Reflection and Propositions-as-Types*

Sergei Artemov, Eli Barzilay, Robert L. Constable, and Aleksey Nogin

Department of Computer Science
Cornell University
Ithaca, NY 14853

{artemov,eli,rc,nogin}@cs.cornell.edu

Abstract. Reflection is the ability of a deductive system to internalize as-
pects of its own structure and thereby reason to some extent about itself. In
this paper we present a theoretical framework for exploring reflection in type
theories that use the “Propositions-as-Types” principle, such as Martin-Lo6f
style theories. One of the main results is that it is unnecessary to build a com-
plete Godel style “reflection” layer on top of the logical theory. This makes it
possible to use our framework for an efficient implementation of reflection in
theorem provers for such type theories. We are doing this for the NuPRL and
MetaPRL systems.

1 Introduction

We use the term “reflection” to refer to the capability of a logical system to talk about
itself, say about its consistency, provability properties, syntax, semantics and proofs.
There are various “degrees of reflection” depending on how much the system can say
about itself. We are concerned mainly with constructive formal systems that define
a notion of computation; there is more to say about these systems than about non-
computational ones. Moreover, such systems are important in computer science. One
reason is that they are relevant to the foundations of computer science; and another
is because their implementations, such as NuPRL [11], MetaPRL [15,19], Coq [6] and
Alf [18] have demonstrated that such systems are critical to the challenge of creating
reliable software as well as to the new enterprise of formalizing computational math-
ematics. We refer to reflection for implemented proof development systems based on
open constructive logics as practical reflection. According to our definitions, practical
reflection allows a system to talk about its computability relation.

It turns out that practical reflection is a subtle business. First there is a theoret-
ical issue, namely the most obvious (but naive) proof rules are inconsistent because
of Lob’s theorem and related phenomena. Second, there is a practical challenge in
that the traditional Gédel approach to reflection entails, in a sense, a complete reim-
plementation of a system within itself. While this approach is theoretically sound, it
leads to an expensive and unnecessary blowup when applied to real computer systems.

* This work was partially supported by DARPA grant LPE-F30602-98-2-0198 (Open Logical
Programming Environments).



This paper addresses these two problems. We show how to accomplish practical
reflection in a way that gradually incorporates more and more of a logic. We then
show how to derive reflection rules from the base logic, and finally we show how to
approach the problem of validity for the reflected system by proving properties of it
and relating them to other logical systems. In particular, in Section 8 we show how
to relate a simple abstract reflected propositional logic of Artemov [2] to our type
theory.

To implement any form of reflection, the first thing that we need is to identify the
level of objects we are interested in, and then find a way to represent them. Section 2
explains how a theory that uses the “Propositions-as-types” principle allows us to
internalize and reason about provability (using an implicit form of the Curry-Howard
isomorphism and higher-order functionality of type theory). However this approach is
too abstract for many practical needs: we would like, among other things, to be able
to talk about syntactical objects — terms.

The most direct ways of implementing concrete syntactical reasoning (such as
computing Godel numbers) can lead to exponential space complexity. On the other
hand, with a theorem prover we have a computer system that already has an encoding
of the syntax. In Section 3 we show how this encoding can be reused by exposing it
to the logic rather than reimplementing it'. This is the approach that have been used
in programming languages (e.g., Scheme [17]) as a natural implementation technique.
Boyer and Moore used this approach to talk about the notion of computability in
NgThm [8].

Once the internal implementation of syntax is exposed to the logic, we need to
establish the relation between these syntactic objects and the semantical objects they
should represent. One way of achieving this would be to copy all existing semantical
rules into the syntactical domain, getting a separate syntactical provability theory,
artificially-linked to the actual one [1]. We present a more direct approach which,
again, follows the design principle of Section 3 — instead of duplicating this informa-
tion, we expose it. In a sense, we “let the theory know” how the syntactical object
correspond to semantical object they represent. To do this, in Section 4 we add a
function to our theory that takes a syntactic object of type Term and returns the
semantical object it represents.

Surprisingly, it turns out that such a function (together with a simple description
of its properties) is the only thing that we need for most of our theorem-proving
needs. In Section 5 we demonstrate how that is possible and, in particular, how for
each application we can choose which objects (including proof objects) we want to
treat purely semantically and which objects we want to treat both syntactically and
semantically.

