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Abstract. We introduce a natural deduction formulation for the Logic
of Proofs, a refinement of modal logic S4 in which the assertion �A
is replaced by [[s]]A whose intended reading is “s is a proof of A”. A
term calculus for this formulation yields a typed lambda calculus λI that
internalises intensional information on how a term is computed. In the
same way that the Logic of Proofs internalises its own derivations, λI

internalises its own computations. Confluence and strong normalisation
of λI is proved. This system serves as the basis for the study of type
theories that internalise intensional aspects of computation.

1 Introduction

This paper introduces a typed lambda calculus that internalises its own com-
putations. Such a system is obtained by a propositions-as-types [GLT89] inter-
pretation of a logical system for provability which internalises its own proofs,
namely the Logic of Proofs LP [Art95, Art01]. Proofs are represented as combi-
natory terms (proof polynomials). In the minimal propositional logic fragment
of LP proof polynomials are constructed from proof variables and constants
using two operations: application “·” and proof-checker “!”. The usual proposi-
tional connectives are augmented by a new one: given a proof polynomial s and
a proposition A build [[s]]A. The intended reading is: “s is a proof of A”. The
axioms and inference schemes of LP are:

A0. Axiom schemes of minimal logic in the language of LP
A1. [[s]]A ⊃ A “verification”
A2. [[s]](A ⊃ B) ⊃ ([[t]]A ⊃ [[s · t]]B) “application”
A3. [[s]]A ⊃ [[!s]][[s]]A “proof checker”
R1. Γ � A ⊃ B and Γ � A implies Γ � B “modus ponens”
R2. If A is an axiom A0-A3, and c is a proof constant,

then � [[c]]A
“necessitation”

For verification one reads:“if s is a proof of A, then A holds”. As regards the
proof polynomials the standard interpretation is as follows. For application one
reads: “if s is a proof of A ⊃ B and t is a proof of A, then s · t is a proof of B”.
Thus “·” represents composition of proofs. For proof checking one reads: “if s is
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a proof of A, then !s is a proof of the sentence ‘s is a proof of A’ ”. Thus !s is
seen as a computation that verifies [[s]]A.

First we introduce a natural deduction (ND) formulation LP−
nd for LP.

Following recent work on judgemental reconstruction [ML83] of intuitionistic
S4 [DP96, DP01b, DP01a], judgements are introduced in which a distinction is
made between propositions whose truth is assumed from those whose validity is
assumed. Judgements in LP−

nd are of the form:

v1 : A1 valid , . . . , vn : An valid ; a1 : B1 true , . . . , am : Bm true � A true | s

which expresses “s is evidence that A is true, assuming that for each i ∈ 1..n, vi

is evidence that Ai is valid and assuming that for each j ∈ 1..m, aj is evidence
that Bj is true”. Such judgements are called hypothetical judgements [ML83].
Evidence s is a constituent part of the judgement without which the proposed
reading is no longer possible. Its importance is reflected in the following intro-
duction rule for the [[s]] connective:

Δ; · � A | s
�I

Δ; Γ � [[s]]A |!s

This scheme internalises proofs of validity: If s is evidence that A is uncondition-
ally true (“·” indicates an empty set of hypothesis of truth), then it is true that
s is a proof of A. The new witness to this fact is registered as the evidence !s.
The “!” operator is reminiscent of that of proof polynomials. However, in LP−

nd ,
proof terms such as s encode ND derivations and thus are no longer the proof
polynomials of LP.

At the basis of the meaning of hypothetical judgements (provided by the ax-
ioms and inference schemes presented in Sec. 2) is the notion of substitution.
The following two principles, the Substitution Principle for Truth with Evidence
and the Substitution Principle for Validity with Evidence, reflect the true hypo-
thetical nature of hypothesis.

