
Re
e
tion and Propositions-as-Types

?

Sergei Artemov, Eli Barzilay, Robert L. Constable, and Aleksey Nogin

Department of Computer S
ien
e

Cornell University

Itha
a, NY 14853

{artemov,eli,r
,nogin}�
s.
ornell.edu

Abstra
t. Re
e
tion is the ability of a dedu
tive system to internalize as-

pe
ts of its own stru
ture and thereby reason to some extent about itself. In

this paper we present a theoreti
al framework for exploring re
e
tion in type

theories that use the \Propositions-as-Types" prin
iple, su
h as Martin-L�of

style theories. One of the main results is that it is unne
essary to build a
om-

plete G�odel style \re
e
tion" layer on top of the logi
al theory. This makes it

possible to use our framework for an eÆ
ient implementation of re
e
tion in

theorem provers for su
h type theories. We are doing this for the NuPRL and

MetaPRL systems.

1 Introdu
tion

We use the term \re
e
tion" to refer to the
apability of a logi
al system to talk about

itself, say about its
onsisten
y, provability properties, syntax, semanti
s and proofs.

There are various \degrees of re
e
tion" depending on how mu
h the system
an say

about itself. We are
on
erned mainly with
onstru
tive formal systems that de�ne

a notion of
omputation; there is more to say about these systems than about non-

omputational ones. Moreover, su
h systems are important in
omputer s
ien
e. One

reason is that they are relevant to the foundations of
omputer s
ien
e; and another

is be
ause their implementations, su
h as NuPRL [11℄, MetaPRL [15, 19℄, Coq [6℄ and

Alf [18℄ have demonstrated that su
h systems are
riti
al to the
hallenge of
reating

reliable software as well as to the new enterprise of formalizing
omputational math-

emati
s. We refer to re
e
tion for implemented proof development systems based on

open
onstru
tive logi
s as pra
ti
al re
e
tion. A

ording to our de�nitions, pra
ti
al

re
e
tion allows a system to talk about its
omputability relation.

It turns out that pra
ti
al re
e
tion is a subtle business. First there is a theoret-

i
al issue, namely the most obvious (but naive) proof rules are in
onsistent be
ause

of Lob's theorem and related phenomena. Se
ond, there is a pra
ti
al
hallenge in

that the traditional G�odel approa
h to re
e
tion entails, in a sense, a
omplete reim-

plementation of a system within itself. While this approa
h is theoreti
ally sound, it

leads to an expensive and unne
essary blowup when applied to real
omputer systems.

?

This work was partially supported by DARPA grant LPE-F30602-98-2-0198 (Open Logi
al

Programming Environments).

This paper addresses these two problems. We show how to a

omplish pra
ti
al

re
e
tion in a way that gradually in
orporates more and more of a logi
. We then

show how to derive re
e
tion rules from the base logi
, and �nally we show how to

approa
h the problem of validity for the re
e
ted system by proving properties of it

and relating them to other logi
al systems. In parti
ular, in Se
tion 8 we show how

to relate a simple abstra
t re
e
ted propositional logi
 of Artemov [2℄ to our type

theory.

To implement any form of re
e
tion, the �rst thing that we need is to identify the

level of obje
ts we are interested in, and then �nd a way to represent them. Se
tion 2

explains how a theory that uses the \Propositions-as-types" prin
iple allows us to

internalize and reason about provability (using an impli
it form of the Curry-Howard

isomorphism and higher-order fun
tionality of type theory). However this approa
h is

too abstra
t for many pra
ti
al needs: we would like, among other things, to be able

to talk about synta
ti
al obje
ts | terms.

The most dire
t ways of implementing
on
rete synta
ti
al reasoning (su
h as

omputing G�odel numbers)
an lead to exponential spa
e
omplexity. On the other

hand, with a theorem prover we have a
omputer system that already has an en
oding

of the syntax. In Se
tion 3 we show how this en
oding
an be reused by exposing it

to the logi
 rather than reimplementing it

1

. This is the approa
h that have been used

in programming languages (e.g., S
heme [17℄) as a natural implementation te
hnique.

Boyer and Moore used this approa
h to talk about the notion of
omputability in

NqThm [8℄.

On
e the internal implementation of syntax is exposed to the logi
, we need to

establish the relation between these synta
ti
 obje
ts and the semanti
al obje
ts they

should represent. One way of a
hieving this would be to
opy all existing semanti
al

rules into the synta
ti
al domain, getting a separate synta
ti
al provability theory,

arti�
ially-linked to the a
tual one [1℄. We present a more dire
t approa
h whi
h,

again, follows the design prin
iple of Se
tion 3 | instead of dupli
ating this informa-

tion, we expose it. In a sense, we \let the theory know" how the synta
ti
al obje
t

orrespond to semanti
al obje
t they represent. To do this, in Se
tion 4 we add a

fun
tion to our theory that takes a synta
ti
 obje
t of type Term and returns the

semanti
al obje
t it represents.

