1bQiGLS4i3wuRjkTBU0QkmgQDmSNyQxj8/oaw+5VhByEB9SvDFZq0/nrqTjk5rWEM78nA3HqT0zpda6Mm2VK/rIOBtS4ea+qlWPpMxZLSD8PQ7mEiLUnBU0Sko7NYGloT6w+1fNj96uS0r46/Pc2Y3EYh99ST00KHQYSM4fX5cBSC15qEJX04lkHTsSR1b+knFZFGFDxFRCTyWmly2heffUZev/4t/Ukichpas0NERDoGqy0wZldEWo2Cp4iIiIhEhIKniIiIiESEgqeIiIiIRESLBM9FixaRkpLC3Llzg8dM02T+/PlceOGFdOrUiWuuuYZPPvmkJT5eRERERKJQ2IPn1q1b+cMf/sCAAQNCjj/77LMsXryYp59+mnfeeYfMzEymTZvGiRMnwl0EEREREYlCYQ2elZWV3HXXXfz2t78lJSUleNw0TZYsWcKcOXO49tpr6d+/P0uWLKGqqorly5eHswgiIiIiEqXCGjxPBssxY8aEHN+/fz/FxcWMHz8+eCw2NpZRo0aRn58fziKIiIiISJQK2wLyf/zjH9m7dy8vvPBCk3PFxcUAZGZmhhzPzMykqKjotPcsKCgIV/GaJdKfJ9LaVOelI1K9l44okvU+Ly/vtOfCEjwLCgp44oknWLlyJXZ7+BbnPVPBw62goCCinyfS2lTnpSNSvZeOKJrqfVi62rds2UJZWRkjRowgPT2d9PR0NmzYwIsvvkh6ejppaWkAlJaWhryvtLSUrKyscBThvEXLH4hIpKjOS0ekei8dUTTV+7C0eF5zzTVccsklIcf+8z//k169evGjH/2I3r17k52dzZo1axgyZAgALpeLTZs28cQTT4SjCCIiIiIS5cISPFNSUkJmsQPExcWRmppK//79AZg9ezaLFi0iLy+P3r17s3DhQuLj45k+fXo4iiAiIiIiUS5sk4vO5r777qO2tpa5c+dSUVHB0KFDWbFiBYmJiZEqgoiIiIi0IqOiosJs7UKIiIiISPunvdpFREREOpj58+czcuTIiH9uuw+es2fPZsaMGa1dDJGImD17NikpKdx7771Nzs2bN4+UlBT9PEi7ofou0qCt5J12HzxFOpqcnBz+/ve/U11dHTzm9Xr5y1/+Qk5Oznndu66u7nyLJxJWLVnfRST8OlTw/OCDD5g2bRo9e/YkNzeXyZMns2XLlpBrUlJS+MMf/sDtt99Oly5duPjii3nttddaqcQi527AgAH07NmT//3f/w0ee/vtt3E6nVxxxRXBY839efjd737Ht7/9bbp06aLlzyTqhKu+/+d//meT1iK/38/AgQP57W9/2/IPIhJGp2r9bK2u9a/qUMHzxIkTzJgxg7feeot///vfDBo0iBtuuIHy8vKQ6xYsWMA3vvEN3nvvPa677jruvfdeDh482EqlFjl3t956K8uWLQu+fuWVV7jlllswDCN4rLk/D08//TSTJk1i48aN3HnnnRF7BpHmCkd9v/3221m9ejVHjhwJvmfNmjUUFxczc+bMyD2MSDvXoYLn2LFjmTlzJn379qVPnz4sWLCAmJgYVq1aFXLdjBkzmDFjBj179uTRRx/FZrOxcePGViq1yLm74YYb2L59O1988QXFxcX8+9//5uabbw65prk/D9OmTeO2226jR48e9OjRI4JPIdI84ajvw4YNo0+fPrz66qvB97zyyitMmTKFjIyMiD6PSHsWsXU8o0FpaSlPPvkk69evp7S0FJ/PR21tLYWFhSHXDRgwIPi1zWYjPT29yXafItEsJSWFb37zm7zyyiskJydzxRVXkJubG3JNc38evrormUi0CVd9v+2223jppZe4//77OXbsGG+++SavvPJKpB9HpF3rUMFz9uzZlJSU8Itf/IJu3brhdDr51re+1WTChN1uD3ltGAamqeVOpW359re/zezZs4mPj+eRRx5pcr65Pw/x8fGRKrLI1xaO+j5z5kwef/xxNm3axK5du8jIyGDChAmRfAyRsLBYLE1yi9frbaXShOpQwXPz5s089dRTXH311QCUlJRQXFzcyqUSaRljx47FbrdTVlbGNddc0+S8fh6kPQlHfU9NTWXq1Km88sor7Nq1i5tuugmLpUONSJN2IiMjg927d4cc++rr1tKhgmevXr3461//yqWXXkpNTQ0/+clPcDgcrV0skRZhGAYbNmzANE2cTmeT8/p5kPYkXPX9tttuY/r06Xg8Hl5++eVIFF0k7MaMGcOzzz7Lyy+/zOWXX87rr7/O5s2b6dq1a2sXrf1PLvL7/VitVgB++9vfUl1dzbhx4/jud7/Lt7/9bbp169bKJRRpOYmJiSQlJZ3ynH4epL0JR30fPXo0Xbp04YorrtBkOmlTGuedCRMm8OMf/5if//znjBs3jgMHDkTNqiTtfq/2adOmccEFF7Bo0aLWLoqIiES52tpa+vXrx4IFC7jxxhtbuzgizdZW8k67bfEsKyvjjTfeYMOGDYwbN661iyMiIlHM7/dTWlrKwoULiY2NZdq0aa1dJJFmaWt5p92O8fzOd77D3r17+eEPf8jUqVNbuzgiIhLFDh48yMUXX0zXrl1ZvHhxk9VNRKJVW8s77b6rXURERESiQ7vtahcRERGR6KLgKSIiIiIRoeApIiIiIhGh4CkiIiIiEaHgKSIiIiIRoeApIiIiIhHx/wOOs2B23XXh8QAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(10,5))\n",
+ "x = [\"Jan\", \"Mar\", \"May\", \"Jul\"]\n",
+ "\n",
+ "plt.plot(x, [120, 150, fl_before, fl_after], label=\"FL\", lw=2)\n",
+ "plt.plot(x, [60, 50, poa_before, poa_after], label=\"POA\", lw=2)\n",
+ "\n",
+ "plt.plot([\"May\", \"Jul\"], [poa_before, poa_before+(fl_after-fl_before)], label=\"Counterfactual\", lw=2, color=\"C2\", ls=\"-.\")\n",
+ "\n",
+ "plt.legend();"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Chapter 15에서 Synthetic control이라는 방법을 통해 이 문제를 해결하는 방법을 살펴볼 예정입니다. Synthetic control을 사용해, 여러분이 관심이 있는 도시의 추세를 밀접하게 따르는 인위적인 도시를 생성하는 방법론입니다. 그러나 이번 챕터에서는 DID를 적용할 때, 평행 추세가 있는지 항상 확인해야 한다는 것을 기억해주세요.\n",
+ "\n",
+ "\n",
+ "\n",
+ "마지막으로 언급할 문제는 집계된 데이터만 있는 경우, DID 추정량에 신뢰 구간을 둘 수 없다는 점입니다. 예를 들어 Florianópolis 또는 Porto Alegre의 각 고객들에 대한 데이터가 없다고 가정해 보겠습니다. 대신에 두 도시의 개입 전후의 평균 예금에 대해 집계된 데이터가 있습니다. 이 경우 DID로 인과 효과를 추정할 수는 있으나 추정량에 대한 분산은 알 수 없습니다. 데이터의 모든 변동성이 집계를 통해 제거되었기 때문입니다.\n",
+ "\n",
+ "## Key Ideas\n",
+ "\n",
+ "이번 챕터에서 더 많은 거시적 단체/그룹(학교, 도시, 주, 국가 등)에서 인과 관계를 추정할 때 널리 적용되는 DID 방법론에 대해 탐구했습니다. DID는 실험군에 대해 처치 전과 후의 결과를 파악하고 대조군 추세와 비교합니다. 이번 장에서는 도시별 마케팅 캠페인의 효과를 추정할 때, DID가 어떻게 적용될 수 있는지 살펴보았습니다.\n",
+ "\n",
+ "마지막으로 처치된 그룹과 대조군의 추세가 동일하지 않을 때, DID가 제대로 작동하지 않는 경우에 대해 살펴보았습니다. 또한 집계된 데이터만 있는 경우 DID가 얼마나 문제가 되는지도 확인해볼 수 있었어요.\n",
+ "\n",
+ "## References\n",
+ "\n",