– If Δ; Γ � A | s and Δ; Γ, a : A, Γ ′ � B | t, then Δ; Γ, Γ ′ � B | tas
– If Δ; · � A | s and Δ, v : A, Δ′; Γ � B | t, then Δ, Δ′; Γ � Bv

s | tvs

These principles allow derivations to be composed, a fundamental operation
on which the process of normalisation of derivations relies on. In fact, composi-
tion of derivations suffices, in general, to formulate rules for eliminating redun-
dancy in derivations. However, the fact that LP−

nd internalises its own proofs
presents a complication in this respect. For example, the näıve simplification
step depicted in Fig. 1 which relies on the Substitution Principle for Truth with
Evidence fails given that it modifies the judgement that was originally justi-
fied. On a more pragmatical level, such a normalisation process may produce
invalid derivations [AB06]. The problem stems in that the normalisation step
is attempting to identify, at the meta-level, the two derivations and LP−

nd hap-
pens to internalise its own derivations. As a consequence, the normalisation step
must be reflected in the logic too. More precisely, a new judgement expressing
the equality on evidence must be introduced. Accordingly, in Sec. 2.2 we extend
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Δ; Γ, a : A � B | s
⊃ I

Δ; Γ � A ⊃ B | λa : A.s Δ; Γ � A | t
⊃ E

Δ; Γ � B | (λa : A.s) · t

� Δ; Γ � B | sa
t

Fig. 1. Näıve simplification

our ND presentation LP−
nd with hypothetical judgements for evidence equality.

The normalisation process is thus internalised into the logic. For this amended
system, LPnd , the set of derivations is seen to be closed under normalisation.

In Sec. 4 we study a term assignment for LPnd , namely the intensional lambda
calculus (λI). λI results from extending the propositions-as-types correspondence
to LPnd . The normalisation process of derivations in LPnd yields a notion of
reduction on the typed lambda calculus terms. Just as LPnd internalises its own
derivations, the operational counterpart of this logic is seen to internalise the
reduction of derivations. We show that λI is strongly normalising and confluent
by applying properties of higher-order rewrite systems.

Related work. S. Artemov introduced the Logic of Proofs in [Art95, Art01].
A ND presentation for LP is provided in [Art01]. This presentation relies on
combinatory terms as proof terms (proof polynomials). It is a ND system for
a logic that internalises Hilbert style proofs. As a consequence, the presence of
normalisation is not felt at the level of proof terms. Since we use proof terms
that encode ND proofs, the internalisation scheme implemented by �I together
with the normalisation process on derivations has a visible impact in the design
of the inference schemes for our system LPnd .

V. Brezhnev [Bre01] formulates a system of labeled sequents. Roughly, a re-
finement of the sequent presentation of LP [Art01] is presented in which la-
beled sequents are derived rather than the sequents themselves. It has been
proved [Art95, Art01] that LP is a refinement of S4 in the sense that any
cut-free derivation of S4 can be realized by one of LP. A realization of an S4
derivation is the process of appropriately filling in all occurrences of boxes �

with proof polynomials such that a valid LP derivation is obtained. The aim of
the work of Brezhnev is to make this correspondence explicit. Also, he extends
the correspondence to other modal logics such as K, K4, D, D4 and T.

From a type theoretic perspective we should mention the theory of dependent
types [Bar92]. Dependent type theory is the type-theoretic counterpart of first-
order logic via the propositions-as-types correspondence. Types may depend on
terms, in much the same way that a type [[s]]A depends on the proof term s.
In contrast to λI, dependent type theory lacks a notion of internalisation of
derivations.

More closely related to λI is the reflective λ-calculus (λ∞) [AA01]. λ∞ is
a rigidly typed (all variables and subterms carry a fixed type) lambda calcu-
lus which essentially results from a term assignment of the aforementioned ND
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presentation of [Art01]. The difference with the approach of this paper is that in
the reflective λ-calculus [[s]]A is read as “s has type A”. Accordingly, hypothesis
are not labeled with variables, rather they are part of the formula. For example,
x : A � x : A becomes [[x]]A � [[x]]A. An unwanted complication is that the
desired internalisation property (namely, A1, A2, . . . , An � B implies that for
fresh variables x1, x2, . . . , xn there exists a term t(x1, x2, . . . , xn) such that we
can prove [[x1]]A1, [[x2]]A2, . . . , [[xn]]An � [[t(x1, x2, . . . , xn)]]B) changes the types
of the assumptions. As a consequence, operations on types having nested copies
of proof terms are required for typing. This also complicates the definition of
reduction on terms.