Surprisingly, it turns out that su
h a fun
tion (together with a simple des
ription

of its properties) is the only thing that we need for most of our theorem-proving

needs. In Se
tion 5 we demonstrate how that is possible and, in parti
ular, how for

ea
h appli
ation we
an
hoose whi
h obje
ts (in
luding proof obje
ts) we want to

treat purely semanti
ally and whi
h obje
ts we want to treat both synta
ti
ally and

semanti
ally.

While our main goal is to implement pra
ti
al re
e
tion, we
annot say that we

have a
hieved this goal until we have a good understanding of the logi
al power of our

1

Sometimes in addition to \proper" re
e
tion of a logi
al system A in itself, we may want

to be able to reason about some other logi
al system B inside A. In that
ase, obviously,

we have no other
hoi
e than to reimplement in A the relevant stru
tures from B that

are absent in A. However we still
an apply the approa
h outlined in this paper to avoid

reimplementing the stru
tures that are
ommon to both.

2

system and in parti
ular, how it
ompares to traditional re
e
tion approa
hes. This

reveals an additional need to be able to reason generally about logi
al properties of

re
e
tive
omputer systems while abstra
ting away from the spe
i�
s of the re
e
tion

implementation. To address this need, we present in Se
tion 7 a
al
ulus designed

for studying re
e
tion in an implementation-independent way, and we show how to

interpret it in our type theories.

2 Internalizing provability via \Propositions-as-types"

Before we
an �gure out what we need to add to a type theory in order for it to be

able to re
e
t itself, we need to understand what is it that it is
apable of doing on

its own. In the
ase of a type theory based on the \Propositions-as-types" prin
iple,

the answer turns out to be | \a lot".

One of the
ommon reasons for theorem provers' users to want to have re
e
tion

apabilities is so that they
an express and prove a theorem that formulas from
ertain

synta
ti

lass are true and then be able to apply that theorem to parti
ular formulas.

A
ommon \toy example" for su
h approa
h is proving that for any n � 1, 1 � k � n

and propositions C

i

(i = 1 : : : n), the formula C

n

) (C

n�1

) : : : (C

1

) C

k

) : : :)

(whi
h we denote as F

C;n;k

) is provable. We
an use the higher-order fun
tions present

in type theory to express F

C;n;k

as primre

�

n; C(k); �P : Prop: �i : N: C(i)) P

�

2

.

Using the \Propositions-as-types" nature of our type theory, we
an also state

that F

C;n;k

is always provable:

8n : N

+

: 8k : f1::ng: 8C :

�

f1 : : : ng ! Prop

�

: F

C;n;k

(1)

and then prove the above statement by indu
tion over n using the fa
t that when we

unfold the de�nition of primre
 for positive n, we get a formula with an \) " as its

top-level operator whi
h allows us to prove the formula using ordinary logi
al rules

for impli
ation.

In order to better understand how
lose the above is to \real re
e
tion",
onsider

the following. After the proof of (1) is
omplete, we
an automati
ally extra
t a witness

from it and
onvert the proof into a proof of

8n : N

+

: 8k : f1::ng: 8C :

�

f1 : : : ng ! Prop

�

: w

C;n;k

2 F

C;n;k

(2)

whi
h means that for ea
h parti
ular C, n and k, w

C;n;k

omputes a Curry-Howard

en
oding of a proof of F

C;n;k

, whi
h in turn means that (2) expli
itly shows that

F

C;n;k

is always provable while (1) is doing exa
tly the same impli
itly. Note that

from this point of view, the \re
e
tion" rule is just the (witness) rule

� ` t 2 A

� ` A

(witness)

that was always present in type theory.

2

Where primre
 is a primitive re
ursion operator s.t. primre
(0; base; step) = base,

and primre
(i; base; step) = step(primre
(i � 1; base; step); i) (when i > 0), and

Prop is a type of propositions.

3

Of
ourse, this is not a real re
e
tion yet. One feature that is noti
eably miss-

ing is the ability to reason about synta
ti
al properties of formulas and synta
ti
al

operations on formulas. This feature is addressed in Se
tions 3 through 5.

3 Internalizing syntax: the Term type

To add pra
ti
al re
e
tion to a logi
al system, we need to be able to reason about its

syntax, be able to do stru
tural synta
ti
 indu
tion, reason about evaluation, et
. For

this, we must begin by allowing the system to express its own syntax: adding term

quotations. For an extended dis
ussion, see [7℄.

