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Abstrat. Reetion is the ability of a dedutive system to internalize as-

pets of its own struture and thereby reason to some extent about itself. In

this paper we present a theoretial framework for exploring reetion in type

theories that use the \Propositions-as-Types" priniple, suh as Martin-L�of

style theories. One of the main results is that it is unneessary to build a om-

plete G�odel style \reetion" layer on top of the logial theory. This makes it

possible to use our framework for an eÆient implementation of reetion in

theorem provers for suh type theories. We are doing this for the NuPRL and

MetaPRL systems.

1 Introdution

We use the term \reetion" to refer to the apability of a logial system to talk about

itself, say about its onsisteny, provability properties, syntax, semantis and proofs.

There are various \degrees of reetion" depending on how muh the system an say

about itself. We are onerned mainly with onstrutive formal systems that de�ne

a notion of omputation; there is more to say about these systems than about non-

omputational ones. Moreover, suh systems are important in omputer siene. One

reason is that they are relevant to the foundations of omputer siene; and another

is beause their implementations, suh as NuPRL [11℄, MetaPRL [15, 19℄, Coq [6℄ and

Alf [18℄ have demonstrated that suh systems are ritial to the hallenge of reating

reliable software as well as to the new enterprise of formalizing omputational math-

ematis. We refer to reetion for implemented proof development systems based on

open onstrutive logis as pratial reetion. Aording to our de�nitions, pratial

reetion allows a system to talk about its omputability relation.

It turns out that pratial reetion is a subtle business. First there is a theoret-

ial issue, namely the most obvious (but naive) proof rules are inonsistent beause

of Lob's theorem and related phenomena. Seond, there is a pratial hallenge in

that the traditional G�odel approah to reetion entails, in a sense, a omplete reim-

plementation of a system within itself. While this approah is theoretially sound, it

leads to an expensive and unneessary blowup when applied to real omputer systems.
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This paper addresses these two problems. We show how to aomplish pratial

reetion in a way that gradually inorporates more and more of a logi. We then

show how to derive reetion rules from the base logi, and �nally we show how to

approah the problem of validity for the reeted system by proving properties of it

and relating them to other logial systems. In partiular, in Setion 8 we show how

to relate a simple abstrat reeted propositional logi of Artemov [2℄ to our type

theory.

To implement any form of reetion, the �rst thing that we need is to identify the

level of objets we are interested in, and then �nd a way to represent them. Setion 2

explains how a theory that uses the \Propositions-as-types" priniple allows us to

internalize and reason about provability (using an impliit form of the Curry-Howard

isomorphism and higher-order funtionality of type theory). However this approah is

too abstrat for many pratial needs: we would like, among other things, to be able

to talk about syntatial objets | terms.

The most diret ways of implementing onrete syntatial reasoning (suh as

omputing G�odel numbers) an lead to exponential spae omplexity. On the other

hand, with a theorem prover we have a omputer system that already has an enoding

of the syntax. In Setion 3 we show how this enoding an be reused by exposing it

to the logi rather than reimplementing it

1

. This is the approah that have been used

in programming languages (e.g., Sheme [17℄) as a natural implementation tehnique.

Boyer and Moore used this approah to talk about the notion of omputability in

NqThm [8℄.

One the internal implementation of syntax is exposed to the logi, we need to

establish the relation between these syntati objets and the semantial objets they

should represent. One way of ahieving this would be to opy all existing semantial

rules into the syntatial domain, getting a separate syntatial provability theory,

arti�ially-linked to the atual one [1℄. We present a more diret approah whih,

again, follows the design priniple of Setion 3 | instead of dupliating this informa-

tion, we expose it. In a sense, we \let the theory know" how the syntatial objet

orrespond to semantial objet they represent. To do this, in Setion 4 we add a

funtion to our theory that takes a syntati objet of type Term and returns the

semantial objet it represents.

Surprisingly, it turns out that suh a funtion (together with a simple desription

of its properties) is the only thing that we need for most of our theorem-proving

needs. In Setion 5 we demonstrate how that is possible and, in partiular, how for

eah appliation we an hoose whih objets (inluding proof objets) we want to

treat purely semantially and whih objets we want to treat both syntatially and

semantially.