Note: For further details and full proofs see [AB06].

2 Natural Deduction for LP

Following [DP01b] we distinguish the following judgements: “A is a proposition”
(“A proposition” for short), “A true” and “A valid”. In the case of the second
and third judgements we assume that it is already known that “A proposition”.
The inference schemes defining the meaning of “A proposition” are the usual
well-formedness conditions and hence are omitted. Our interest lies in providing
meaning to the following hypothetical judgements with explicit evidence:

v1 : A1 valid , . . . , vn : An valid ; a1 : B1 true , . . . , am : Bm true � A true | s

by a set of axiom schemes and inference schemes, where vi, i ∈ 1..n, and aj, j ∈
1..m, range over some given some set of evidence (of proof) variables {x1, x2, . . .}.
To the left of the semi-colon we place the assumptions of validity and to the
right the assumptions of truth. For the sake of readability, we drop the qualifiers
“valid” and “true”. Consequently, these judgements take the form:

v1 : A1, . . . , vn : An; a1 : B1, . . . , am : Bm � A | s

In addition to the usual requirement that the vi and ai be distinct, we must also
require that they be fresh (i.e. that they do not occur in the Ai and Bi). Note also
that since we assume J1 through Jn, in a hypothetical proof of a hypothetical
judgement with explicit evidence, we may use the Ji as if we knew them. As a
consequence we can substitute an arbitrary derivation of Ji for all its uses by
means of the two aforementioned substitution principles.

2.1 Axiom and Inference Schemes

It is convenient to introduce first a preliminary ND system (LP−
nd ), point out its

weaknesses and then introduce the final ND system LPnd . We begin by defining
the set of Proof Terms, Propositions, Truth Contexts and Validity Contexts.

Proof Terms s ::= x | s · s | λa : A.s | !s | Xtrt sas v : A in s
Propositions A ::= P | A ⊃ A | [[s]]A
Truth Contexts Γ ::= · | Γ, a : A
Validity Contexts Δ ::= · | Δ, v : A
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Minimal Propositional Logic Fragment

oVar
Δ; Γ, a : A,Γ ′ � A | a

Δ; Γ, a : A � B | s
⊃ I

Δ; Γ � A ⊃ B | λa : A.s

Δ; Γ � A ⊃ B | s Δ; Γ � A | t
⊃ E

Δ; Γ � B | s · t

Provability Fragment

mVar
Δ, v : A,Δ′; Γ � A | v

Δ; · � A | s
�I

Δ; Γ � [[s]]A |!s

Δ; Γ � [[r]]A | s Δ, v : A;Γ � C | t
�E

Δ; Γ � Cv
r | Xtrt sas v : A in t

Fig. 2. Explanation for Hypothetical Judgements with Explicit Evidence

We write fv(s) for the set of free variables of a proof term. All free occurrences
of a (resp. v) in s are bound in λa : A.s (resp. Xtrt tas v : A in s). A propo-
sition is either a propositional variable P , an implication A ⊃ B or a validity
proposition [[s]]A. Truth and validity contexts are sequences of labeled proposi-
tions; “·” denotes the empty context. We write sx

t for the result of substituting
all free occurrences of x in s by t and assume that bound variables are renamed
whenever necessary; likewise for Ax

t .

Definition 1. LP−
nd is defined by the schemes of Fig. 2.