All theorem prover implementations have some implementation of its syntax data-

type,
ommonly
alled term. We want to have a Term type of synta
ti
 user obje
ts

in our theory that represents this internal term type of implementation obje
ts in our

logi
al environment. The traditional \G�odel-like" approa
h is to use existing logi
al

apabilities to
reate Term as an en
oding for term obje
ts, G�odel numbers in the
ase

of an arithmeti
-oriented logi
. In type theories like NuPRL's, we
an use a re
ursive

type with tuples and lists, whi
h has the advantage of produ
ing a de
laration of

Term that is analogous to the internal term de�nition. There are two fundamental

problems with this solution:

{ This representation is by its nature exponential in its quotation level.

{ Information that is part of the implementation is repeated unne
essarily.

To demonstrate the �rst problem, take a simple NuPRL term: \pair(1; 2)" | its

quotation using this naive de�nition is \pair(ppairq; list(p1q; p2q))", and quoting this

yields:

pair(ppairq; list(pppairqq; pair(plistq; list(pp1qq; pp2qq))))

3

:

A similar problem o

urs in programming languages that implement re
e
tion,

like S
heme. There, the
ommon solution is for the implementation to expose its

internal syntax representation to user-level
ode. Both problems above are solved

instantly by this approa
h: there is no blowup, and there is no repetition of stru
ture

de�nitions, there is even no need for verifying that the re
e
ted part is equivalent

to the implementation sin
e they are the same. Most S
heme implementations take

this even further: the eval fun
tion is the internal fun
tion whi
h is exposed to the

user-level; [20℄ shows how this approa
h
an get an in�nite tower of pro
essors.

This solution is the general prin
iple that guides our implementation of re
e
tion:

never repeat information | in our
ase, we expose internal ma
hinery instead of

reimplementing it. Translating this prin
iple to term quotation, we wish to expose

internal term obje
ts |make Term be term. Theorem provers behave di�erently than

programming languages and the straightforward solution does not work. For example,

NuPRL uses equational reasoning so it assumes that terms
an be substituted with

equal terms, therefore, a quotation
ontext like S
heme's quote spe
ial form
annot

be used. Instead, we introdu
e a me
hanism for shifting operator names: a tagged

3

This is simpli�ed: quoted primitives are themselves terms.

4

term \t(: : :)" is a value term

4

that stands for \t(: : :)". To quote a
omplete term,

we tag its operator and
ontinue re
ursively, for example, the quotation \pair(1; 2)"

is \pair(1; 2)" | the se
ond is a member of the Term type, that stands for the �rst

as an internal term instan
e. The ability to lo
ally
hoose terms to quote gives us

several advantages:

{ no need for a spe
ial evaluation
ontexts like S
heme's quote;

{ we
an still mix
onstant quotations with des
riptions: terms that evaluate to

quotations, no quasiquote me
hanism is needed;

{ linear number of tags instead of an exponential blowup.

Another diÆ
ulty with NuPRL's syntax is that term obje
ts
ontain bound sub-

terms | terms with binding positions. This problem has a surprisingly simple so-

lution: binding o

urren
es are left inta
t | they are still binding positions, the

quotation of \�x:x+1" is \�x:x+ 1". This enables us to use internal term obje
ts for

representing terms, but it has a strong impli
ation: sin
e quoted bound variables are

still variables, we have no a

ess to their names. This might sound as a restri
tion,

but this is not the
ase. The interfa
e that gets exposed as Term (e.g., its equality

relation) is the internal term modulo alpha-equality whi
h is a big win. We need not

formalize anything related to alpha-renaming and valid substitutions | the system

handles this for us the same as all terms. For example, \�x:x" is automati
ally equal

to \�y:y". This me
hanism is similar in its nature to some designs for a low-level

S
heme ma
ro me
hanism to support hygieni
 rewrite rules, like the identi�ers of [9℄.

The higher system abstra
tion layer that gets exposed using this te
hnique elimi-

nates a lot of work, but we still need term management
apability. An approa
h that

is again similar to high-level Standard S
heme ma
ros [17℄ is to use rewrite rules

5

.

The MetaPRL system [15, 16℄ has demonstrated that the me
hanism of rewrite rules

is a powerful term management tool, so exposing it should be suÆ
ient. Some other

useful operations like pattern mat
hing and destru
ting terms
an be expressed via

rewrites. Even for extreme
ases where spe
ial fun
tionality is needed, we always

follow the \exposing instead of reimplementing" approa
h.

