
Breaking through the Normalization Barrier:
A Self-interpreter for F-omega

A b s t r a c t

According to conventional wisdom, a self-interpreter for a
strongly normalizing A-calculus is impossible. We call this
t h e n o r m a l i z a t i o n b a r r i e r . T h e n o r m a l i z a t i o n b a r r i e r s t e m s
from a theorem in computability theory that says that a
total miiversal function for the total computable functions
is impossible. In this paper we break through the normal
ization barrier and define a self-interpreter for System F^,
a strongly normalizing A-calculus. After a careful analysis
of the classical theorem, we show that static type check
ing in Fuj excludes the proof's diagonalization gadget and
leaves open the possibility for a self-interpreter. Along with
the self-interpreter, we program four other operations in Fu;,
including a continuation-passing style transformation. Our
operations rely on a new approach to program representa
tion that may be useful in theorem provers and compilers.

1 . I n t r o d u c t i o n

Barendregt's notion of a self-interpreter is a program that
recovers a program from its representation and is imple
mented in the language itself [1]. Specifically for A-calculus,
the challenge is to devise a quoter that maps each term e to a
representation e, and a self-interpreter u (for unquote) such
that for every A-term e we have (u e) =p e. The quoter is
an injective function from A-terms to representations, which
are A-terms in normal form. For untyped A-calculus, in 1936
Kleene [14] presented the first self-interpreter, and in 1994
Mogensen presented the first strong self-interpreter u that
satisfies the property (u e) —e. In 2009, Rendel, Oster-
mann, and Hofer [20] presented the first self-interpreter for
a typed A-calculus (F*), and in 2015 Brown and Palsberg
[4] presented the first self-interpreter for a typed A-calculus
with decidable type checking (Girard's System U). Those re
sults are all for non-normalizing A-calculi and they go about
as far as one can go before reaching what we call the nor
m a l i z a t i o n h a r r i e r .

The normalizat ion barr ier: According to conventional
wisdom, a self-interpreter for a strongly normalizing A-
calculus is impossible.

The normalizat ion barr ier stems from a theorem in com
putability theory that says that a total universal function
for the total computable functions is impossible. Several
books, papers, and web pages have concluded that the the
orem about to ta l un ive rsa l func t ions car r ies over to se l f -
interpreters for strongly normalizing languages. For exam
ple, Turner states that "For any language in which all pro
grams terminate, there are always terminating programs
which cannot be written in it - among these are the in
terpreter for the language itself" [26, pg. 766]. Similarly,
Stuart writes that "Total programming languages are still

[this paper] [this paper] [this paper] [4]
0 [18] 0 [18] n [4] 0
F ' F +

n o r m a l i z a t i o n b a r r i e r

Figure 1: Four typed A-calculi: -> denotes "represented in."

very powerful and capable of expressing many useful compu
tations, but one thing they can't do is interpret themselves"
[23, pg. 264]. Additionally, the Wikipedia page on the Nor-
malization Property (accessed in May 2015) explains that a
self-interpreter for a strongly normalizing A-calculus is im
possible. That Wikipedia page cites three typed A-calculi,
namely simply typed A-calculus, System F, and the Calculus
of Constructions, each of which is a member of Barendregt's
cube of typed A-calculi [2]. We can easily add examples to
that list, particularly the other five corners of Barendregt's
A-cube, including F^;. The normalization barrier implies that
a self-interpreter is impossible for every language in the list.
In a seminal paper in 1991 Pfenning and Lee [18] considered
whether one can define a self-interpreter for System F or F^
and found that the answer seemed to be "no". They went on
to represent F in F^, and Fu; in FJ.

In this paper we take up the challenge presented by the
n o r m a l i z a t i o n b a r r i e r .

The challenge: Can we define a self-interpreter for a
strongly normalizing A-calculus?

Our result: Yes, we present a strong self-interpreter for
the strongly normalizing A-calculus Foj] the program repre
sentation is deep and supports a variety of other operations.
We also present a much simpler self-interpreter that works
for each of System F, Fu;, and F+; the program representa
tion is shallow and supports no other operations.

Figure 1 illustrates how our result relates to other rep
resentations of typed A-calculi with decidable type check
ing. The normalization barrier separates the three strongly-
normalizing languages on the left from System U on the
right, which is not strongly-normalizing. Our result con
tributes the self-loops on F, F^, and F^, depicting the first
self-representations for strongly-normalizing languages.

Our result breaks through the normalization barrier and
relies on three insights. First, we observe that Fc^ excludes
some problematic A-terms. Specifically, the proof of the clas
sical theorem in computability theory uses a diagonalization
gadget that fails to type check in F^;, so the proof doesn't
carry over to Fa;. Second, for our deep representation we use

a novel extensional approach to representing polymorphic
terms. We use instant iat ion funct ions that describe the re
lationship between a quantified type and one of its instance
types. Each instantiation function takes as input a term of
a quantified type, and instantiates it with a particular pa
rameter type. Third, for our deep representation we use a
novel representation of types, which helps us type check a
continuation-passing-style transformation.

We present five operations on our deep representation,
namely a strong self-interpreter, a continuation-passing-
style transformation, an intensional predicate for testing
whether a closed term is an abstraction or an application, a
size measure, and a normal-form checker. Our list of oper
ations extends the lists presented by Rendel et al. [20] and
by Brown and Palsberg [4].

Our deep self-representation of Fu; could be useful for
type-checking self-applicable metaprograms, with potential
for applications in typed macro systems, partial evaluators,
compilers, and theorem provers. In particular, Fu, is a sub
set of the proof language of the Coq proof assistant, and
Morrisett has called Fu; the workhorse of modern compilers
[16].

Our deep representation is the most powerful self-
representation of Fu; that we have identified: it supports
all the five operations listed above. One can define several
other representations for Fu; by using fewer of our insights.
Ultimately, one can define a shallow representation that sup
ports only a self-interpreter and nothing else. As a stepping
stone towards explaining our main result, we will show a
shallow representation and a self-interpreter in Section 3.3.
That representation and self-interpreter have the distinction
of working for System F, Fu; and Fj. Thus, we have solved
the two challenges left open by Pfenning and Lee [18].