While our main goal is to implement practical reflection, we cannot say that we
have achieved this goal until we have a good understanding of the logical power of our

! Sometimes in addition to “proper” reflection of a logical system A in itself, we may want
to be able to reason about some other logical system B inside A. In that case, obviously,
we have no other choice than to reimplement in A the relevant structures from B that
are absent in A. However we still can apply the approach outlined in this paper to avoid
reimplementing the structures that are common to both.



system and in particular, how it compares to traditional reflection approaches. This
reveals an additional need to be able to reason generally about logical properties of
reflective computer systems while abstracting away from the specifics of the reflection
implementation. To address this need, we present in Section 7 a calculus designed
for studying reflection in an implementation-independent way, and we show how to
interpret it in our type theories.

2 Internalizing provability via “Propositions-as-types”

Before we can figure out what we need to add to a type theory in order for it to be
able to reflect itself, we need to understand what is it that it is capable of doing on
its own. In the case of a type theory based on the “Propositions-as-types” principle,
the answer turns out to be — “a lot”.

One of the common reasons for theorem provers’ users to want to have reflection
capabilities is so that they can express and prove a theorem that formulas from certain
syntactic class are true and then be able to apply that theorem to particular formulas.
A common “toy example” for such approach is proving that forany n > 1, 1<k <n
and propositions C; (i = 1...n), the formula C), = (Cph—1 = ...(C1 = Ck)...)
(which we denote as Fc 1) is provable. We can use the higher-order functions present
in type theory to express F¢ ,,  as PRIMREC (n; C(k); AP : Prop. Xi : N. C(i) = P) 2,

Using the “Propositions-as-types” nature of our type theory, we can also state
that Fo 1 is always provable:

Vn :Nt.Vk:{l.n}.VC: ({1...n} - Prop). Fo .« (1)

and then prove the above statement by induction over n using the fact that when we
unfold the definition of PRIMREC for positive n, we get a formula with an “=-" as its
top-level operator which allows us to prove the formula using ordinary logical rules
for implication.

In order to better understand how close the above is to “real reflection”, consider
the following. After the proof of (1) is complete, we can automatically extract a witness
from it and convert the proof into a proof of

Vn:NT. Vk: {l.n}. VC : ({1 ...} — Prop). wenk € Fonk (2)

which means that for each particular C, n and k, wc ;. computes a Curry-Howard
encoding of a proof of Fc¢ p , which in turn means that (2) explicitly shows that
Fo i is always provable while (1) is doing exactly the same implicitly. Note that
from this point of view, the “reflection” rule is just the (witness) rule

I'kFteA (wit )
- witness
I+ A
that was always present in type theory.
2 Where PRIMREC is a primitive recursion operator s.t. PRIMREC(0; base; step) = base,
and PRIMREC(i; base; step) = step(PRIMREC(i — 1; base; step); i) (when i > 0), and

Prop is a type of propositions.



Of course, this is not a real reflection yet. One feature that is noticeably miss-
ing is the ability to reason about syntactical properties of formulas and syntactical
operations on formulas. This feature is addressed in Sections 3 through 5.

3 Internalizing syntax: the Term type

To add practical reflection to a logical system, we need to be able to reason about its
syntax, be able to do structural syntactic induction, reason about evaluation, etc. For
this, we must begin by allowing the system to express its own syntax: adding term
quotations. For an extended discussion, see [7].

All theorem prover implementations have some implementation of its syntax data-
type, commonly called term. We want to have a Term type of syntactic user objects
in our theory that represents this internal term type of implementation objects in our
logical environment. The traditional “Goédel-like” approach is to use existing logical
capabilities to create Term as an encoding for term objects, Godel numbers in the case
of an arithmetic-oriented logic. In type theories like NuPRL’s, we can use a recursive
type with tuples and lists, which has the advantage of producing a declaration of
Term that is analogous to the internal term definition. There are two fundamental
problems with this solution:

— This representation is by its nature exponential in its quotation level.
— Information that is part of the implementation is repeated unnecessarily.

To demonstrate the first problem, take a simple NuPRL term: “pair(1;2)” — its
quotation using this naive definition is “pair("pair™;list("17;727))”, and quoting this
yields:

pair(Tpair™; list(""pair™7; pair(Tlist; list (TT177; 77277))))3.