4 Linking syntax with semanti
s

The Term type allows us to reason about synta
ti
 obje
ts, however, we have no

onne
tion so far to the semanti
 obje
ts they should represent. In order to establish

su
h a
onne
tion, we add an operation to our theory that takes a synta
ti
 obje
t

of type Term and returns the semanti
 obje
t it represents. We
all this fun
tion \a

referen
e operator" (see [13℄), notated as \#", whi
h \strips" quotation tags yielding

the represented obje
t. For example, the following terms all evaluate to \pair(1; 2)":

{ #pair(1; 2)

{ #pair(1; 1 + 1)

{ #((�x:pair(1;x))(1 + 1))

4

A value term is a term that evaluates to itself.

5

Note that we must have these implemented internally and exposed to the theory.

5

In order to have partial evaluation semanti
s for \#", it is natural to de�ne \#" of

a term with a quoted name as stripping the quote and
ontinuing re
ursively through

its subterms: \#t(t

1

; : : : ;t

n

) 7! t(#t

1

; : : : ;#t

n

)". This de�nition works �ne with the

above example, in
luding the last
ase.

However, this does not work for quoted terms that have binding positions, for

example we expe
t \#�x:x+ 1" to evaluate to \�x:x + 1", but following the above

redu
tion s
heme, we get \�x:(#x) + 1". The problem lies in the fa
t that when we

quote the original \�x:x + 1" term, we leave the binding position x and its bound

o

urren
es as variables, and when we push the \#" operator to the subterm, we must

not try to strip the non-existent quotation tag from bound o

urren
es. The way we

an still push \#" into bound subterms is to wrap the
orresponding bound variables

by an operator that
an
els the e�e
t of \#", say \"", using standard substitution.

So \#�x:x+ 1 7! �x:#(("x) + 1)," and evaluation
ontinues with \�x:(#"x)+1", and

�nally the \#""
an
el.

The formal partial evaluation rule for \#" is therefore simple:

#T (x

1

:t

1

; : : : ;x

n

:t

n

;) 7! T (x

1

:#t

1

["x

1

=x

1

℄; : : : ;x

n

:#t

n

["x

n

=x

n

℄) (3)

#"x 7! x (4)

This makes \"" an auxiliary
onstru
tor for evaluating \#". \"" is a value term that

an be
onsidered as a \promise" to
an
el a future \#" appli
ation

6

.

A
on
ept related to \#", is that of subtypes of Term that
lassify them a

ording

to their denotation types. Informally, we de�ne Term

A

as fx : Term j #x 2 Ag. For

an extended dis
ussion, see [13, Se
tion 3℄.

5 Implementing full re
e
tion

In our approa
h to re
e
tion, we get to
hoose whi
h obje
ts we want to treat purely

semanti
ally, referring only to properties of the obje
t itself, and whi
h obje
ts we

want to treat both synta
ti
ally and semanti
ally, referring to properties of both the

obje
t itself and to properties of the term it represents

7

.

Note that in the
onventional G�odel-style approa
h, when we dis
uss the prov-

ability of some formula, we treat the formula itself purely synta
ti
ally, and we treat

proofs both semanti
ally (when reasoning about the provability of
ertain proposi-

tions) and synta
ti
ally (when, for example, doing indu
tion on proofs). In our
ase,

sin
e the way we have internalized provability is not dire
tly
onne
ted to syntax

in any way, we have the freedom of
hoosing whether we want to treat something

6

Another view on the interplay of \#" and \"" then we use both to keep bound variables

at the same quotation level.

Note that \""
annot be de�ned as a fun
tion as there is no deterministi
 way to get a

synta
ti
 representation for a semanti
al value.

7

For example, in the
ase of a �-term, the properties of the fun
tion it
omputes would

be the semanti
al properties and the synta
ti
al stru
ture of the term itself would be,

obviously, its synta
ti
al property.

6

synta
ti
ally on a per-proof and per-obje
t basis. Also, when we treat something syn-

ta
ti
ally, the # operation des
ribed above gives us the ability to swit
h to reasoning

about semanti
 properties of an obje
t.

For example, suppose A and B are synta
ti
 representations of propositions, in

other words, they have the type Term

Prop

. In that
ase A)B is a synta
ti
 im-

pli
ation from A to B. Using #, we
an easily express the statement that A is a

synta
ti
 representation of a provable formula | #A. We
an also express something

very similar to modal normality prin
iple (�A) �(A) B)) �B):

8A : Term

Prop

: 8B : Term

Prop

: (#A)) (#(A)B))) (#B) (5)

Using the partial evaluation rule for # (3), we
an easily prove that #(A)B) is the

same as (#A)) (#B) after whi
h (5)
an be proven using the modus ponens rule.