While our main goal is to implement pratial reetion, we annot say that we

have ahieved this goal until we have a good understanding of the logial power of our

1

Sometimes in addition to \proper" reetion of a logial system A in itself, we may want

to be able to reason about some other logial system B inside A. In that ase, obviously,

we have no other hoie than to reimplement in A the relevant strutures from B that

are absent in A. However we still an apply the approah outlined in this paper to avoid

reimplementing the strutures that are ommon to both.
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system and in partiular, how it ompares to traditional reetion approahes. This

reveals an additional need to be able to reason generally about logial properties of

reetive omputer systems while abstrating away from the spei�s of the reetion

implementation. To address this need, we present in Setion 7 a alulus designed

for studying reetion in an implementation-independent way, and we show how to

interpret it in our type theories.

2 Internalizing provability via \Propositions-as-types"

Before we an �gure out what we need to add to a type theory in order for it to be

able to reet itself, we need to understand what is it that it is apable of doing on

its own. In the ase of a type theory based on the \Propositions-as-types" priniple,

the answer turns out to be | \a lot".

One of the ommon reasons for theorem provers' users to want to have reetion

apabilities is so that they an express and prove a theorem that formulas from ertain

syntati lass are true and then be able to apply that theorem to partiular formulas.

A ommon \toy example" for suh approah is proving that for any n � 1, 1 � k � n

and propositions C

i

(i = 1 : : : n), the formula C

n

) (C

n�1

) : : : (C

1

) C

k

) : : :)

(whih we denote as F

C;n;k

) is provable. We an use the higher-order funtions present

in type theory to express F

C;n;k

as primre

�

n; C(k); �P : Prop: �i : N: C(i) ) P

�

2

.

Using the \Propositions-as-types" nature of our type theory, we an also state

that F

C;n;k

is always provable:

8n : N

+

: 8k : f1::ng: 8C :

�

f1 : : : ng ! Prop

�

: F

C;n;k

(1)

and then prove the above statement by indution over n using the fat that when we

unfold the de�nition of primre for positive n, we get a formula with an \) " as its

top-level operator whih allows us to prove the formula using ordinary logial rules

for impliation.

In order to better understand how lose the above is to \real reetion", onsider

the following. After the proof of (1) is omplete, we an automatially extrat a witness

from it and onvert the proof into a proof of

8n : N

+

: 8k : f1::ng: 8C :

�

f1 : : : ng ! Prop

�

: w

C;n;k

2 F

C;n;k

(2)

whih means that for eah partiular C, n and k, w

C;n;k

omputes a Curry-Howard

enoding of a proof of F

C;n;k

, whih in turn means that (2) expliitly shows that

F

C;n;k

is always provable while (1) is doing exatly the same impliitly. Note that

from this point of view, the \reetion" rule is just the (witness) rule

� ` t 2 A

� ` A

(witness)

that was always present in type theory.

2

Where primre is a primitive reursion operator s.t. primre(0; base; step) = base,

and primre(i; base; step) = step(primre(i � 1; base; step); i) (when i > 0), and

Prop is a type of propositions.
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Of ourse, this is not a real reetion yet. One feature that is notieably miss-

ing is the ability to reason about syntatial properties of formulas and syntatial

operations on formulas. This feature is addressed in Setions 3 through 5.

3 Internalizing syntax: the Term type

To add pratial reetion to a logial system, we need to be able to reason about its

syntax, be able to do strutural syntati indution, reason about evaluation, et. For

this, we must begin by allowing the system to express its own syntax: adding term

quotations. For an extended disussion, see [7℄.

All theorem prover implementations have some implementation of its syntax data-

type, ommonly alled term. We want to have a Term type of syntati user objets

in our theory that represents this internal term type of implementation objets in our

logial environment. The traditional \G�odel-like" approah is to use existing logial

apabilities to reate Term as an enoding for term objets, G�odel numbers in the ase

of an arithmeti-oriented logi. In type theories like NuPRL's, we an use a reursive

type with tuples and lists, whih has the advantage of produing a delaration of

Term that is analogous to the internal term de�nition. There are two fundamental

problems with this solution:

{ This representation is by its nature exponential in its quotation level.