A similar problem occurs in programming languages that implement reflection,
like Scheme. There, the common solution is for the implementation to ezpose its
internal syntax representation to user-level code. Both problems above are solved
instantly by this approach: there is no blowup, and there is no repetition of structure
definitions, there is even no need for verifying that the reflected part is equivalent
to the implementation since they are the same. Most Scheme implementations take
this even further: the eval function is the internal function which is exposed to the
user-level; [20] shows how this approach can get an infinite tower of processors.

This solution is the general principle that guides our implementation of reflection:
never repeat information — in our case, we expose internal machinery instead of
reimplementing it. Translating this principle to term quotation, we wish to expose
internal term objects — make Term be term. Theorem provers behave differently than
programming languages and the straightforward solution does not work. For example,
NuPRL uses equational reasoning so it assumes that terms can be substituted with
equal terms, therefore, a quotation context like Scheme’s quote special form cannot
be used. Instead, we introduce a mechanism for shifting operator names: a tagged

3 This is simplified: quoted primitives are themselves terms.



term “¢(...)” is a value term? that stands for “¢(...)”. To quote a complete term,
we tag its operator and continue recursively, for example, the quotation “pair(1;2)”
is “pair(1;2)” — the second is a member of the Term type, that stands for the first
as an internal term instance. The ability to locally choose terms to quote gives us
several advantages:

— no need for a special evaluation contexts like Scheme’s quote;

— we can still mix constant quotations with descriptions: terms that evaluate to
quotations, no quasiquote mechanism is needed;

— linear number of tags instead of an exponential blowup.

Another difficulty with NuPRL’s syntax is that term objects contain bound sub-
terms — terms with binding positions. This problem has a surprisingly simple so-
lution: binding occurrences are left intact — they are still binding positions, the
quotation of “Ax.x+ 1" is “Az.z_+ 1”. This enables us to use internal term objects for
representing terms, but it has a strong implication: since quoted bound variables are
still variables, we have no access to their names. This might sound as a restriction,
but this is not the case. The interface that gets exposed as Term (e.g., its equality
relation) is the internal term modulo alpha-equality which is a big win. We need not
formalize anything related to alpha-renaming and valid substitutions — the system
handles this for us the same as all terms. For example, “Az.z” is automatically equal
to “Ay.y”. This mechanism is similar in its nature to some designs for a low-level
Scheme macro mechanism to support hygienic rewrite rules, like the identifiers of [9].

The higher system abstraction layer that gets exposed using this technique elimi-
nates a lot of work, but we still need term management capability. An approach that
is again similar to high-level Standard Scheme macros [17] is to use rewrite rules®.
The MetaPRL system [15,16] has demonstrated that the mechanism of rewrite rules
is a powerful term management tool, so exposing it should be sufficient. Some other
useful operations like pattern matching and destructing terms can be expressed via
rewrites. Even for extreme cases where special functionality is needed, we always
follow the “exposing instead of reimplementing” approach.

4 Linking syntax with semantics

The Term type allows us to reason about syntactic objects, however, we have no
connection so far to the semantic objects they should represent. In order to establish
such a connection, we add an operation to our theory that takes a syntactic object
of type Term and returns the semantic object it represents. We call this function “a
reference operator” (see [13]), notated as “}”, which “strips” quotation tags yielding
the represented object. For example, the following terms all evaluate to “pair(1;2)”:

— Jpair(1;2)
— Jpair(1;14+1)
~ W(A-pair(Liz)) (L + 1))

1 A value term is a term that evaluates to itself.
® Note that we must have these implemented internally and exposed to the theory.



In order to have partial evaluation semantics for “|”, it is natural to define “}” of
a term with a quoted name as stripping the quote and continuing recursively through
its subterms: “lt(t1;...;tn) — t(dt1;...;4tn)”. This definition works fine with the
above example, including the last case.

However, this does not work for quoted terms that have binding positions, for
example we expect “JAz.z 4+ 1”7 to evaluate to “Az.x + 17, but following the above
reduction scheme, we get “Az.({x) + 1”. The problem lies in the fact that when we
quote the original “Az.x + 1”7 term, we leave the binding position = and its bound
occurrences as variables, and when we push the “}” operator to the subterm, we must
not try to strip the non-existent quotation tag from bound occurrences. The way we
can still push “}” into bound subterms is to wrap the corresponding bound variables
by an operator that cancels the effect of “}”, say “1”, using standard substitution.
So “lAr.x + 1 — Az.l((Tx)+1),” and evaluation continues with “A\z.({tz)+1”, and
finally the “}1” cancel.