Rest of the paper. In Section 2 we describe Fu;, in Sec
tion 3 we analyze the normalization barrier, in Section 4 we
describe instantiation functions, in Section 5 we show how
to represent types, in Section 6 we show how to represent
terms, in Section 7 we present our operations on program
representations, in Section 8 we discuss our implementation
and experiments, and in Section 9 we compare with related
work. Proofs of theorems stated throughout the paper are
provided in an appendix that we have submitted as supple
mentary material to this POPL submission.

2 . S y s t e m
System F^ is a typed A-calculus within the A-cube [2]. It
combines two axes of the cube: polymorphism and higher-
order types (type-level functions). In this section we sum
marize the key properties of System Fu; used in this paper.
We refer readers interested in a complete tutorial to other
sources [2, 19]. We give a definition of Fu; in Figure 2. It in
cludes a grammar, rules for type formation and equivalence,
and rules for term formation and reduction. The grammar
defines the kinds, types, terms, and environments. As usual,
types classify terms, kinds classify types, and environments
classify free term and type variables. Every syntactically
well-formed kind and environment is legal, so we do not in
clude separate formation rules for them. The type formation
rules determine the legal types in a given environment, and
assigns a kind to each legal type. Similarly, the term forma
tion rules determine the legal terms in a given environment,
and assigns a type to each legal term. Our definition is sim
ilar to Pierce's [19], with two differences: we use a slightly
different syntax, and our semantics is arbitrary ^-reduction
instead of call-by-value.

It is well known that System Fu; is strongly normalizing,
that type checking is decidable, and that types in Fu; are
unique up to /^-equivalence. Strong normalization means
that every sequence of ^^-reductions eventually terminates
with a /3-normal form.

We require that representations of terms be data, which
for A-calculus usually means a term in /3-normal form. In
particular, a term e is ^-normal if there is no e' such that e

3 . T h e N o r m a l i z a t i o n B a r r i e r
In this section, we explore the similarity of a universal
computable function in computability theory and a self-
interpreter for a programming language. As we shall see,
the exploration has a scary beginning and a happy ending.
At first, a classical theorem in computability theory seems
to imply that a self-interpreter for Fu; is impossible. Fortu
nately, further analysis reveals that the proof relies on an
assumption that a diagonalization gadget can always be de
fined for a language with a self-interpreter. We show this
assumption to be false: by using a typed representation, it is
possible to define a self-interpreter such that the diagonal
ization gadget cannot possibly type check. We conclude the
section by demonstrating a simple typed self-representation
and a self-interpreter for Fu;.

3 . 1 F u n c t i o n s f r o m n u m b e r s t o n u m b e r s

We recall a classical theorem in computability theory (The
orem 3.2). The proof of the theorem is a diagonalization
argument, which we divide into two steps: first we prove a
key property (Theorem 3.1) and then we proceed with the
proof of Theorem 3.2.

Let N denote the set of natural numbers {0,1, 2,...}. Let~ be an injective function that maps each total, computable

f u n c t i o n i n N — > N t o a n e l e m e n t o f N .
We say that u 6 (N —N) —>• N is a universal function for

the total, computable functions in N —N , if for every total,
computable function f in N —N , we have Vv G N : u (f, v)
= f(v). We let Univ(N —> N) denote the set of universal
functions for the total, computable functions in N ^ N .

Given a function u in (Nx N) ^ N , we define the function
Pu in N —)> N , where pu(x) = u(x,x) + 1.
Theorem 3.1. If u e Univ(N -> N), then Pu isn't total

Proof. Suppose u 6 Univ(N N) and Pu is total. Notice that
Pu is a total, computable function in N -> N so ^ is defined.
W e c a l c u l a t e :

Pu(]^) = u(p^,p^) + 1 = pu(p;^) + 1

Given that Pu is total, we have that Pu(Pu) is defined; let us
call the result v. From Pu (p^) = Pu (Pu) + 1, we get v = v +
1, which is impossible. So we have reached a contradiction,
hence our assumption (that u 6 Univ(N —)> N) and Pu is
total) is wrong. We conclude that if u G Univ(N N), then
P u i s n ' t t o t a l . □

Theorem 3.2. //u € Univ(N N), then u isn't total.

Proof. Suppose u e Unlv(N -> N) and u is total. For every
X G N , we have that Pu(x) = u(x,x) + 1. Since u is
total, u(x»x) + 1 is defined, and therefore Pu(x) is also
defined. Since Pu(x) is defined for every x G N , Pu is total.
However, Theorem 3.1 states that Pu is not total. Thus we
have reached a contradiction, so our assumption (that u 6

(kinds) /c ::= * \ ki ^ K2
(types) r ::= a I Ti —)▶ r2 I Vai/c.r \ XaiK.r \ ti T2
(terms) e ::= x | Ax:r. e | ei 62 | Aa: k . e | e r

(environments) F ::= () | F, (x:r) | F, (a:/c)
G r a m m a r

{a:K) e F
F h a : K

F h n : * F h T 2 : * T k F, (a : K) h r : *
F h n — > • T 2 : * F h { \ / a : K . r) : *

F h M F,(a:/^i) h r : /C2 F h n : /C2 ^ F h T2 : /^2
F h (Aq!:/<:i.t) : ki —)> K2 F h n r2 : k

Type Formation

n = C r i T 2 = < 7 2

T i r 2 = C T i — > • (7 2

(Aa:«.r) = (XaiK.a)

T 1 = T 2 T 2 = T 3

T l = T 3

(VaiK.r) = (VaiK.a)
T l = (T l T 2 = < 7 2

n T 2 = < 7 l < 7 2

(A<3i:K.r) = (AjSiK.rla := 0\) (Xa\K.T) <7 = (r[a \= <7])