{ Information that is part of the implementation is repeated unneessarily.

To demonstrate the �rst problem, take a simple NuPRL term: \pair(1; 2)" | its

quotation using this naive de�nition is \pair(ppairq; list(p1q; p2q))", and quoting this

yields:

pair(ppairq; list(pppairqq; pair(plistq; list(pp1qq; pp2qq))))

3

:

A similar problem ours in programming languages that implement reetion,

like Sheme. There, the ommon solution is for the implementation to expose its

internal syntax representation to user-level ode. Both problems above are solved

instantly by this approah: there is no blowup, and there is no repetition of struture

de�nitions, there is even no need for verifying that the reeted part is equivalent

to the implementation sine they are the same. Most Sheme implementations take

this even further: the eval funtion is the internal funtion whih is exposed to the

user-level; [20℄ shows how this approah an get an in�nite tower of proessors.

This solution is the general priniple that guides our implementation of reetion:

never repeat information | in our ase, we expose internal mahinery instead of

reimplementing it. Translating this priniple to term quotation, we wish to expose

internal term objets |make Term be term. Theorem provers behave di�erently than

programming languages and the straightforward solution does not work. For example,

NuPRL uses equational reasoning so it assumes that terms an be substituted with

equal terms, therefore, a quotation ontext like Sheme's quote speial form annot

be used. Instead, we introdue a mehanism for shifting operator names: a tagged

3

This is simpli�ed: quoted primitives are themselves terms.
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term \t( : : : )" is a value term

4

that stands for \t(: : :)". To quote a omplete term,

we tag its operator and ontinue reursively, for example, the quotation \pair(1; 2)"

is \pair(1; 2)" | the seond is a member of the Term type, that stands for the �rst

as an internal term instane. The ability to loally hoose terms to quote gives us

several advantages:

{ no need for a speial evaluation ontexts like Sheme's quote;

{ we an still mix onstant quotations with desriptions: terms that evaluate to

quotations, no quasiquote mehanism is needed;

{ linear number of tags instead of an exponential blowup.

Another diÆulty with NuPRL's syntax is that term objets ontain bound sub-

terms | terms with binding positions. This problem has a surprisingly simple so-

lution: binding ourrenes are left intat | they are still binding positions, the

quotation of \�x:x+1" is \�x:x+ 1". This enables us to use internal term objets for

representing terms, but it has a strong impliation: sine quoted bound variables are

still variables, we have no aess to their names. This might sound as a restrition,

but this is not the ase. The interfae that gets exposed as Term (e.g., its equality

relation) is the internal term modulo alpha-equality whih is a big win. We need not

formalize anything related to alpha-renaming and valid substitutions | the system

handles this for us the same as all terms. For example, \�x:x" is automatially equal

to \�y:y". This mehanism is similar in its nature to some designs for a low-level

Sheme maro mehanism to support hygieni rewrite rules, like the identi�ers of [9℄.

The higher system abstration layer that gets exposed using this tehnique elimi-

nates a lot of work, but we still need term management apability. An approah that

is again similar to high-level Standard Sheme maros [17℄ is to use rewrite rules

5

.

The MetaPRL system [15, 16℄ has demonstrated that the mehanism of rewrite rules

is a powerful term management tool, so exposing it should be suÆient. Some other

useful operations like pattern mathing and destruting terms an be expressed via

rewrites. Even for extreme ases where speial funtionality is needed, we always

follow the \exposing instead of reimplementing" approah.

4 Linking syntax with semantis

The Term type allows us to reason about syntati objets, however, we have no

onnetion so far to the semanti objets they should represent. In order to establish

suh a onnetion, we add an operation to our theory that takes a syntati objet

of type Term and returns the semanti objet it represents. We all this funtion \a

referene operator" (see [13℄), notated as \#", whih \strips" quotation tags yielding

the represented objet. For example, the following terms all evaluate to \pair(1; 2)":

{ #pair(1; 2)

{ #pair(1; 1 + 1)

{ #((�x:pair(1;x))(1 + 1))

4

A value term is a term that evaluates to itself.