The formal partial evaluation rule for “}” is therefore simple:

IL(zr.ts. . @pctn) = T(@rdti[Tan /o] e dtn[Ton /2n]) (3)
W )

This makes “4” an auxiliary constructor for evaluating “}”. “1” is a value term that
can be considered as a “promise” to cancel a future “}” application®.

A concept related to “]”, is that of subtypes of Term that classify them according
to their denotation types. Informally, we define Termu as {x : Term | lx € A}. For
an extended discussion, see [13, Section 3].

5 Implementing full reflection

In our approach to reflection, we get to choose which objects we want to treat purely
semantically, referring only to properties of the object itself, and which objects we
want to treat both syntactically and semantically, referring to properties of both the
object itself and to properties of the term it represents”’.

Note that in the conventional Goédel-style approach, when we discuss the prov-
ability of some formula, we treat the formula itself purely syntactically, and we treat
proofs both semantically (when reasoning about the provability of certain proposi-
tions) and syntactically (when, for example, doing induction on proofs). In our case,
since the way we have internalized provability is not directly connected to syntax
in any way, we have the freedom of choosing whether we want to treat something

6 Another view on the interplay of “|” and “” then we use both to keep bound variables
at the same quotation level.
Note that “1” cannot be defined as a function as there is no deterministic way to get a
syntactic representation for a semantical value.

" For example, in the case of a A-term, the properties of the function it computes would
be the semantical properties and the syntactical structure of the term itself would be,
obviously, its syntactical property.



syntactically on a per-proof and per-object basis. Also, when we treat something syn-
tactically, the | operation described above gives us the ability to switch to reasoning
about semantic properties of an object.

For example, suppose A and B are syntactic representations of propositions, in
other words, they have the type Termprop. In that case A= B is a syntactic im-
plication from A to B. Using |, we can easily express the statement that A is a
syntactic representation of a provable formula — | A. We can also express something
very similar to modal normality principle (DA = O(A = B) = OB):

VA: Termprop- VB : Termprop. (LA4) = (L(A=B)) = (IB) (5)

Using the partial evaluation rule for | (3), we can easily prove that |(A= B) is the
same as ({4) = ({B) after which (5) can be proven using the modus ponens rule.
Similarly, we can prove an explicit version of (5):

VA : Termprop. VB : Termprop. Va: (JA). Vf : (L(A=B)). (foa) € {B) (6)

where f o is a notation for f(a). Clearly, in (5) we treat proofs purely semantically.
However, if we use another instance of (3), namely the fact that |(foa) is the same
as ({.f) o (4a), we can also prove the more syntactical version of (6):

VA : Termprop. VB : Termprop. Va : TermJ/A. vf: term¢(AzB). (foa) € Term\LB

(7)
For completeness sake, we can also consider the case where we only want to treat
proofs syntactically, but only treat formulas semantically. In that case we can state
and prove the following:

VA :Prop. VB : Prop. Va: Termy. Vf: Terma— p. (foa) € Termp (8)

It is worth mentioning that among all of the examples above, (7) is closest to the
conventional way of dealing with provability (where everything is considered syntac-
tically). If we denote A == Term 14 and then take the implicit version of (7), we
get the normalization principle:

VA : Termprop. VB : Termprop. UA = O(A=DB) = OB 9)

While the examples above illustrate that we can treat anything syntactically that
we want to treat that way, they do not show why we would want to do it. Consider now
the following example — suppose we want to write, say, a normalization procedure for
polynomials with integer coefficients and we want to be able to prove some properties
of it. In this case, obviously, we need to be able to reason about syntactic properties
of the polynomials (since normalization is a syntactical procedure) as well as about
their semantical properties (we want to be able to say that a normalized polynomial
is always equal to the original one). To do this, we define a type Poly (a subtype of
Termgz_,7)® of polynomials with integer coefficients and we write our normalization

® Writing such a definition is a straightforward process, but a little lengthy when doing it
“from scratch”, so we omit it.



procedure norm : Poly — Poly. Now we can state some properties of the normalization
algorithm:

Vp: Poly. L(norm(p)) =lp € (Z - 7Z) &

Vp,p' : Poly. (L(p) = L) € (Z = 7)) & (norm(p) = norn(yf) € Poly) (0

where the ternary relation @ = b € T means that a is equal to b as elements of
type T, in particular ¢ = b € Poly means that a and b are syntactically equal®,
while @ = b € (Z — Z) means that a and b are semantically equal (as functions from
integers to integers). We can prove (10) by structural induction on p and p’ and using,
as usual, evaluation rule (3). For example, when proving that reordering summands
does not change the result, we use

Haxb) = ({a)+ () = (Ib) + {a) = l(b+a)

where the first and last equalities follow from the properties of | and the second one
— from the properties of “normal” semantical +.

6 Reflection by trust

A limitation of our method is that it models the particular implementation that we
have chosen, making it impossible to talk about alternatives without resorting to
the kind of duplication we are striving to avoid. For example, our Term quotations
of primitive term objects makes quotation easy to manage within the system, but
it also makes it impossible to express different binding rules than the ones we have
implemented. This restriction is acceptable because we expose our system exactly,
and that is what reflection is about. However, there might be cases where we want to
use the mechanisms for reflection to get a little more than proper reflection, namely,
when we want to use meta-functionality to translate external proofs to NuPRL proofs
automatically, or to translate between MetaPRL modules that use different axiom
sets.

Thus our approach creates a form of reflection that is not what is usually studied
in logic: we don’t have any formal definition of the representation etc — instead we
have a reflection of our logic as it is currently implemented. This is valid only if we
trust our implementation. This validity issue becomes more acute as we expose more
of the implementation. Suppose we want to talk about proof structure and even theory
structure. For example, the implemented proof systems we have mentioned all use the
data-type proof to define rules and tactics. We can axiomatize this using an internal
type Proof — providing internal functions that find the hypothesis list, the goal, the
justification, and the subproofs. The key properties and operations can be read off
from the system implementation (which uses ML abstract data-types). We can also
use the concrete definition from and explicit coding of proofs already done in [1]. We
will not discuss the technical details in this paper; but the approach raises a potential
concern that we do discuss next.

% Note that everywhere we say that two objects are equal in Term, we actually mean alpha-
equal, according to the discussion in Section 3



As we expose more and more of the implementation, we end up adding many
more axioms to the system, those about Term, those about Eval, Proof and so forth.
These axioms are essentially saying that the implementation is logically correct, and
we add new knowledge by “trusting the implementation,” leading to characterizing
our approach as “reflection by trust.” But don’t we risk making the logic invalid if
the internals don’t actually work as expected? The answer is that if the internals
are not working correctly, the system can not be trusted anyway; and if they do
work correctly, then the axioms we have added to the logic are valid. This means
that adding these axioms does not make the system less trustworthy. Furthermore,
the axioms about the implementation provide a starting point for documenting the
system and for demonstrating the logical properties required of the implementation.

One approach to these concerns about correctness is to prove properties of the
reflected system and relate them to standard facts about logic. We can start by
considering simple abstractions of the full system and proving properties of these
abstract logics. We illustrate this method last by showing how to connect an abstract
propositional logic of reflection to our type theoretic system.

7 Some theory of reflection

From the point of view of proof theory, the Curry-Howard isomorphism may be re-
garded as a mapping from natural derivations from hypotheses

A, Ay, A F B

in intuitionistic logic to well defined typed A-term t(x1,a,...,x,) : B with a dual
meaning of t(z1, xo,...,z,) as

(i) aterm having type B provided its variables 1, x2, . .., x, have types Ay, As,..., A,
respectively,
(ii) a proof of B provided z;, s, ...,x, are proofs of A;, A,,..., A, respectively.

In this respect one can view the A-calculus as propositional level calculus of formal
derivations (proofs), where a derivation of a full form A-term

x1:A1,29: As, .y Ay FoE(Ry, 20, ..., 2,): B
is a step-by-step internal replica of a corresponding intuitionistic derivation of
A, Ay, ... A, F B.
Modal logic provides an alternative way of representing reflection where OF is inter-

preted as “F is provable” or equivalently “there exists a proof of F” (cf. [4,5, 14, 21]).
In particular, the sequent A, dAs,...,0A, F OB can be read as

“if there exists a proof of Ay, As, ..., A,, then there exists a proof of B”.