An informal explanation of some of these schemes follows. The axiom scheme
oVar states that the judgement “Δ; Γ, a : A, Γ ′ � A | a” is evident in itself.
Indeed, if we assume that a is evidence that proposition A is true, then we may
immediately conclude that A is true with evidence a. The introduction scheme
for the [[s]]modality internalises metalevel evidence into the object logic. It states
that if s is unconditional evidence that A is true, then A is in fact valid with
witness s (i.e. [[s]]A is true). Evidence for the truth of [[s]]A is constructed from
the (verified) evidence that A is unconditionally true by prefixing it with a bang
constructor. Finally, �E allows the discharging of validity hypothesis. In order
to discharge the validity hypothesis v : A, a proof of the validity of A is required.
In our system, this requires proving that [[r]]A is true with evidence s, for some
evidence of proof r and s. Note that r is evidence that A is unconditionally true
(i.e. valid) whereas s is evidence that [[r]]A is true. The former is then substituted
in the place of all free occurrences of v in the proposition C. This construction
is recorded with evidence Xtrt sas v : A in t in the conclusion. The mnemonic
symbols “Xtrt” stand for “extract” since, intuitively, evidence of the validity
of A may be seen to be extracted from evidence of the truth of [[r]]A. A sample
derivation in LP−

nd of [[s]]A⊃[[!s]][[s]]A follows.
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oVar
·; a : [[s]]A � [[s]]A | a

mVar
w : A; · � A | w

�I
w : A; · � [[w]]A |!w

�I
w : A; a : [[s]]A � [[!w]][[w]]A |!!w

�E
·; a : [[s]]A � [[!s]][[s]]A | Xtrt aasw : A in !!w

⊃ I
·; · � [[s]]A ⊃ [[!s]][[s]]A | λa : [[s]]A.Xtrt aasw : A in !!w

The standard structural properties of judgements (weakening, contraction and
exchange) hold. Also, the substitution principles for truth with evidence and
validity with evidence may be proved by induction on the derivation. A more
interesting property is that LP−

nd internalises its own proofs of unconditional
truth.

Lemma 1 (Lifting [Art95]). Let Δ = u1 : A1, . . . , un : An and Γ = b1 :
B1, . . . , bm : Bm. If Δ; Γ � A | r, then Δ, v1 : B1, . . . , vm : Bm; · � [[s(u, v)]]A |
t(u, v) where s(u, v) = (λb : B.r) · v1 · v2 · . . . · vm and t(u, v) = Xtrt !λb :
B.r asu : (B ⊃ A) in !(u · v1 · v2 . . . · vm).

2.2 Normalisation and Evidence Equality

As mentioned above a näıve approach to normalisation is doomed to fail unless
our attempt to simplify (hence equate) derivations is reflected in the object logic.
Indeed, a new judgement must be considered, namely hypothetical judgements
for evidence equality:

Δ; Γ � s ≡ t : A

Read: “s and t are provably equal evidence of the truth of A under the validity
assumptions of Δ and the truth assumptions of Γ”. This judgement internalises
at the object level the equality of derivations induced by the normalisation steps.
Note that evidence for provable equality is not considered in hypothetical judge-
ments for evidence equality. Although this could be an interesting route for
exploration, in our setting we would then be forced to define a notion of equality
on this new kind of evidence, thus leading to an infinite regression.

In addition to defining the meaning of this new judgement by means of new
axiom and inference schemes, we must indicate how it affects the meaning of
hypothetical judgements with explicit evidence.

Δ; Γ � A | s Δ; Γ � s ≡ t : A
EqEvid

Δ; Γ � A | t

The upper left judgement of EqEvid is called the minor premise and the one on the
right the major premise. Fig. 3 defines the meaning of hypothetical judgement
for evidence equality1.
1 We omit the standard inference schemes for symmetry, transitivity and congruence

of evidence equality [AB06].
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Δ; Γ � A | s
EqRefl