+ "저는 이 책을 Joshua Angrist, Alberto Abadie 및 Christopher Walters의 대단한 계량 경제학 수업에 대한 찬사라고 생각하고 싶습니다. 이 자료에 있는 대부분의 아이디어는 전미경제학회(American Economic Association)의 수업에서 가져왔어요. 이렇게 좋은 참고자료를 지켜보는 것이 저의 2020년의 힘든 한 해 동안, 온전한 정신을 유지하도록 도와주었어요.\n",
+ "\n",
+ "* [Cross-Section Econometrics](https://www.aeaweb.org/conference/cont-ed/2017-webcasts)\n",
+ "* [Mastering Mostly Harmless Econometrics](https://www.aeaweb.org/conference/cont-ed/2020-webcasts)\n",
+ "\n",
+ "\n",
+ "또한 Angrist의 정말 좋은 책들을 참고자료 목록에 담고 싶습니다. 이 책들은 계량경제학(Econometrics) 또는 '메트릭스(Metrics, 계량적 분석)'가 매우 유용할 뿐만 아니라 매우 재미있다는 것을 저에게 보여주었습니다.\n",
+ "\n",
+ "* [Mostly Harmless Econometrics](https://www.mostlyharmlesseconometrics.com/)\n",
+ "* [Mastering 'Metrics](https://www.masteringmetrics.com/)\n",
+ "\n",
+ "제가 참고한 또다른 자료는 Miguel Hernan과 Jamie Robins의 책입니다. 이 책들은 제가 대답해야 했던 까다로운 인과적인 질문에서 신뢰할 수 있는 동반자와 같은 존재였어요.\n",
+ "\n",
+ "* [Causal Inference Book](https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/)\n",
+ "\n",
+ "마지막으로, Scott Cunningham과 인과 추론과 Mixtape 형태를을 결합한 그의 훌륭한 작업에도 찬사를 보냅니다.\n",
+ "\n",
+ "* [Causal Inference: The Mixtape](https://www.scunning.com/mixtape.html)\n",
+ "\n",
+ "\n",
+ "\n",
+ "## Contribute\n",
+ "\n",
+ "Causal Inference for the Brave and True는 인과추론, 통계학에 대한 오픈소스 자료입니다. 이 자료는 금전적으로나 지적으로 접근이 가능할 수 있도록 하는 것이 목표입니다. 그리고, 이 책은 Python 기반의 무료 소프트웨어만 사용해요.\n",
+ "여러분들께서 이 자료가 가치 있다고 생각하시고, 금전적으로 지원을 원하신다면 [Patreon](https://www.patreon.com/causal_inference_for_the_brave_and_true)를 방문해주세요. \n",
+ "만약 여러분이 금전적으로 기여하기가 쉽지 않으시다면, 오타 수정, 수정 제안, 이해하기 난해한 부분에 대한 피드백 제공 등을 통해 도움을 주실 수 있어요. 이 책의 Github 저장소 [이슈 페이지](https://github.com/matheusfacure/python-causality-handbook/issues)를 방문해주세요. 마지막으로 이 자료가 여러분의 마음에 드셨다면 도움이 될 수 있는 다른 사람들과 공유해주시고, [이 책의 Github 자료에 star](https://github.com/matheusfacure/python-causality-handbook/stargazers) 부탁드립니다!"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3.9.7 ('Workspace_JS')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ },
+ "orig_nbformat": 4,
+ "vscode": {
+ "interpreter": {
+ "hash": "a812027cb36d52afc6bf34b1f842ed1960d479f5dea7272b4a52eb53764f32d8"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}