Unlike A-terms, the modal language does not represent proofs directly, but rather
via provability, i.e., an assertion that proof exists. The modal approach to reflection
met serious semantical difficulties which have been finally resolved by introducing a
special kind of typed A-terms ([2,3, 5]).

In this section we present the calculus A®® (first introduced in [2]) of reflexive
A-terms which is the basic abstract model of reflected proofs. The main idea is that
we want to be able to formally reason with statements of the form “t, is a proof that
t,—1 is a proof that ...is a proof that t; proves A.” We denote such statement by
tpitp_1:...:t1 : A, which is abbreviated as ¢t : A. In addition there is an operator,
“f” that reflects a proof, and its inverse, “|}” that interprets a reflected proof. The
system A®® is a joint calculus of propositions (types) and proofs (A-terms). For the
sake of brevity we follow a well-established tradition in typed A-calculus and first
consider types with intuitionistic {—, A} logic on the background. The language of
A®° contains

propositional letters (atomic types) pi,p2,ps, ...

variables x1, T2, x3, ...

connectives —, A

functional symbols: unary !, ", 4", w{}, w}; binary o", p",

operator symbols :; A", n =1,2,3,....

Terms 7 are build from variables « by functional symbols and A"-operators in the
usual manner:

r=a |l 7|7 |7 [ whr | wir | T | pt(r, T) | AaT

We refer to those terms as reflexive A-terms. Formulas (types) o are built from propo-
sitional letters p and terms 7 by connectives and operator :’:

p=ple—p|leAp|Tp.

For the sake of brevity we refer to formulas as terms (of depth 0).

In A®° we use a concise sequent style notation for derivations in A by reading
I' F F as a A®°-derivation of F with the set of open assumptions I".

We identify well-defined terms with derivations in the calculus A*° of the form

x1: A1, k0 s, wn Ay b t(x, e, .. 1y) : B.

This may be also read in the usual A-term manner: term t(z1, 2, - .., z,) has type B
provided each variable z; has type A; foralli =1,2,...,n.

Within the current definition below we assume that n = 0,1,2,... and v =
(v1,v2,-..,v,). We also agree on the following vector-style notations:

t: A denotes t,:tp—1:...t1: A (e.g. t: Ais A, when n = 0),
Az.t:B denotes A%ty A" rxy_1tp_1:.. Azt B,

(t o™s): B denotes (t, 0™sy,):(ty_1 0" 15, 1):...(t; 051): B,
N"t: B denotes Mty " Mtp_1 it : B,

likewise for all other functional symbols of A*°.

10



Derivations (i.e. well-defined terms) are generated by the following clauses. Here
A,B,C are formulas, I' a finite set of formulas, n = 0,1,2,..., s,t are n-vectors
of terms, x is an n-vector of variables.

(Ax) Ixz:AF xz:A
I''z:AF t:B

) I+ Azt (AsB)

where none of & occurs free in the conclusion sequent.
I'+t:(A—-B) I' s:A
I'k (to™s):B

(App)

I't:AT'F s:B
I' - p"(t,s):(AAB)

(p)

I+ tZ(A()/\Al)

(i=0,1)
() I'' - wit: A,
'k tu:A
() I'-f"t:lu:u:A
I'Ftu:A
W I+ Jy"t:A

Remark 1. Tt is clear that the intuitionistic propositional logic, with rules for implica-
tion and conjunction only, is contained in A*°. Indeed, if we require, for a derivation in
A%, that n = 0, and use the corresponding rules only, we have the system Ni_, A (cf.
[21]). Similarly, the usual typed A-calculus over —, A corresponds to the level n = 1.

Along with the natural versions of S-contraction and projections contractions, A°°
admits up-down contraction "}"t: A > t: A.

Theorem 1 (Cf. [2]). A is strongly normalizable and confluent. Each well-defined
term of A°° has a unique normal form.

Remark 2. The strong normalization and confluence theorems for A*® provide a gen-
eralization of those for the intuitionistic logic and A-calculus. All these make A°° the
basic propositional logic of reflection.

8 Interpretation of A*°, soundness
One of the main reasons we are interested in A°° is that it can be interpreted in the

type theory in a very natural way. Depending on whether we want to be able to treat
t or F' (or none, or both) syntactically, we can interpret “t : F” ast € Termp,t € |F,

11



teForteTerm LF In each of the four cases, we interpret o as application (quoted

application when ¢ is treated syntactically), A as the one in type theory (again, the
syntactical A when ¢ is syntactical), f} ¢ and the proof checker v as the universal proof
checker Ax.