Type Equivalence

(x ; r) G F
F h X : r

F h n : * F , (x : r i) h e : t 2
F h (A x : r i . e) : r i r 2

F h ei : r2 T F h 62 : r2
F h ei e2 : T

F , (a ; «) h e : r
F h (A a : « . e) : (Va i K . r)

F I- e : (Va:Ac.r) T \- a \ k
F f- e <7 : r[a:=<7]

F h e : T T = <7 F I- <7 : =
F h e : <7

T e r m F o r m a t i o n

(A x . - r . e) e i — e [x : = e i]
(Aa:/c.e) r —> e[a := r]

ei —^ 62
0 1 6 3 — > 6 2 6 3
6 3 e i — ^ e 3 0 2

0 1 r — > 0 2 T

(A x : r . 0 i) — > (A x : r . 0 2)
(Aa:K.0i) —> (AQ::K.02)

R e d u c t i o n

Figure 2: Definition of System Fa;

Univ(N —N) and u is total) is wrong. We conclude that if
u E U n i v (N — > N) , t h e n u i s n ' t t o t a l . □

Intuitively, Theorem 3.2 says that if we write an inter
preter for the total, computable functions in N ^ N , then
that interpreter must go into an infinite loop on some inputs.

3.2 Typed A-calculus: Fa;
Does Theorem 3.2 imply that a self-interpreter for Fa; is
impossible? Recall that every term in Fa; is strongly nor
malizing. So, if we have a self-interpreter u for Fa; and we
have (u 0) G Fa;, then (u 0) is strongly normalizing, which
is intuitively expresses that u is a total function. Thus, The
orem 3.2 seems to imply that a self-interpreter for Fa; is im
possible. This is the normalization barrier. Let us examine
this intuit ion via a "translation" of Section 3.1 to Fa;.

Let us recall the definition of a self-interpreter from
Section 1, here for Fa;. A quoter is an injective function from
terms in Fa; to their representations, which are /3-normal
terms in Fa;. We write 0 to denote the representation of a
term 0. We say that u G Fa; is a self-interpreter for Fa;, if V0 G
Fa;: (u 0) 0. We allow (u 0) to include type abstractions
or applications as necessary, and leave them implicit. We use
Selflnt(Fa;) to denote the set of self-interpreters for Fa,.

N o t i c e a s u b t l e d i f f e r e n c e b e t w e e n t h e d e fi n i t i o n o f a
universal function in Section 3.1 and the definition of a self-
interpreter. The difference is that a universal function takes
both its arguments at the same time, while, intuitively, a
self-interpreter is curried and takes its arguments one by
one. This difference plays no role in our further analysis.

The proof of Theorem 3.1 relies on the diagonalization
gadget (Pu p;^), where Pu is a cleverly defined function. The
idea of the proof is to achieve the equality (Pu pll") = (Pu Pu)
+ 1. For the Fa; version of Theorem 3.1, our idea is to achieve
the equality (pu pl^) Ay. (Pu pil), where y is fresh. Here,
Ay plays the role of "+1". Given u G Fa;, we define Pu =
Ax. Ay. ((u x) x), where x,y are fresh, and where we omit
suitable type annotations for x,y. We can now state an Fa;
v e r s i o n o f T h e o r e m 3 . 1 .

Theorem 3.3. //u G Selflnt(Fa;); then (pu Pu) 0

Proof. Suppose u G Selflnt(Fa;) and (pu Pu) G Fa;. We
c a l c u l a t e :

Pu Pu
=^Ay. ((u Pu) Pu)
=/3 Ay. (Pu Pu)

From (Pu p^") G Fa; we have that (Pu ^) is strongly nor
malizing. From the Church-Rosser property of Fa;, we have
that (Pu p^^) has a unique normal form; let us call it v. From
(Pu p;;) =/3 Ay. (pu pli") we get v =p Ay.v. Notice that v
and Ay. v are distinct yet /3-equivalent normal forms. Now
the Church-Rosser property implies that ^-equivalent terms
must have the same normal form. Thus v =p Ay. v implies v
=c Ay. V, which is false. So we have reached a contradî ion,
hence our assumption (that u G Selflnt(Fa;) and (Pu p^) G
Fa;) is wrong. We conclude that if u G Selflnt(Fa;), then (pu
^) 0 F a ; . □

What is an Fc^ version of Theorem 3.2? Given that
every term in is "total" in the sense described earlier,
Theorem 3.2 suggests that we should expect Selflnt(Fa;) = 0.
However this turns out to be wrong and indeed in this paper
we will define a self-representation and self-interpreter for
F^. So, Selflnt(Fu;) 0.

We saw earlier that Theorem 3.1 helped prove Theo
rem 3.2. Why does Theorem 3.3 fail to lead the conclusion
Selflnt(Fw) = 0? Observe that in the proof of Theorem 3.2,
the key step was to notice that if u is total, also Pu is total,
which contradicts Theorem 3.1. In contrast, the assumption
u G Selflnt(Fc^) produces no useful conclusion like (pu pli")
G Fu; that would contradict Theorem 3.3. In particular, it
is possible for u and Pu to be typeable in Fa;, and yet for
(Pu Pu) to be untypeable. So, the door is open for a self-
interpreter for Feu.

3.3 A sel f - interpreter for Fc^

Inspired by the optimism that emerged in Section 3.2, let
us now define a quoter and a self-interpreter for F^,. The
quoter will support only the self-interpreter and nothing else.
The idea of the quoter is to use a designated variable id to
block the reduction of every application. The self-interpreter
unblocks reduction by substituting the polymorphic identity
function for id. Below we define the representation e of a
c l o s e d t e r m e .

r h X : r o X

r, (x:ri) h e : r2 > q
r h (A x : r i . e) : r i t i > (A x : r i . q)

F h ei : T2 -> T > qi F I- 62 : T2 t> q2
F h ei 02 : T > id (t2 -> r) qi q2

T,a:K h e : r > q
F h {Aa ' .K .e) : (Va iK. r) > (Aa: /« .q)

F h e : (Va;Ac.Ti) > q T \- t2 - k
F h 0 r2 : (ri [a := T2]) > id (Va:/c.ri) q r2

r \ - e : T > q T = a F h c r : *
F h e : O- > q

{) h e : r > q
e = Aid: (Va:*. a ^ a), q

Our representation is defined in two steps. First, the rules
of the form F h e : r > q build a pre-representation q
from the typing judgment of a term e. The types are needed
to instantiate each occurrence of the designated variable
id. The representation e is defined by abstracting over
id in the pre-representation. Our self-interpreter takes a
representation as input and applies it to the polymorphic
identity function:

u n q u o t e : V a : * . P) ^ a) a
= A a : * . A q : / 3) a .

q (A/3:*. Ax:/3. x)

T h e o r e m 3 . 4 .