Similarly, we
an prove an expli
it version of (5):

8A : Term

Prop

: 8B : Term

Prop

: 8a : (#A): 8f : (#(A)B)): (f Æ a) 2 (#B) (6)

where f Æ a is a notation for f(a). Clearly, in (5) we treat proofs purely semanti
ally.

However, if we use another instan
e of (3), namely the fa
t that #(fÆa) is the same

as (#f) Æ (#a), we
an also prove the more synta
ti
al version of (6):

8A : Term

Prop

: 8B : Term

Prop

: 8a : Term

#A

: 8f : term

#(A)B)

: (fÆa) 2 Term

#B

(7)

For
ompleteness sake, we
an also
onsider the
ase where we only want to treat

proofs synta
ti
ally, but only treat formulas semanti
ally. In that
ase we
an state

and prove the following:

8A : Prop: 8B : Prop: 8a : Term

A

: 8f : Term

A)B

: (fÆa) 2 Term

B

(8)

It is worth mentioning that among all of the examples above, (7) is
losest to the

onventional way of dealing with provability (where everything is
onsidered synta
-

ti
ally). If we denote �A == Term

#A

and then take the impli
it version of (7), we

get the normalization prin
iple:

8A : Term

Prop

: 8B : Term

Prop

: �A) �(A)B)) �B (9)

While the examples above illustrate that we
an treat anything synta
ti
ally that

we want to treat that way, they do not show why we would want to do it. Consider now

the following example | suppose we want to write, say, a normalization pro
edure for

polynomials with integer
oeÆ
ients and we want to be able to prove some properties

of it. In this
ase, obviously, we need to be able to reason about synta
ti
 properties

of the polynomials (sin
e normalization is a synta
ti
al pro
edure) as well as about

their semanti
al properties (we want to be able to say that a normalized polynomial

is always equal to the original one). To do this, we de�ne a type Poly (a subtype of

Term

Z!Z

)

8

of polynomials with integer
oeÆ
ients and we write our normalization

8

Writing su
h a de�nition is a straightforward pro
ess, but a little lengthy when doing it

\from s
rat
h", so we omit it.

7

pro
edure norm : Poly! Poly. Now we
an state some properties of the normalization

algorithm:

8p : Poly: #(norm(p)) = #p 2 (Z! Z) &

8p; p

0

: Poly: (#(p) = #(p

0

) 2 (Z! Z)) , (norm(p) = norm(p

0

) 2 Poly)

(10)

where the ternary relation a = b 2 T means that a is equal to b as elements of

type T , in parti
ular a = b 2 Poly means that a and b are synta
ti
ally equal

9

,

while a = b 2 (Z! Z) means that a and b are semanti
ally equal (as fun
tions from

integers to integers). We
an prove (10) by stru
tural indu
tion on p and p

0

and using,

as usual, evaluation rule (3). For example, when proving that reordering summands

does not
hange the result, we use

#(a+b) = (#a) + (#b) = (#b) + (#a) = #(b+a)

where the �rst and last equalities follow from the properties of # and the se
ond one

| from the properties of \normal" semanti
al +.

6 Re
e
tion by trust

A limitation of our method is that it models the parti
ular implementation that we

have
hosen, making it impossible to talk about alternatives without resorting to

the kind of dupli
ation we are striving to avoid. For example, our Term quotations

of primitive term obje
ts makes quotation easy to manage within the system, but

it also makes it impossible to express di�erent binding rules than the ones we have

implemented. This restri
tion is a

eptable be
ause we expose our system exa
tly,

and that is what re
e
tion is about. However, there might be
ases where we want to

use the me
hanisms for re
e
tion to get a little more than proper re
e
tion, namely,

when we want to use meta-fun
tionality to translate external proofs to NuPRL proofs

automati
ally, or to translate between MetaPRL modules that use di�erent axiom

sets.

Thus our approa
h
reates a form of re
e
tion that is not what is usually studied

in logi
: we don't have any formal de�nition of the representation et
 | instead we

have a re
e
tion of our logi
 as it is
urrently implemented. This is valid only if we

trust our implementation. This validity issue be
omes more a
ute as we expose more

of the implementation. Suppose we want to talk about proof stru
ture and even theory

stru
ture. For example, the implemented proof systems we have mentioned all use the

data-type proof to de�ne rules and ta
ti
s. We
an axiomatize this using an internal

type Proof | providing internal fun
tions that �nd the hypothesis list, the goal, the

justi�
ation, and the subproofs. The key properties and operations
an be read o�

from the system implementation (whi
h uses ML abstra
t data-types). We
an also

use the
on
rete de�nition from and expli
it
oding of proofs already done in [1℄. We

will not dis
uss the te
hni
al details in this paper; but the approa
h raises a potential

on
ern that we do dis
uss next.