The only connective that is not present in type theory as naturally is {}. Under the

natural interpretation we only get a version of the () rule forn =0 (e.g. u: A = A).
However we can easily fix it by using :’ defined, for example, as

(t,zy ' F = t: AN({az=F)

and redefining all the connectives accordingly.

References

1.

11.

12.

Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken. The
semantics of reflected proof. In Proceedings of the Fifth Symposium on Logic in Computer
Science, pages 95-197. IEEE, June 1990.

. J. Alt and S. Artemov. Reflective A-calculus. Technical Report CFIS 2000-06, Cornell

University, 2000.

. S. Artemov. On explicit reflection in theorem proving and formal verification. In Au-

tomated Deduction - CADE-16. Proceedings of the 16th International Conference on
Automated Deduction, Trento, Italy, July 1999, pages 267-281. Springer-Verlag, 1999.
LNATI Vol. 1632.

. S. Artemov. Uniform provability realization of intuitionistic logic, modality and

lambda-terms. Electronic Notes on Theoretical Computer Science, 23(1), 1999.
http://www.elsevier.nl/entcs/.

. S. Artemov. Explicit provability and constructive semantics. The Bulletin for Symbolic

Logic, 6(1), 2001. to appear, http://www.math.cornell.edu/"artemov/BSL.

. Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaél Courant, Jean-Christophe

Fillidtre, Eduardo Giménez, Hugo Herbelin, Gérard-Mohring, Amokrane Saibi, and Ben-
jamin Werner. The Coq Proof Assistant Reference Manual. INRIA-Rocquencourt, CNRS
and ENS Lyon, 1996.

. Eli Barzilay. Quotation and reflection in NuPRL and Scheme. Technical Report 2001—

1832, Cornell University, Ithaca, New York, January 2001.

. R. S. Boyer and J. S. Moore. Metafunctions: Proving them correct and using them

efficiently as new proof procedures. In The Correctness Problem in Computer Science,
pages 103-84. Academic Press, New York, 1981.

. W. Clinger. Hygienic macros through explicit renaming. LISP Pointers, 4(4), 1991.
. Robert L. Constable. Using reflection to explain and enhance type theory. In Helmut

Schwichtenberg, editor, Proof and Computation, volume 139 of NATO Advanced Study
Institute, International Summer School held in Marktoberdorf, Germany, July 20-August
1, NATO Series F, pages 65—100. Springer, Berlin, 1994.

Robert L. Counstable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cre-
mer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
James T. Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl Devel-
opment System. Prentice-Hall, NJ, 1986.

Robert L. Constable, Stuart F. Allen, and Douglas J. Howe. Reflecting the open-ended
computation system of constructive type theory. In H. Schwichtenberg, editor, Logic,
Algebra and Computation, NATO ASI Series, Vol. F79, pages 265-280. Springer-Verlag,
1990.

12



13.

14.

15.

16.

17.

18.

19.
20.

21.

Robert L. Constable and Karl Crary. Computational complexity and induction for
partial computable functions in type theory. In Preprint, 1998.

D. de Jongh and G. Japaridze. Logic of provability. In S. Buss, editor, Handbook of
Proof Theory, pages 475-546. Elsevier, 1998.

Jason Hickey. The MetaPRL Logical Programming Environment. PhD thesis, Cornell
University, January 2001.

Jason Hickey and Aleksey Nogin. Fast tactic-based theorem proving. In J. Harrison
and M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th International
Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Computer Science, pages
252-266. Springer-Verlag, 2000.

R. Kelsey, Clinger W., J. Rees, et al. Revised® report on the algorithmic language
scheme. Journal of Higher Order and Symbolic Computation, 11(1):7-105, 1998.

L. Magnusson and B. Nordstréom. The ALF proof editor and its proof engine. In Henk
Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs. International
Workshop TYPES’93, volume 806 of Lecture Notes in Computer Science, pages 213-237.
Springer-Verlag, 1994.

MetaPRL home page. http://metaprl.org/.

B.C. Smith. Reflection and semantics in Lisp. Principles of Programming Languages,
pages 23-35, 1984.

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,
Amsterdam, 1996.

13