// 0 h e : T, then e is normal and {) h e : (Va:*. a
a) T .

T h e o r e m 3 . 5 .

// 0 h e : r, then unquote r q —>*e.

This self-interpreter demonstrates that it is possible to
break through the normalization barrier. In fact, we can
define a similar self-representation and self-interpreter for
System F and for System Fj. However, the representation
supports no other operations than unquote: parametricity
implies that the polymorphic identity function is the only
possible argument to a representation e [28]. The situation
is similar to the one faced by Pfenning and Lee who ob
served that "evaluation is just about the only useful func
tion definable" for their representation of Fu; in F^. We call
a representation shallow if it supports only one operation,
and we call representation deep if it supports a variety of
operations. While our representation above is shallow, we
have found it to be a good starting point for designing deep
representat ions.

In Figure 3 we define a deep self-representation of F^
that supports operations as varied as unquote, a CPS-
transformation, and a normal-form checker. The keys to why
this works are two novel techniques along with typed Higher-
Order Abstract Syntax (HOAS), all of which we will explain
in the following sections. First, in Section 4 we present an
extensional approach to representing polymorphism in Ft^.
Second, in Section 5 we present a simple representation of
types that is sufficient to support our CPS transformation.
Third, in Section 6 we present a typed HOAS representation
based on church encoding, which supports operations that
fold over the term. Finally, in Section 7 we define five
operations for our representation.

4. Represent ing Polymorphism
In this section, we discuss our extensional approach to rep
resenting polymorphic terms in our type Higher-Order Ab
stract Syntax representation. Our approach allows us to de
fine our HOAS representation of F^; in itself. Before pre
senting our extensional approach, we will review the inten-
sional approach used by previous work. As a running exam
ple, we consider how to program an important piece of a
self-interpreter for a HOAS representation.

Our HOAS representation, like those of Pfenning and
Lee [18], Rendel et al. [20], and Brown and Palsberg [4],
is based on Church encoding. Operations are defined by
cases functions, one for each of A-abstraction, application,
type abstraction, and type application. Our representation
diff'ers from the previous work in how we type check the
case functions for type abstraction and type applications.
Our running example will focus just on the case function for
type applications. To simplify further, we consider only the
case function for type applications in a self-interpreter.

4 . 1 T h e I n t e n s i o n a l A p p r o a c h
The approach of previous work [4, 18, 20] used a polymor
phic type-application function to encode type applications. A
polymorphic type application function can apply any poly
morphic term to any type in its domain. The function tapp"^
defined below is a polymorphic type application function for
System Fj. System Fj extends Fa; with kind abstractions
and applications in terms (written A/c.e and e k respec
tively), and kind-polymorphic types (written V^/c.r):

t a p p " * " : (V " ' " k . . (V a : 0 a) V 7 . / C . / 3 7)
t a p p " ^ = A ' ^ K , , A I 3 : K ^ ^ . X e : a) . A j i n . e 7
The first two parameters are the domain and codomain of

an arbitrary quantified type. The domain of (Va:K.r) is the
kind /c, and the codomain is the type function (XaiK.r) since

T depends on a type parameter a of kind k,. Instantiating the
quantified type with a type parameter a results in the type
{XaiK.r) a (r[a:=cr]). Since the body of a quantified
type must have kind *, the codomain function (Xa\n,T)
must have kind (k —>>*). A quantified type can be expressed
in terms of its domain and codomain: (Va: k . r) = (Va: k .
{Aa:/€.r) a). The type of e in tapp"*" is expressed in terms
of an arbitrary domain k and an arbitrary codomain p. For
any quantified type cr, it is possible to instantiate k and P
so that the type of e is equivalent to cr.

We call this encoding intensional because it abstracts
over the parts of a quantified type (its domain k and
codomain 0). This ensures that e can only have a quantified
type, and that 7 ranges over exactly the types to which e
can be applied. In other words, 7 can be instantiated with
a if and only if e a* is well-typed.

Consider a type application e a with the derivation:

T h e : (V a : K . r) T \ - a : k
r h e c r : r [a : = c r]

We can encode e <7 in as tapp"^K (Aa:/c.r) e cr. Since
Fu, does not support kind polymorphism, we can't use this
technique encode F^; type applications in itself. To represent
Fa; in itself, we need a new approach.

4 . 2 A n E x t e n s i o n a l A p p r o a c h
The approach we use in this paper is extensional: we focus on
the relationship between a quantified type and its instances.
We encode the relationship " (r [a: =cr]) is an instance of
(VaiK.r)" as an instantiation function of type {Va:«.r)
-¥ (r[a:=(j]). The instantiation function instr,<T = Ax:r.
X cr instantiates an input term of type r with the type cr. It
is well-typed only when r is quantified type and cr is in the
d o m a i n o f r .

The advantage of using instantiation functions is that all
quantified types and all instantiations of quantified types
are types of kind *. Thus, we can encode the rule for type
applications in Fa; by abstracting over the quantified type,
the instance type, and the instantiation function for them:

t a p p : (V a : * . a 0 ^ { a ^ 0) ^ P)
t a p p = A a : * . A e : a . A ^ : * . A i n s t i a i n s t e

Using tapp we can encode the type application e cr above
as (tapp (Va:«.r) (r[a:=a]) e inst((va:K.T),<7))•

Unlike the intensional approach, the extensional ap
proach provides no guarantee that e will always have a
quantified type. Furthermore, even if e does have a quanti
fied type, inst is not guaranteed to actually be an instanti
ation function. In short, the intensional approach provides
two Free Theorems [28] that we don't get with our exten
sional approach. However, the extensional approach has the
key advantage of enabling a representation of F^; in itself.