Δ; Γ � s ≡ s : A

Δ; Γ, a : A � B | s Δ; Γ � A | t
EqBeta

Δ; Γ � sa
t ≡ (λa : A.s) · t : B

Δ; · � A | s Δ, v : A; Γ � C | t
Eq�Beta

Δ; Γ � tv
s ≡ Xtrt !sas v : A in t : Cv

s

Δ; Γ � A ⊃ B | s a /∈ fv(s)
EqEta

Δ; Γ � λa : A.(s · a) ≡ s : A ⊃ B

Δ; Γ � [[s]]A | t u /∈ fv(t)
Eq�Eta

Δ; Γ � Xtrt tasu : A in !u ≡ t : [[s]]A

Fig. 3. Axioms for evidence equality

Definition 2. LPnd is obtained by augmenting the schemes of Fig. 2 with
EqEvid and the schemes of Fig. 3.

In the sequel we study hypothetical judgements derivable in LPnd . Note that
the structural properties of LP−

nd extend to LPnd .
We now return to normalisation of derivations. Two groups2 of contractions

of derivations are defined: principal contractions and silent permutative contrac-
tions. The first is internalised by the inference schemes defining provable equality
of evidence. Permutative conversions need not be internalised since, in contrast
to principal contractions, they do not alter the end judgement. They are thus
dubbed silent permutative conversions. By defining an appropriate notion of cut
segment one can show that contraction is weakly normalising: there is a sequence
of contractions to normal form [AB06].

Lemma 2. Contraction in LPnd is weakly normalising.

More importantly, we shall see shortly that contraction is in fact strongly nor-
malising. The proof of this is established via weak normalisation.

3 Provability Semantics

Rules of LPnd can be interpreted as admissible rules of LP, hence supplied with
a natural provability semantics. Interpretation of all rules other then ⊃ I and
�E are straightforward. The rule ⊃ I corresponds to the Abstraction Rule which
is admissible in LP [Art96]. There are two LP-compliant interpretations of the
rule �E, cf. Fig. 4. The left one, which we suggest calling internalized reading
is self-explanatory. The right one, which we call leveled requires that a proof
constant d is specified as d : (r : A ⊃ A). We leave a more detailed investigation
of the provability semantics of LPnd to further studies.

2 We ignore principal expansions in this extended abstract (see [AB06]).
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Γ � s : r : A Γ, v : A � t : C

Γ � tv
r : Cv

r

Γ � s : r : A Γ, v : A � t : C

Γ � tv
d·s : Cv

d·s

Fig. 4. Interpretations of �E

4 The Intensional Lambda Calculus

This section introduces the intensional lambda calculus (λI) and studies conflu-
ence and strong normalisation. We begin by defining the set of raw terms of
λI:

Proper Terms M ::= x | M · M | λa : A.M
| !M | XtrtM as v : A inM | e � M

Reduction Evidence e ::= β([a : A]M, N) | β�([v : A]M, N)
| Refl(M) | Sym(e) | e; e
| Abs([a : A]e) | App(e, e)
| BoxL(e) | BoxR(e) | xtrt(e, [v : A]e)

A raw term of the form M · N is an application, λa : A.M is an abstraction, !M
is a bang term, XtrtM as v : A inN is an extraction and e � M is a registered
term. Reduction evidence β([a : A]M, N) is used to register that a principal ⊃
contraction was applied together with the actual parameters (λa : A.M and N)
and β�([v : A]M, N) is for principal � contractions. The remaining reduction
evidence terms are for the congruence inference schemes of evidence equality.

Let P range over an enumerable set of type variables. The set of raw types is
the set of propositions of LPnd . In λI proper terms are assigned pointed types
〈A, s〉 and reduction evidence is assigned equality types s ≡ t : A. Since the
typing schemes follow the axiom and inference schemes of LPnd , there are two
typing judgements :

1. Δ; Γ � M � 〈A, s〉, read: “Proper term M has pointed type 〈A, s〉 under type
assumptions Δ and Γ” and

2. Δ; Γ � e � s ≡ t : A, read: “Reduction evidence e has equality type s ≡ t : A
under type assumptions Δ and Γ”.