5

Note that we must have these implemented internally and exposed to the theory.
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In order to have partial evaluation semantis for \#", it is natural to de�ne \#" of

a term with a quoted name as stripping the quote and ontinuing reursively through

its subterms: \#t(t

1

; : : : ;t

n

) 7! t(#t

1

; : : : ;#t

n

)". This de�nition works �ne with the

above example, inluding the last ase.

However, this does not work for quoted terms that have binding positions, for

example we expet \#�x:x+ 1" to evaluate to \�x:x + 1", but following the above

redution sheme, we get \�x:(#x) + 1". The problem lies in the fat that when we

quote the original \�x:x + 1" term, we leave the binding position x and its bound

ourrenes as variables, and when we push the \#" operator to the subterm, we must

not try to strip the non-existent quotation tag from bound ourrenes. The way we

an still push \#" into bound subterms is to wrap the orresponding bound variables

by an operator that anels the e�et of \#", say \"", using standard substitution.

So \#�x:x+ 1 7! �x:#(("x) + 1)," and evaluation ontinues with \�x:(#"x)+1", and

�nally the \#"" anel.

The formal partial evaluation rule for \#" is therefore simple:

#T (x

1

:t

1

; : : : ;x

n

:t

n

; ) 7! T (x

1

:#t

1

["x

1

=x

1

℄; : : : ;x

n

:#t

n

["x

n

=x

n

℄) (3)

#"x 7! x (4)

This makes \"" an auxiliary onstrutor for evaluating \#". \"" is a value term that

an be onsidered as a \promise" to anel a future \#" appliation

6

.

A onept related to \#", is that of subtypes of Term that lassify them aording

to their denotation types. Informally, we de�ne Term

A

as fx : Term j #x 2 Ag. For

an extended disussion, see [13, Setion 3℄.

5 Implementing full reetion

In our approah to reetion, we get to hoose whih objets we want to treat purely

semantially, referring only to properties of the objet itself, and whih objets we

want to treat both syntatially and semantially, referring to properties of both the

objet itself and to properties of the term it represents

7

.

Note that in the onventional G�odel-style approah, when we disuss the prov-

ability of some formula, we treat the formula itself purely syntatially, and we treat

proofs both semantially (when reasoning about the provability of ertain proposi-

tions) and syntatially (when, for example, doing indution on proofs). In our ase,

sine the way we have internalized provability is not diretly onneted to syntax

in any way, we have the freedom of hoosing whether we want to treat something

6

Another view on the interplay of \#" and \"" then we use both to keep bound variables

at the same quotation level.

Note that \"" annot be de�ned as a funtion as there is no deterministi way to get a

syntati representation for a semantial value.

7

For example, in the ase of a �-term, the properties of the funtion it omputes would

be the semantial properties and the syntatial struture of the term itself would be,

obviously, its syntatial property.
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syntatially on a per-proof and per-objet basis. Also, when we treat something syn-

tatially, the # operation desribed above gives us the ability to swith to reasoning

about semanti properties of an objet.

For example, suppose A and B are syntati representations of propositions, in

other words, they have the type Term

Prop

. In that ase A)B is a syntati im-

pliation from A to B. Using #, we an easily express the statement that A is a

syntati representation of a provable formula | #A. We an also express something

very similar to modal normality priniple (�A ) �(A ) B) ) �B):

8A : Term

Prop

: 8B : Term

Prop

: (#A) ) (#(A)B)) ) (#B) (5)

Using the partial evaluation rule for # (3), we an easily prove that #(A)B) is the

same as (#A) ) (#B) after whih (5) an be proven using the modus ponens rule.

Similarly, we an prove an expliit version of (5):

8A : Term

Prop

: 8B : Term

Prop

: 8a : (#A): 8f : (#(A)B)): (f Æ a) 2 (#B) (6)

where f Æ a is a notation for f(a). Clearly, in (5) we treat proofs purely semantially.