5. Represent ing Types
We use type representations to typecheck term represen
tations and operations on term representations. Our type
representation is shown as part of the representation of F^;
in Figure 3. The [[t]| syntax denotes the pre-representation
of the type r, while r denotes the representation. A pre-
representation is defined using a designated variable F, and
a representation abstracts over F.

Our type representation is novel and designed to support
three important properties: first, it can represent all types
(not just types of kind *); second, representation preserves

equivalence between types; third, it is expressive enough to
typecheck all our benchmark operations. The first and sec
ond properties were not supported by the type representa
tions used in previous work [4], and play an important part
in our representation of polymorphic terms.

Type representations supports operations that iterate a
type function R over the first-order types - arrows and uni
versal quantifiers. Each operation on representations pro
duces results of the form R ([r] [F : = R]), which we call the
"interpretation of r under R". For example, the interpreta
tion of a —> a) under R is R (JVa:*. ck —>> a]|[F : =
R]) = R (Va : * . R (R a ^ R a)) .

As stated previously, type representations are used to
typecheck representations of terms and their operations. In
particular, a term of type r is represented by a term of type
Exp r, and each operation on term representation produces
results with types that are interpretations under some R.

Let's consider the outputs produced by unquote, size,
and cps, when applied to a representation of the polymor
phic identity function, which has the type (Vck: *. a a).
For unquote, the type function R is the identity function Id
= (Aa:*.a). Therefore, unquote applied to the represen
tation of the polymorphic identity function will produce an
o u t p u t w i t h t h e t y p e I d (Va : * . I d (I d a I d a)) =
(Va: *. a a). For size, R is the constant function KNat =
(Aa:*.Nat). Therefore, size applied to the representation
of the polymorphic identity function will produce an output
with the type KNat (Va:*. KNat (KNat a ^ KNat a)) =
Nat. For cps, R is the function Ct = (Aa:*. V/3:*. (a ->
13) -> /3), such that Ct a is the type of a continuation for
values of type a. Therefore, cps applied to the representa
tion of the polymorphic identity function will produce an
output with the type Ct (Va:*. Ct (Ct a Ct a)). This
type suggests that every sub-term has been transformed into
continuation-passing style.

We also represent higher-order types, since arrows and
quantifiers can occur within them. Type variables, abstrac
tions, and applications are represented meta-circularly. In
tuitively, the pre-representation of an abstraction is an ab
straction over pre-representations. Since pre-representations
of /c-types (i.e. types of kind k) are themselves K-types,
an abstraction over /c-types can also abstract over pre-
representations of K-types. In other words, abstractions are
represented as themselves. The story is the same for type
variables and applications.

Examples. The representation of (Va:*. a —>• a) is:
V a : * . a — > a

= AF: *^*. iVa: *. a ^ a]
= AF : *—>* . Va : * . F (F a -> F a)
Our representation is defined so that the representations

of two ^-equivalent types are also /3-equivalent. In other
words, representation of types preserves ^^-equivalence. In
particular, we can normalize a type before or after represen
tation, with the same result. For example,

Va:*. (A7:*.7 —> 7) a
= AF:*^*. [Va:*. (A7:*.7 ^ 7) a]
= AF:*—>*. Va:*. F ((A7:*.F 7 ^ F 7) a)
=^AF:*^*. Va:*. F (F a —> F a)
= V a : * . a — a

Properties. We now discuss some properties of our type
representation that are important for representing terms.
First, we can pre-represent legal types of any kind and
in any environment. Since a representation abstracts over
the designated type variable F in a pre-representation, the

H = a
[ti ->■ T2I = F [nj ->• F [T2J

VaiK.rl = Va:«. F |r]|
AaiK.rJ = \a:K. |r]
[ri T2I = [ril [T2I

Pre-Representation of Types

T= AF:* ->• *. |rl
Representation of Types

U *

O p = A F : * * . A a : U . F (a F)

S t r i p = AF ; * -> * . Aa : * .
V / ^ : * . (V 7 : * . F 7 - > / 3) ^ r - > ^

A b s = A F : * ^ * .

V a : * . V ^ : * . (F q F ^ F (F a - > F / 5)
A p p = A F : * ^ * .

V a : * . V ^ : * . F (F a ^ F ^ j - ^ F a ^ F / ?
T A b s = A F

Va : * . S t r i p F a — > a F a
TApp = AF

V q : : * . F a - > V y 5 : * . { a F ^ F ^

Exp = Aa:U. VF:* ^
A b s F - > A p p F TA b s F TA p p F
Op F a

Kind and Type Definitions

inst(7-,^) = Ax:t. x cr
I n s t a n t i a t i o n F u n c t i o n s

* ▶ (V Q ! : * . a) K \ — > > « ; ▶ A a : / c i . c r
K i n d I n h a b i t a n t s

strip(F « r) = Aa:*. Af:(V/0:*. F ^ a).
Ax:(V7:/«.F (r 7)) . f (r a) (x a)

Strip Functions

(x : t) e r
r h X : r > X

r h n : * r, (x:ri) h e : r2 > q
r h (Ax:ri.e) : n ^ T2 > abs [nj [T2I (Ax:F [ri|.q)

r h ei : r2 -> T > Qi r h 02 : r2 > q2
r h ei 62 : r t> app |[r2l H qi q2

r , Q ; : A c h e : r > q
Fh (Aa:/c.e) ; (Va:K.r) t> tabs [Va:/c.t]

St rip(F,K;,IAa:/c.rI))
(A a i K . q)

The: (Va:«:.r) > q F h cr : k
F (- e cr : T[a:=or] > tapp [Va:K.rJ q [T[a:=cr]]|

inSt([[Va:/c.r]l,[[(Tl)

F l - e : r l > q r = a F h c r : *
F h e : a > q

Pre-Representation of Terms

0 t- e : r t> q
e = A F : * ^ * .