Definition 3. A proper term M is typable if there exist type assumptions Δ
and Γ and a pointed type 〈A, s〉 such that Δ; Γ � M � 〈A, s〉 is derivable using
the typing schemes presented in Fig. 5. Typability of reduction evidence (Δ; Γ �
e�s ≡ t : A) is defined similarly [AB06]. A λI-term is a raw term that is typable.

The contractions defining normalisation on derivations of LPnd induce a corre-
sponding reduction relation on the λI-terms that encode the derivations.

Definition 4 (λI-reduction). The λI-reduction relation (→) is obtained by
taking the contextual closure of the reduction axioms:
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Minimal Propositional Logic Fragment

oVar
Δ; Γ, a : A, Γ ′ � a � 〈A, a〉

Δ; Γ, a : A � M � 〈B, s〉
⊃ I

Δ; Γ � λa : A.M � 〈A ⊃ B, λa : A.s〉

Δ; Γ � M � 〈A ⊃ B, s〉 Δ; Γ � N � 〈A, t〉
⊃ E

Δ; Γ � M · N � 〈B, s · t〉

Provability Fragment

mVar
Δ, v : A, Δ′; Γ � v � 〈A, v〉

Δ; · � M � 〈A, s〉
�I

Δ; Γ �!M � 〈[[s]]A, !s〉

Δ; Γ � M � 〈[[s]]A, s′〉 Δ, v : A; Γ � N � 〈C, t〉
�E

Δ; Γ � XtrtM as v : A inN � 〈Cv
s ,Xtrt s′

as v : A in t〉

Δ; Γ � M � 〈A, s〉 Δ; Γ � e � s ≡ t : A
EqEvid

Δ; Γ � e � M � 〈A, t〉

Fig. 5. Typing schemes for proper terms

(λa : A.M) · N →β β([a : A]M, N) � Ma
N

Xtrt !N as v : A inM →β� β�([v : A]M, N) � Mv
N

(e � M) · N →�L App(e,Refl(N)) � M · N
Xtrt e � N as v : A inM →�xtr xtrt(e, [v : A]Refl(M)) � XtrtN as v : A inM

Note that, just as proof terms are internalised as part of the process of proving
a formula in LP, so the process of reducing a λI-term internalises evidence of
reduction. Indeed, an application of the β reduction rule results in a λI-term
that incorporates a witness to the fact that such a reduction step was applied.
This reduction evidence provides intensional information on how the result was
computed.

Consider the term from the ordinary typed lambda calculus I · (I · b) (which
is also a term in λI) where I abbreviates λa : A.a. In the typed lambda calculus
it reduces in two different ways to I · b (we underline the contracted redex):

1. I · (I · b) → I · b 2. I · (I · b) → I · b

The fact that both these reductions reach the same term is known as a “syntactic
coincidence” [HL91] in the rewriting/lambda calculus community. Although the
same term is reached they are computed in rather different ways in the sense that
unrelated redexes are contracted. Note, however, that in λI these two derivations
now end in different terms:

1. I · (I · b) → I · (β([a : A]a, b) � b)
2. I · (I · b) → β([a : A]a, (I · b)) � I · b
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Since reduction is obtained as a straightforward mapping of contraction of
derivations, the following type-soundness result holds.

Lemma 3 (Subject Reduction). If M →λI N and Δ; Γ � M � 〈A, s〉, then
Δ; Γ � N � 〈A, s〉.

4.1 Confluence and Strong Normalisation for λI

Higher-order term rewrite systems (HORS) [Klo80, Nip91, TER03] extend first-
order term rewrite systems by allowing terms with binders. The λ-calculus is
the prototypical example of a HORS. λI can also be presented as a HORS -
we’ll present it as an HRS [Nip91]. In HRS the simply typed lambda calculus is
used as a meta-language for writing the left and right-hand side of rewrite rules.
Boldface is used for constants, x, y, . . . for variables, x.M for abstraction and
M(N) for application. The rewrite rules for λI are (the signature of the symbols
involved is straightforward and hence omitted):

app(abs(x.z(x)), y) →β evid(betaE(x.z(x), y), z(y))
xtrt(bang(y), x.z(x)) →β� evid(betaBoxE(x.z(x), y), z(y))
app(evid(x, y), z) →�L evid(appE(x, reflE(z)),app(y, z)
xtrt(evid(w, y), x.z(x)) →�xtr evid(xtrtE(w, x.reflE(z(x))),xtrt(y, x.z(x)))