However, if we use another instane of (3), namely the fat that #(fÆa) is the same

as (#f) Æ (#a), we an also prove the more syntatial version of (6):

8A : Term

Prop

: 8B : Term

Prop

: 8a : Term

#A

: 8f : term

#(A)B)

: (fÆa) 2 Term

#B

(7)

For ompleteness sake, we an also onsider the ase where we only want to treat

proofs syntatially, but only treat formulas semantially. In that ase we an state

and prove the following:

8A : Prop: 8B : Prop: 8a : Term

A

: 8f : Term

A)B

: (fÆa) 2 Term

B

(8)

It is worth mentioning that among all of the examples above, (7) is losest to the

onventional way of dealing with provability (where everything is onsidered synta-

tially). If we denote �A == Term

#A

and then take the impliit version of (7), we

get the normalization priniple:

8A : Term

Prop

: 8B : Term

Prop

: �A ) �(A)B) ) �B (9)

While the examples above illustrate that we an treat anything syntatially that

we want to treat that way, they do not show why we would want to do it. Consider now

the following example | suppose we want to write, say, a normalization proedure for

polynomials with integer oeÆients and we want to be able to prove some properties

of it. In this ase, obviously, we need to be able to reason about syntati properties

of the polynomials (sine normalization is a syntatial proedure) as well as about

their semantial properties (we want to be able to say that a normalized polynomial

is always equal to the original one). To do this, we de�ne a type Poly (a subtype of

Term

Z!Z

)

8

of polynomials with integer oeÆients and we write our normalization

8

Writing suh a de�nition is a straightforward proess, but a little lengthy when doing it

\from srath", so we omit it.
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proedure norm : Poly! Poly. Now we an state some properties of the normalization

algorithm:

8p : Poly: #(norm(p)) = #p 2 (Z! Z) &

8p; p

0

: Poly: (#(p) = #(p

0

) 2 (Z! Z)) , (norm(p) = norm(p

0

) 2 Poly)

(10)

where the ternary relation a = b 2 T means that a is equal to b as elements of

type T , in partiular a = b 2 Poly means that a and b are syntatially equal

9

,

while a = b 2 (Z! Z) means that a and b are semantially equal (as funtions from

integers to integers). We an prove (10) by strutural indution on p and p

0

and using,

as usual, evaluation rule (3). For example, when proving that reordering summands

does not hange the result, we use

#(a+b) = (#a) + (#b) = (#b) + (#a) = #(b+a)

where the �rst and last equalities follow from the properties of # and the seond one

| from the properties of \normal" semantial +.

6 Reetion by trust

A limitation of our method is that it models the partiular implementation that we

have hosen, making it impossible to talk about alternatives without resorting to

the kind of dupliation we are striving to avoid. For example, our Term quotations

of primitive term objets makes quotation easy to manage within the system, but

it also makes it impossible to express di�erent binding rules than the ones we have

implemented. This restrition is aeptable beause we expose our system exatly,

and that is what reetion is about. However, there might be ases where we want to

use the mehanisms for reetion to get a little more than proper reetion, namely,

when we want to use meta-funtionality to translate external proofs to NuPRL proofs

automatially, or to translate between MetaPRL modules that use di�erent axiom

sets.

Thus our approah reates a form of reetion that is not what is usually studied

in logi: we don't have any formal de�nition of the representation et | instead we

have a reetion of our logi as it is urrently implemented. This is valid only if we

trust our implementation. This validity issue beomes more aute as we expose more

of the implementation. Suppose we want to talk about proof struture and even theory

struture. For example, the implemented proof systems we have mentioned all use the

data-type proof to de�ne rules and tatis. We an axiomatize this using an internal

type Proof | providing internal funtions that �nd the hypothesis list, the goal, the

justi�ation, and the subproofs. The key properties and operations an be read o�

from the system implementation (whih uses ML abstrat data-types). We an also

use the onrete de�nition from and expliit oding of proofs already done in [1℄. We

will not disuss the tehnial details in this paper; but the approah raises a potential

onern that we do disuss next.

9

Note that everywhere we say that two objets are equal in Term, we atually mean alpha-

equal, aording to the disussion in Setion 3
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As we expose more and more of the implementation, we end up adding many

more axioms to the system, those about Term, those about Eval, Proof and so forth.