Aabs :Abs F. Aapp :App F.
Atabs:TAbs F. Atapp:TApp F.
q

Representation of Terms

Figure 3: Self-Representation of F.

representation of a /c-type is a type of kind (* -^ *) -)▶ k. In
particular, base types (i.e. types of kind *) are represented
by a type of kind (* ^ *) ^ *. This kind will be important
for representing terms, so in Figure 3 we define U = (* —>
*) ^ * .

T h e o r e m 5 . 1 . 7 / F h r : k , t h e n F h r : (* - > - *) - > « ; .

Equivalence preservation relies on the following substitu
tion theorem, which will also be important for our represen
t a t i o n o f t e r m s .

Theorem 5.2. For any types r and cr, and any type variable
а, Irjla := laj] = |r[a := a]j.

We now formally state the equivalence preservation prop
erty of type pre-representation and representation.
Theorem 5.3. r = a if and only ifr = a.

б . Represent ing Terms
In this section we describe our representation of F^; terms.
Our representations are typed to ensure that only well-typed
terms can be represented. We typecheck representations of

terms using type representations. In particular, a term of
type r is represented by a term of type Exp r.

Our representation is similar to those of Rendel et al.
[20], and Brown and Palsberg [4]. We use Parametric Higher-
Order Abstract Syntax (PHOAS) [9, 29]. As usual in Higher-
Order Abstract Syntax (HOAS), we represent variables
and abstractions met a-circularly, that is, as variables and
abstractions. This avoids the need to implement capture-
avoiding substitution on our operations - we inherit it from
the host language implementation. In PHOAS representa
tions, the types of variables are parametric. In our case,
they are parametric in the type function F that defines an
interpretation of types.

Our representation of F^; terms is shown in Figure 3.
We define our representation in two steps, as we did for
types. The pre-representation of a term is defined using
the designated variables F, abs, app, tabs, and tapp. The
representation abstracts over these variables in the pre-
represen ta t ion .

While the pre-representation of types can be defined by
the type alone, the pre-representation of a term depends on
its typing judgment. We call the function that maps typing
judgments to pre-representations the pre-quoter. We write

The : r > q to denote "given an input judgment F h
e ; T the pre-quoter outputs a pre-representation q". The
pre-representation of a term is defined by a type function F
that defines pre-representations of types, and by four case
functions that together define a fold over the structure of a
term. The types of each case function depends on the type
function F. The case functions are named abs, app, tabs,
and tapp, and respectively represent A-abstraction, fimction
application, type-abstraction, and type application.

The representation e of a closed term e is obtained by
abstracting over the variables F, abs, app, tabs, and tapp
in the pre-representation of e. If e has type r, its pre-
representation has type F [r], and its representation has
type Exp r. The choice of r can be arbitrary because typings
are unique up to /^-equivalence and type representation
preserves ^-equivalence.

Str ipping redundant quantifiers. In addit ion to the
inst functions discussed in Section 4, our quoter embeds a
specialized variant of instantiation functions into representa
tions. These functions can strip redundant quantifiers, which
would otherwise limit the expressiveness of our HOAS rep
resentation. For example, our size operation will use them
to remove the redundant quantifier from intermediate val
ues with types of the form (Va:«:.Nat). The type Nat is
closed, so in particular a does not occur free in Nat. This
is why the quantifier is said to be redundant. This problem
of redundant quantifiers is well known, and applies to other
HOAS representations than ours [20].

We can strip a redundant quantifier with a type applica
tion: if e has type (Va:K.Nat) and cr is a type of kind /c,
then e a has the type Nat. We can also use the instantia
tion function inst(Va:K.Nat),(T? which has type (Va:«;.Nat)
—> Nat. The choice of a is arbitrary - it can be any type
of kind K. It happens that in Fa; all kinds are inhabited,
which means we can always find an appropriate a to strip a
redundant quantifier.

Our quoter generates a single strip function for each type
abstraction in a term and embeds it into the representation.
At the time of quotation most quantifiers are not redundant
- redundant quantifiers are introduced by certain operations
like size. Whether a quantifier will become redundant de
pends on the result type function F for an operation. In our
operations, redundant quantifiers are introduced when F is
a constant function. The operation size has results typed
using the constant Nat function KNat = (Aa:*.Nat). Each
strip function is general enough to work for multiple opera
tions that introduce redundant quantifiers, and to still allow
operations like unquote that need the quantifier.

To provide this generality, the strip functions take some
additional inputs that help establish that a quantifier is
redundant before stripping it. Each strip function will have
a type of the form St rip F [Va:/c.r| = (V7:*. F
7 ^ / 3) . T h e t y p e F i s t h e r e s u l t t y p e
function of an operation. The type |Va:K.r]| is the quantified
type with the redundant quantifier being stripped. Recall
that |[Va:«.T]| = (Var/c.F |r|). The type term of type
(V7:*. F 7 -^ /?) shows that F is a constant function that
always returns The strip function uses it to turn the type
(Va: K. F |r]) into the type C^aiK.P) where a has become
redundant. For size, recall that F = KNat = (Aa:*.Nat).
W e s h o w t h a t K N a t i s t h e c o n s t a n t N a t f u n c t i o n w i t h a n

identity function (A7:*.Ax:KNat 7. x). The type of this
function is {V7:*.KNat 7 KNat 7), which is equivalent
t o (V 7 : * . K N a t 7 N a t) .

Types of case functions. The types of the four case
functions that define an interpretation (Abs, App, TAbs, and
TApp) are shown in Figure 3. The types of each function rely
on invariants about pre-representations of types. For exam
ple, the type App F uses the fact that the pre-representation
of an arrow type [[ri —)> T2J is equal to F |ri| F |r2]|. In
other words, App F abstracts over the types |ri]| and |r2l
that can change, and makes explicit the structure F a F
13 that is invariant. These types allow the implementation
of each case function to use this structure - it is part of the
"interface" of representations, and plays an important role
in the implementation of each operation.