The interest in HOR is that general results on combinatorial properties of
rewriting can be established. Two such results are of use to us. The first states
that orthogonal, pattern HRS are confluent. Orthogonal means that rewrite steps
are independent: If two redexes in a term may be reduced, the reduction of one
of them does not “interfere” with the other one except possibly by duplicating or
erasing it. Pattern means that in the left-hand sides of rewrite rules free variables
can only be applied to distinct bound variables (modulo η-equivalence). This
guarantees that higher-order pattern matching behaves similar to the first-order
case: unification of higher-order patterns is decidable and most general unifiers
can be computed. We write PRS for pattern HRS.

Proposition 1 ([Nip91]). Orthogonal PRS are confluent.

The λI-calculus is easily seen to be an orthogonal PRS: it is left-linear and
non-overlapping. We may thus immediately conclude, from Prop. 1, that it is
confluent.

Proposition 2. λI is confluent.

The other interesting property is that of uniform normalisation. First we intro-
duce some terminology. A rewrite step M → N is perpetual if whenever M has
an infinite reduction, N has one too. A rewrite system is uniformly normalis-
ing if all its steps are perpetual. An example is the λI-calculus [CR36] which is
the standard λ-calculus in which the set of terms is restricted to those M such
that λx.N ⊆ M implies x ∈ fv(N). The proof of this fact for λI relies on two



22 S. Artemov and E. Bonelli

properties: (1) all reduction steps are non-erasing and (2) it is orthogonal. It
turns out that this result can be extended to arbitrary higher-order rewrite
systems.

Proposition 3 ([KOvO01]). Non-erasing, orthogonal and fully-extended 3

second-order4 PRS are uniformly normalising.

A close look at the HRS presentation of λI reveals that it is in fact a non-erasing,
fully-extended, second-order PRS. Furthermore, we have already mentioned that
it is orthogonal. As a consequence, we conclude the following from Prop. 3.

Proposition 4. λI is uniformly normalising.

The interesting thing about uniformly normalisable rewrite systems is that weak
normalisation is equivalent to strong normalisation. Therefore, since we have
proved that λI is weakly normalising, we conclude that:

Proposition 5. λI is strongly normalising.

5 Conclusions

A study of the computational interpretation of the Logic of Proofs via the
propositions-as-types correspondence requires an appropriate ND presentation.
This paper presents one such system, LPnd , resulting from a judgemental analy-
sis [ML83, DP01a] of LP. The term assignment yields a typed lambda calculus,
called the intensional lambda calculus (λI), that is capable of internalising com-
putation evidence, in much the same way that LP is capable of internalising
derivability evidence. Computations in λI yield terms that include information
on how this computation is performed.

As mentioned, the fact that I · (I · b) → I · b and I · (I · b) → I · b reduce
to the same term in the standard lambda calculus is known as a “syntactic
coincidence” [HL91] since these terms are computed in different ways. In λI the
corresponding reductions are no longer cofinal given that intensional information
on how the term was computed is part of the result. Further investigation on
the relation with equivalence of reductions as defined by Lévy [Lév78, TER03]
is left to future work.

Other interesting directions are the formulation of intensional calculi for linear
and classical logic given their tight connections with resource conscious computing
and control operators and the analysis of the explicit modality and how it relates
to staged computation and run-time code generation [DP96, WLPD98].