9

Note that everywhere we say that two obje
ts are equal in Term, we a
tually mean alpha-

equal, a

ording to the dis
ussion in Se
tion 3

8

As we expose more and more of the implementation, we end up adding many

more axioms to the system, those about Term, those about Eval, Proof and so forth.

These axioms are essentially saying that the implementation is logi
ally
orre
t, and

we add new knowledge by \trusting the implementation," leading to
hara
terizing

our approa
h as \re
e
tion by trust." But don't we risk making the logi
 invalid if

the internals don't a
tually work as expe
ted? The answer is that if the internals

are not working
orre
tly, the system
an not be trusted anyway; and if they do

work
orre
tly, then the axioms we have added to the logi
 are valid. This means

that adding these axioms does not make the system less trustworthy. Furthermore,

the axioms about the implementation provide a starting point for do
umenting the

system and for demonstrating the logi
al properties required of the implementation.

One approa
h to these
on
erns about
orre
tness is to prove properties of the

re
e
ted system and relate them to standard fa
ts about logi
. We
an start by

onsidering simple abstra
tions of the full system and proving properties of these

abstra
t logi
s. We illustrate this method last by showing how to
onne
t an abstra
t

propositional logi
 of re
e
tion to our type theoreti
 system.

7 Some theory of re
e
tion

From the point of view of proof theory, the Curry-Howard isomorphism may be re-

garded as a mapping from natural derivations from hypotheses

A

1

; A

2

; : : : ; A

n

` B

in intuitionisti
 logi
 to well de�ned typed �-term t(x

1

; x

2

; : : : ; x

n

) : B with a dual

meaning of t(x

1

; x

2

; : : : ; x

n

) as

(i) a term having type B provided its variables x

1

; x

2

; : : : ; x

n

have types A

1

; A

2

; : : : ; A

n

respe
tively,

(ii) a proof of B provided x

1

; x

2

; : : : ; x

n

are proofs of A

1

; A

2

; : : : ; A

n

respe
tively.

In this respe
t one
an view the �-
al
ulus as propositional level
al
ulus of formal

derivations (proofs), where a derivation of a full form �-term

x

1

:A

1

; x

2

:A

2

; : : : ; x

n

:A

n

` t(x

1

; x

2

; : : : ; x

n

) :B

is a step-by-step internal repli
a of a
orresponding intuitionisti
 derivation of

A

1

; A

2

; : : : ; A

n

` B:

Modal logi
 provides an alternative way of representing re
e
tion where �F is inter-

preted as \F is provable" or equivalently \there exists a proof of F" (
f. [4, 5, 14, 21℄).

In parti
ular, the sequent �A

1

;�A

2

; : : : ;�A

n

` �B
an be read as

\if there exists a proof of A

1

; A

2

; : : : ; A

n

, then there exists a proof of B".

9

Unlike �-terms, the modal language does not represent proofs dire
tly, but rather

via provability, i.e., an assertion that proof exists. The modal approa
h to re
e
tion

met serious semanti
al diÆ
ulties whi
h have been �nally resolved by introdu
ing a

spe
ial kind of typed �-terms ([2, 3, 5℄).

In this se
tion we present the
al
ulus �

1

(�rst introdu
ed in [2℄) of re
exive

�-terms whi
h is the basi
 abstra
t model of re
e
ted proofs. The main idea is that

we want to be able to formally reason with statements of the form \t

n

is a proof that

t

n�1

is a proof that . . . is a proof that t

1

proves A." We denote su
h statement by

t

n

: t

n�1

: : : : : t

1

: A, whi
h is abbreviated as t : A. In addition there is an operator,

*" that re
e
ts a proof, and its inverse, \+" that interprets a re
e
ted proof. The

system �

1

is a joint
al
ulus of propositions (types) and proofs (�-terms). For the

sake of brevity we follow a well-established tradition in typed �-
al
ulus and �rst

onsider types with intuitionisti
 f!;^g logi
 on the ba
kground. The language of

�

1

ontains

propositional letters (atomi
 types) p

1

; p

2

; p

3

; : : :

variables x

1

; x

2

; x

3

; : : :

onne
tives!;^

fun
tional symbols: unary ! , *

n

, +

n

, �

n

0

, �

n

1

; binary Æ

n

, p

n

,

operator symbols :, �

n

, n = 1; 2; 3; : : :.