Bui ld ing representat ions. The first ru le of pre-re
presentation handles variables. As in our type represen
tation, variables are represented meta-circularly, that is,
by other variables. We will re-use the variable name, but
change its type: a variable of type r is represented by a
variable of type F [r]. This type is the same as the type
of a pre-representation. In other words, variables in a pre-
representation abstract over pre-representations.

The second rule of pre-representation handles A-abstract-
ions. We recursively pre-quote the body, in which a variable
X can occur free. Since variables are represented meta-
circularly, X can occur free in the pre-representation q of the
body. Therefore, we bind x in the pre-representation. This is
standard for Higher-Order Abstract Syntax representations.
Note that we change of the type of x from n to F [n] in the
representation. This is consistent with our earlier discussion
about pre-representations of variables. It may be helpful to
think of q as the "open pre-representation of e", in the
sense that X can occur free, and to think of (Ax:F |ri|.
q) as the "closed pre-representation of e". The open pre-
representation of e has type F in an environment that
assigns X the type F frij. The closed pre-representation of e
has type F |ti| —F |r2|. The pre-representation of (Ax:ti .
e) is built by applying the case function abs to the types
[ri] and [r2i and the closed pre-representation of e.

The third rule of pre-representation handles applications.
We build the representation of an apphcation ei e2 by
applying the case function app to the types |r2]| and r and
the pre-representations of ei and e2.

The fourth rule of pre-representation handles type ab
stractions. As for A-abstractions, we call q the open pre-
representation of e, and abstract over a to get the closed
pre-representation of e. Unlike for A-abstractions, we do not
pass the domain and codomain of the type to the case func
tion tabs, since that would require kind-polymorphism as
discussed in Section 4. Instead, we pass to tabs the pre-
representation of the quantified type directly. We also pass
to tabs a quantifier stripping function that enables tabs
to remove the quantifier from |[Va:/c. F rj in case F is a
constant function. Note that the strip function is always de
fined, since [Va: k . F r] = Va: k . F [r|.

The fifth rule of pre-quotation handles type applications.
As for type abstractions, we don't decompose the quantified
type |[Vq::k.t]1, but pass it to the case function tapp whole.
We pre-represent the type argument cr, and construct an
instantiation function inst(([VQ::K.ri,l[ai)j which can apply
any term of type |Va: k . r| to the type {a}. Since |Vq; : /c . t] =
(Va: K. F |r|), the instantiation function has type [Va: k . rJ

F |[r[a:=(7]l.
The last rule of pre-quotation handles the type-conversion

rule. Unsurprisingly, the pre-representation of e is the same
when e has type a as when it has type r. When e has type r,
its pre-representation will have type F JrJ. When e has type

cr, its pre-representation will have type F [crj. By Theorem
5.3, these two types are equivalent, so q can be given either
t ype .

Examples. We now give two example representations.
Our first example is the representation of the polymorphic
identity function Aa: *. Ax: a. x:

A F : * ^ .
Aabs:Abs F. Aapp:App F.
Atabs:TAbs F. Atapp:TApp F.
tabs iVa:*. q a] stripF,|va:*.a^a]]

(Aa : * . abs a a (Ax :F a . x))

We begin by abstracting over the type function F that de
fines an interpretation of types, and the four case functions
that define an interpretation of terms. Then we build the
pre-representation of Aa: *. Ax: a. x. We represent the type
abstraction using tabs, the term abstraction using abs, and
the variable x as another variable also named x.

Our second example is representation of (Ax: (Va:*. a
a) . X (Va:*. a a) x), which applies an input term

t o i t s e l f .

A F : * * .
Aabs:Abs F. Aapp:App F.
Atabs:TAbs F. Atapp:TApp F.
a b s [V a : * . a a j [V a : * . a a]

(A x : F [Va : * . a a | .
app [Va:*. a -)▶ a] [Va:*. a a]

(tapp [Va:*. a ^ a] x
[(V a : * . a — a) (V a : * . a — a)]
inSt|VQ:.*,ot_̂ Q;j]̂ [JVQ::*.Q:-4-Q:]]))

The overall structure is similar to above: we begin with
the five abstractions that define interpretations of types
and te rms. We then use the case func t ions to bu i ld the
pre - represen ta t ion o f the te rm. The ins tan t ia t ion func t ion
inst|va;*.a-faiJVa:*.«->ai has the type [Va:*. a aj
[Va:*. a -> a] —^ [Va:*. a —a|. Here, the quantified
type being instantiated is [Va: *. a a] = Va: *. F [a —
a|, the instantiation parameter is also |Va:*. a aj, and
the instantiation type isF[(Va:*. a->a) -> (Va:*. a

a)J. By lemma 5.2, we have that [a ^ a][a := [Va:*.
a - > a]] = [(a - > - a) [a : = Va : * . a ^ a]] = [(Va : * . a

a) ^ (Va : * . a a)]] .
Properties. We typecheck pre-quotations under a mod

ified environment that changes the types of term variables
and binds the variables F, abs, app, tabs, and tapp. The
bindings of type variables are unchanged.

The environment for pre-quotations of closed terms only
contains bindings for F, abs, app, tabs, and tapp. The rep
resentation of a closed term abstracts over these variables,
and so can be typed under an empty environment.

Theorem 6.1. // () h e : r, then (} I- e : Exp r.

Our representations are data, which for Fu; means a 0-
n o r m a l f o r m .

Theorem 6.2. // () h e : r, then e is P-normal.
Our quoter preserves equality of terms up to equivalence

of types. That is, if two terms are equal up to equivalence of
types, then their representations are equal up to equivalence
of types as well. Our quoter is also injective up to equivalence
of types, so the converse is also true: if the representations

of two terms are equal up to equivalence of types, then the
terms are themselves equal up to equivalence of types.