These axioms are essentially saying that the implementation is logially orret, and

we add new knowledge by \trusting the implementation," leading to haraterizing

our approah as \reetion by trust." But don't we risk making the logi invalid if

the internals don't atually work as expeted? The answer is that if the internals

are not working orretly, the system an not be trusted anyway; and if they do

work orretly, then the axioms we have added to the logi are valid. This means

that adding these axioms does not make the system less trustworthy. Furthermore,

the axioms about the implementation provide a starting point for doumenting the

system and for demonstrating the logial properties required of the implementation.

One approah to these onerns about orretness is to prove properties of the

reeted system and relate them to standard fats about logi. We an start by

onsidering simple abstrations of the full system and proving properties of these

abstrat logis. We illustrate this method last by showing how to onnet an abstrat

propositional logi of reetion to our type theoreti system.

7 Some theory of reetion

From the point of view of proof theory, the Curry-Howard isomorphism may be re-

garded as a mapping from natural derivations from hypotheses

A

1

; A

2

; : : : ; A

n

` B

in intuitionisti logi to well de�ned typed �-term t(x

1

; x

2

; : : : ; x

n

) : B with a dual

meaning of t(x

1

; x

2

; : : : ; x

n

) as

(i) a term having type B provided its variables x

1

; x

2

; : : : ; x

n

have types A

1

; A

2

; : : : ; A

n

respetively,

(ii) a proof of B provided x

1

; x

2

; : : : ; x

n

are proofs of A

1

; A

2

; : : : ; A

n

respetively.

In this respet one an view the �-alulus as propositional level alulus of formal

derivations (proofs), where a derivation of a full form �-term

x

1

:A

1

; x

2

:A

2

; : : : ; x

n

:A

n

` t(x

1

; x

2

; : : : ; x

n

) :B

is a step-by-step internal replia of a orresponding intuitionisti derivation of

A

1

; A

2

; : : : ; A

n

` B:

Modal logi provides an alternative way of representing reetion where �F is inter-

preted as \F is provable" or equivalently \there exists a proof of F" (f. [4, 5, 14, 21℄).

In partiular, the sequent �A

1

;�A

2

; : : : ;�A

n

` �B an be read as

\if there exists a proof of A

1

; A

2

; : : : ; A

n

, then there exists a proof of B".

9



Unlike �-terms, the modal language does not represent proofs diretly, but rather

via provability, i.e., an assertion that proof exists. The modal approah to reetion

met serious semantial diÆulties whih have been �nally resolved by introduing a

speial kind of typed �-terms ([2, 3, 5℄).

In this setion we present the alulus �

1

(�rst introdued in [2℄) of reexive

�-terms whih is the basi abstrat model of reeted proofs. The main idea is that

we want to be able to formally reason with statements of the form \t

n

is a proof that

t

n�1

is a proof that . . . is a proof that t

1

proves A." We denote suh statement by

t

n

: t

n�1

: : : : : t

1

: A, whih is abbreviated as t : A. In addition there is an operator,

\*" that reets a proof, and its inverse, \+" that interprets a reeted proof. The

system �

1

is a joint alulus of propositions (types) and proofs (�-terms). For the

sake of brevity we follow a well-established tradition in typed �-alulus and �rst

onsider types with intuitionisti f!;^g logi on the bakground. The language of

�

1

ontains

propositional letters (atomi types) p

1

; p

2

; p

3

; : : :

variables x

1

; x

2

; x

3

; : : :

onnetives!;^

funtional symbols: unary ! , *

n

, +

n

, �

n

0

, �

n

1

; binary Æ

n

, p

n

,

operator symbols :, �

n

, n = 1; 2; 3; : : :.

Terms � are build from variables x by funtional symbols and �

n

-operators in the

usual manner:

� = x j! � j *

n

� j +

n

� j �

n

0

� j �

n

1

� j � Æ

n

� j p

n

(�; �) j �

n

x:�:

We refer to those terms as reexive �-terms. Formulas (types) ' are built from propo-

sitional letters p and terms � by onnetives and operator `:':

' = p j '!' j ' ^ ' j � :':

For the sake of brevity we refer to formulas as terms (of depth 0).