Terms � are build from variables x by fun
tional symbols and �

n

-operators in the

usual manner:

� = x j! � j *

n

� j +

n

� j �

n

0

� j �

n

1

� j � Æ

n

� j p

n

(�; �) j �

n

x:�:

We refer to those terms as re
exive �-terms. Formulas (types) ' are built from propo-

sitional letters p and terms � by
onne
tives and operator `:':

' = p j '!' j ' ^ ' j � :':

For the sake of brevity we refer to formulas as terms (of depth 0).

In �

1

we use a
on
ise sequent style notation for derivations in �

1

by reading

� ` F as a �

1

-derivation of F with the set of open assumptions � .

We identify well-de�ned terms with derivations in the
al
ulus �

1

of the form

x

1

:A

1

; x

2

:A

2

; : : : ; x

n

:A

n

` t(x

1

; x

2

; : : : ; x

n

) :B:

This may be also read in the usual �-term manner: term t(x

1

; x

2

; : : : ; x

n

) has type B

provided ea
h variable x

i

has type A

i

for all i = 1; 2; : : : ; n.

Within the
urrent de�nition below we assume that n = 0; 1; 2; : : : and v =

(v

1

; v

2

; : : : ; v

n

). We also agree on the following ve
tor-style notations:

t :A denotes t

n

:t

n�1

: : : : t

1

:A (e.g. t :A is A, when n = 0),

�

n

x:t :B denotes �

n

x

n

:t

n

:�

n�1

x

n�1

:t

n�1

: : : : �

1

x

1

:t

1

:B,

(t Æ

n

s) :B denotes (t

n

Æ

n

s

n

) : (t

n�1

Æ

n�1

s

n�1

) : : : : (t

1

Æs

1

) :B,

*

n

t :B denotes *

n

t

n

:*

n�1

t

n�1

:*

1

t

1

:B,

likewise for all other fun
tional symbols of �

1

.

10

Derivations (i.e. well-de�ned terms) are generated by the following
lauses. Here

A;B;C are formulas, � a �nite set of formulas, n = 0; 1; 2; : : :, s; t are n-ve
tors

of terms, x is an n-ve
tor of variables.

(Ax) � ;x :A ` x :A

(�)

� ;x :A ` t :B

,

� ` �

n

x:t : (A!B)

where none of x o

urs free in the
on
lusion sequent.

(App)

� ` t : (A!B) � ` s :A

� ` (t Æ

n

s) :B

(p)

� ` t :A � ` s :B

� ` p

n

(t; s) : (A ^ B)

(�)

� ` t : (A

0

^ A

1

)

(i = 0; 1)

� ` �

n

i

t :A

i

(*)

� ` t :u :A

� ` *

n

t : !u :u :A

(+)

� ` t :u :A

� ` +

n

t :A

Remark 1. It is
lear that the intuitionisti
 propositional logi
, with rules for impli
a-

tion and
onjun
tion only, is
ontained in �

1

. Indeed, if we require, for a derivation in

�

1

, that n = 0, and use the
orresponding rules only, we have the systemNi

!^

(
f.

[21℄). Similarly, the usual typed �-
al
ulus over!;^
orresponds to the level n = 1.

Along with the natural versions of �-
ontra
tion and proje
tions
ontra
tions, �

1

admits up-down
ontra
tion +

n

*

n

t :A . t :A:

Theorem 1 (Cf. [2℄). �

1

is strongly normalizable and
on
uent. Ea
h well-de�ned

term of �

1

has a unique normal form.

Remark 2. The strong normalization and
on
uen
e theorems for �

1

provide a gen-

eralization of those for the intuitionisti
 logi
 and �-
al
ulus. All these make �

1

the

basi
 propositional logi
 of re
e
tion.

8 Interpretation of �

1

, soundness

One of the main reasons we are interested in �

1

is that it
an be interpreted in the

type theory in a very natural way. Depending on whether we want to be able to treat

t or F (or none, or both) synta
ti
ally, we
an interpret \t : F" as t 2 Term

F

, t 2 #F ,

11

t 2 F or t 2 Term

#F

. In ea
h of the four
ases, we interpret Æ as appli
ation (quoted

appli
ation when t is treated synta
ti
ally), � as the one in type theory (again, the

synta
ti
al � when t is synta
ti
al), * t and the proof
he
ker !u as the universal proof

he
ker Ax.

The only
onne
tive that is not present in type theory as naturally is +. Under the

natural interpretation we only get a version of the (+) rule for n = 0 (e.g. u : A) A).

However we
an easily �x it by using :

0

de�ned, for example, as

ht; xi :

0

F := t : A ^ (#x = F)

and rede�ning all the
onne
tives a

ordingly.

Referen
es

1. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken. The

semanti
s of re
e
ted proof. In Pro
eedings of the Fifth Symposium on Logi
 in Computer

S
ien
e, pages 95{197. IEEE, June 1990.