3 A rewrite system is said to be fully-extended if each of its rewrite rules (l, r) verifies
the following: for every occurrence x(P1, . . . , Pn) in l of a free variable x, P1, . . . , Pn

is the list of all bound variables above it.
4 Define the order of a type A of the simply typed lambda calculus, written ord(A), to

be 1 if the type is a base type and max(ord(A1) + 1, A2) if A = A1 → A2. The order
of rewrite system is the maximum order of the types of the variables that occur in
its rewrite rules.
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[HL91] Gérard Huet and Jean-Jacques Lévy. Computations in orthogonal rewrit-
ing systems. In J.L. Lassez and G.D. Plotkin, editors, Computational
Logic; Essays in honor of Alan Robinson, pages 394–443. MIT Press, 1991.

[Klo80] Jan W. Klop. Combinatory Reduction Systems. PhD thesis, CWI, Ams-
terdam, 1980. Mathematical Centre Tracts n.127.

[KOvO01] Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom. Per-
petuality and uniform normalization in orthogonal rewrite systems. In-
formation and Computation, 164:118–151, 2001.
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[ML83] Per Martin-Löf. On the meaning of the logical constants and the justi-
fications of the logical laws. Lectures given at the meeting Teoria della
Dimostrazione e Filosofia della Logica, in Siena, 6-9 April 1983, by the
Scuola di Specializzazione in Logica Matematica of the Università degli
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A Contractions for LPnd

1. Principal Contractions

Δ; Γ, a : A � B | s
⊃ I

Δ; Γ � A ⊃ B | λa : A.s Δ; Γ � A | t
⊃ E

Δ; Γ � B | (λa : A.s) · t

�

π

Δ; Γ � B | sa
t

Δ; Γ, a : A � B | s Δ; Γ � A | t
EqBeta

Δ; Γ � sa
t ≡ (λa : A.s) · t : B

EqEvid
Δ; Γ � B | (λa : A.s) · t

Δ; · � A | s
�I

Δ; Γ � [[s]]A |!s Δ, v : A; Γ � C | t
�E

Δ; Γ � Cv
s | Xtrt !s as v : A in t

�

π

Δ; Γ � Cv
s | tv

s

Δ; · � A | s Δ, v : A; Γ � C | t
Eq�Beta

Δ; Γ � tv
s ≡ Xtrt !s as v : A in t : Cv

s

EqEvid
Δ; Γ � Cv

s | Xtrt !s as v : A in t

where π results from the Substitution Principle for Validity with Evidence.
2. Silent Permutative Contractions

Δ; Γ � A1 ⊃ A2 | s Δ; Γ � s ≡ t : A1 ⊃ A2

EqEvid
Δ; Γ � A1 ⊃ A2 | t Δ; Γ � A1 | r

⊃ E
Δ; Γ � A2 | t · r

�

Δ; Γ � A1 ⊃ A2 | s Δ; Γ � A1 | r
⊃ E

Δ; Γ � A2 | s · r

Δ; Γ � s ≡ t : A1 ⊃ A2

Δ; Γ � A1 | r
EqRefl

Δ; Γ � r ≡ r : A1
Eq ⊃ E

Δ; Γ � s · r ≡ t · r : A2
EqEvid

Δ; Γ � A2 | t · r
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Δ; Γ � [[s1]]A | s2 Δ; Γ � s2 ≡ r : [[s1]]A
EqEvid

Δ; Γ � [[s1]]A | r Δ, v : A; Γ � C | t
�E

Δ; Γ � Cv
s1

| Xtrt r as v : A in t

�

Δ; Γ � [[s1]]A | s2 Δ, v : A; Γ � C | t
�E

Δ; Γ � C
v
s1

| Xtrt s2 as v : A in t
�E

Δ; Γ � C
v
s1

| q

Δ; Γ � s2 ≡ r : [[s1]]A

Δ, v : A; Γ � C | t
EqRefl

Δ, v : A; Γ � t ≡ t : C
Eq�E

Δ; Γ � q ≡ Xtrt r as v : A in t : C
v
s1

EqEvid
Δ; Γ � C

v
s1

| Xtrt r as v : A in t

where q is the proof term Xtrt s2 as v : A in t
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