In �

1

we use a onise sequent style notation for derivations in �

1

by reading

� ` F as a �

1

-derivation of F with the set of open assumptions � .

We identify well-de�ned terms with derivations in the alulus �

1

of the form

x

1

:A

1

; x

2

:A

2

; : : : ; x

n

:A

n

` t(x

1

; x

2

; : : : ; x

n

) :B:

This may be also read in the usual �-term manner: term t(x

1

; x

2

; : : : ; x

n

) has type B

provided eah variable x

i

has type A

i

for all i = 1; 2; : : : ; n.

Within the urrent de�nition below we assume that n = 0; 1; 2; : : : and v =

(v

1

; v

2

; : : : ; v

n

). We also agree on the following vetor-style notations:

t :A denotes t

n

:t

n�1

: : : : t

1

:A (e.g. t :A is A, when n = 0),

�

n

x:t :B denotes �

n

x

n

:t

n

:�

n�1

x

n�1

:t

n�1

: : : : �

1

x

1

:t

1

:B,

(t Æ

n

s) :B denotes (t

n

Æ

n

s

n

) : (t

n�1

Æ

n�1

s

n�1

) : : : : (t

1

Æs

1

) :B,

*

n

t :B denotes *

n

t

n

:*

n�1

t

n�1

:*

1

t

1

:B,

likewise for all other funtional symbols of �

1

.
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Derivations (i.e. well-de�ned terms) are generated by the following lauses. Here

A;B;C are formulas, � a �nite set of formulas, n = 0; 1; 2; : : :, s; t are n-vetors

of terms, x is an n-vetor of variables.

(Ax) � ;x :A ` x :A

(�)

� ;x :A ` t :B

,

� ` �

n

x:t : (A!B)

where none of x ours free in the onlusion sequent.

(App)

� ` t : (A!B) � ` s :A

� ` (t Æ

n

s) :B

(p)

� ` t :A � ` s :B

� ` p

n

(t; s) : (A ^ B)

(�)

� ` t : (A

0

^ A

1

)

(i = 0; 1)

� ` �

n

i

t :A

i

(*)

� ` t :u :A

� ` *

n

t : !u :u :A

(+)

� ` t :u :A

� ` +

n

t :A

Remark 1. It is lear that the intuitionisti propositional logi, with rules for implia-

tion and onjuntion only, is ontained in �

1

. Indeed, if we require, for a derivation in

�

1

, that n = 0, and use the orresponding rules only, we have the systemNi

!^

(f.

[21℄). Similarly, the usual typed �-alulus over!;^ orresponds to the level n = 1.

Along with the natural versions of �-ontration and projetions ontrations, �

1

admits up-down ontration +

n

*

n

t :A . t :A:

Theorem 1 (Cf. [2℄). �

1

is strongly normalizable and onuent. Eah well-de�ned

term of �

1

has a unique normal form.

Remark 2. The strong normalization and onuene theorems for �

1

provide a gen-

eralization of those for the intuitionisti logi and �-alulus. All these make �

1

the

basi propositional logi of reetion.

8 Interpretation of �

1

, soundness

One of the main reasons we are interested in �

1

is that it an be interpreted in the

type theory in a very natural way. Depending on whether we want to be able to treat

t or F (or none, or both) syntatially, we an interpret \t : F" as t 2 Term

F

, t 2 #F ,

11



t 2 F or t 2 Term

#F

. In eah of the four ases, we interpret Æ as appliation (quoted

appliation when t is treated syntatially), � as the one in type theory (again, the

syntatial � when t is syntatial), * t and the proof heker !u as the universal proof

heker Ax.

The only onnetive that is not present in type theory as naturally is +. Under the

natural interpretation we only get a version of the (+) rule for n = 0 (e.g. u : A ) A).

However we an easily �x it by using :

0

de�ned, for example, as

ht; xi :

0

F := t : A ^ (#x = F )

and rede�ning all the onnetives aordingly.
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