2. J. Alt and S. Artemov. Re
e
tive �-
al
ulus. Te
hni
al Report CFIS 2000-06, Cornell

University, 2000.

3. S. Artemov. On expli
it re
e
tion in theorem proving and formal veri�
ation. In Au-

tomated Dedu
tion - CADE-16. Pro
eedings of the 16th International Conferen
e on

Automated Dedu
tion, Trento, Italy, July 1999, pages 267{281. Springer-Verlag, 1999.

LNAI Vol. 1632.

4. S. Artemov. Uniform provability realization of intuitionisti
 logi
, modality and

lambda-terms. Ele
troni
 Notes on Theoreti
al Computer S
ien
e, 23(1), 1999.

http://www.elsevier.nl/ent
s/.

5. S. Artemov. Expli
it provability and
onstru
tive semanti
s. The Bulletin for Symboli

Logi
, 6(1), 2001. to appear, http://www.math.
ornell.edu/~artemov/BSL.

6. Bruno Barras, Samuel Boutin, Cristina Cornes, Judi
a�el Courant, Jean-Christophe

Filliâtre, Eduardo Gim�enez, Hugo Herbelin, G�erard-Mohring, Amokrane Sa

�

ibi, and Ben-

jamin Werner. The Coq Proof Assistant Referen
e Manual. INRIA-Ro
quen
ourt, CNRS

and ENS Lyon, 1996.

7. Eli Barzilay. Quotation and re
e
tion in NuPRL and S
heme. Te
hni
al Report 2001{

1832, Cornell University, Itha
a, New York, January 2001.

8. R. S. Boyer and J. S. Moore. Metafun
tions: Proving them
orre
t and using them

eÆ
iently as new proof pro
edures. In The Corre
tness Problem in Computer S
ien
e,

pages 103{84. A
ademi
 Press, New York, 1981.

9. W. Clinger. Hygieni
 ma
ros through expli
it renaming. LISP Pointers, 4(4), 1991.

10. Robert L. Constable. Using re
e
tion to explain and enhan
e type theory. In Helmut

S
hwi
htenberg, editor, Proof and Computation, volume 139 of NATO Advan
ed Study

Institute, International Summer S
hool held in Marktoberdorf, Germany, July 20-August

1, NATO Series F, pages 65{100. Springer, Berlin, 1994.

11. Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-

mer, R. W. Harper, Douglas J. Howe, T. B. Knoblo
k, N. P. Mendler, P. Panangaden,

James T. Sasaki, and S
ott F. Smith. Implementing Mathemati
s with the Nuprl Devel-

opment System. Prenti
e-Hall, NJ, 1986.

12. Robert L. Constable, Stuart F. Allen, and Douglas J. Howe. Re
e
ting the open-ended

omputation system of
onstru
tive type theory. In H. S
hwi
htenberg, editor, Logi
,

Algebra and Computation, NATO ASI Series, Vol. F79, pages 265{280. Springer-Verlag,

1990.

12

13. Robert L. Constable and Karl Crary. Computational
omplexity and indu
tion for

partial
omputable fun
tions in type theory. In Preprint, 1998.

14. D. de Jongh and G. Japaridze. Logi
 of provability. In S. Buss, editor, Handbook of

Proof Theory, pages 475{546. Elsevier, 1998.

15. Jason Hi
key. The MetaPRL Logi
al Programming Environment. PhD thesis, Cornell

University, January 2001.

16. Jason Hi
key and Aleksey Nogin. Fast ta
ti
-based theorem proving. In J. Harrison

and M. Aagaard, editors, Theorem Proving in Higher Order Logi
s: 13th International

Conferen
e, TPHOLs 2000, volume 1869 of Le
ture Notes in Computer S
ien
e, pages

252{266. Springer-Verlag, 2000.

17. R. Kelsey, Clinger W., J. Rees, et al. Revised

5

report on the algorithmi
 language

s
heme. Journal of Higher Order and Symboli
 Computation, 11(1):7{105, 1998.

18. L. Magnusson and B. Nordstr�om. The ALF proof editor and its proof engine. In Henk

Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs. International

Workshop TYPES'93, volume 806 of Le
ture Notes in Computer S
ien
e, pages 213{237.

Springer-Verlag, 1994.

19. MetaPRL home page. http://metaprl.org/.

20. B.C. Smith. Re
e
tion and semanti
s in Lisp. Prin
iples of Programming Languages,

pages 23{35, 1984.

21. A. S. Troelstra and H. S
hwi
htenberg. Basi
 Proof Theory. Cambridge University Press,

Amsterdam, 1996.

13