Definition 6.1 (Equality up to equivalence of types). We
write ei ~ 62 to denote that terms ei and 82 are equal up
to equivalence of types.

X ~ X

T = / 5 T ' 6 ~ 0 ' 6 1 ~ 6 1 6 2 ~ 6 2
(A x : r . e) ~ (A x : r ' . e ') (e i 6 2) ~ (6 3 8 3)

e ^ e ^ r r '
{Aa iK .e) ~ (Aa :« : .e ') (e r) ^ (e ' r)

Now we can formally state that our quoter is injective
and preserves equivalence.

Theorem 6.3. If {) h 81 : n, and () h 82 : T2, then ei
~ 82 , and on ly i fW i^

7 . Opera t ions
Our suite of operations is given in Figure 4. It consists
of a self-interpreter unquot8, a continuation-passing-style
transformation cps, a simple intensional predicate isAbs,
a size measure siz8, and a normal-form checker nf. Our
suite extends those of each previous work on typed self-
representation[4, 20]. Rendel et al. define a self-interpreter
and a size measure, while Brown and Palsberg define a
self-interpreter, a CPS transformation, and the intensional
predicate isAbs. Our normal-form checker is the first for a
self-representation.

Each operation is defined using a function fold Exp for
programming folds. We also define encodings of booleans,
pairs of booleans, and natural numbers that we use in our
operations. We use a declaration syntax for types and terms.
For example, the term declaration x : r = 8 asserts that e
has the type r (i.e. {} h 8 : r is derivable), and substitutes 8
for X (essentially inlining x) in the subsequent declarations.
We have machine checked the type of each declaration.

We give formal semantic correctness proofs for four of
our operations: unquote, isAbs, siz8, and nf. The proofs
demonstrate qualitatively that our representation is not only
expressive but also easy to reason with. In the remainder of
this section we briefly discuss the correctness theorems.

Each operation has a type of the form Va: U. Exp a —>
Op R a for some type function R. When a is instantiated
with a type representation r, the result type Op R r is an
interpretation under R:
Theorem 7.1. Op R r = R ([t1[F := R]).

Each operation is defined using the function fold Exp that
constructs a fold over term representations. An interpreta
tion of a term is obtained by substituting the designated
variables F, abs, app, tabs, and tapp with the case func
tions that define an operation. The following theorem states
that a fold constructed by fold Exp maps representations to
in te rp re ta t i ons :

Theorem 7.2. // f = foldExp R abs' app' tabs' tapp',
and r h 8 : r > q, then f r 8. —(q[F:=R, abs:=abs',
app :=app ' , tabs := tabs ' , tapp := tapp ']) .

unquote. Our first operation on term representations
is our self-interpreter unquote, which recovers a term from
its representation. Its results have types of the form Op Id

B o o l : * = V a : * . a — > q : —
t r u e : B o o l = A a : * . A t : a . A f : a . t
f a l s e : B o o l = A a : * . A t : a . A f : a . f
a n d : B o o l B o o l - > B o o l =

A b l : B o o l . A b 2 : B o o l . A a : * . A t : a . A f : a .
b l a (b 2 a t f) f

B o o l s : * = V a : * . (B o o l - > B o o l a) a
b o o l s : B o o l B o o l B o o l s =

A b l : B o o l . A b 2 : B o o l .
A a : * . A f : B o o l B o o l a . f b l b 2

f s t : B o o l s - > B o o l =
A b s : B o o l s . b s B o o l (A b l : B o o l . A b 2 : B o o l . b l)

s n d : B o o l s B o o l =
A b s : B o o l s . b s B o o l (A b l : B o o l . A b 2 : B o o l . b 2)

N a t : * = V a : * . a ^ (a ^ a) ^ a
z e r o : N a t = A a : * . A z : a . A s : a ^ a . z
s u c c : N a t -)▶ N a t =

A n : N a t . A a : * . A z : a . A s : a a . s (n a z s)
p l u s : N a t N a t - > N a t =

A m : N a t . A n : N a t . m N a t n s u c c

Definitions and operations of Bool, Bools, and Nat.

fo ldExp : (VF:* -> * .
A b s F A p p F T A b s F T A p p F
Va : U . E x p a O p F a) =

A F : * * .
A a b s : A b s F. A a p p : A p p F.
Atabs : TAbs F. Atapp : TApp F.
Aa:U. Ae:Exp a. e F abs app tabs tapp

I m p l e m e n t a t i o n o f f o l d E x p

I d : * — ^ = A a : * . a

u n A b s : A b s I d = A a : * . A ^ : * . A f : a ^ ^ . f
u n A p p : A p p I d = A a : * . A / 9 : * . A f : a ^ / 3 . A x : a . f x
u n TA b s : TA b s I d = A a : * . A s : S t r i p I d a . A f : a . f
u n TA p p : TA p p I d = A a : * . A f : a . A / 9 : * . A g : a — f

unquote : (Va:U. Exp a -)▶ Op Id a) =
foldExp Id unAbs unApp unTAbs unTApp

Implementation of unquote

K B o o l : * — > " * = A a : * . B o o l

i s A b s A b s : A b s K B o o l =
A a : * . A ^ : * . A f : B o o l B o o l , t r u e

isAbsApp : App KBool =
A a : * . A / 9 : * . A f : B o o l . A x : B o o l . f a l s e

i s A b s T A b s : T A b s K B o o l =
A a : * . A s t r i p : S t r i p K B o o l a . A f : a . t r u e

isAbsTApp : TApp KBool =
A a : * . A f : B o o l . A / 9 : * . A i n s t : a - > B o o l , f a l s e

i s A b s : (Va : U . E x p a B o o l) =
foldExp KBool isAbsAbs isAbsApp

isAbsTAbs isAbsTApp
Implementation of is Abs.

C t : * ^ = A a : * . V ^ : * . (a ^ / 9) ^ ^
CPS : U -> * = Op Ct

c p s A b s : A b s C t =
A a : * . A / 9 : * . A f : (C t a ^ C t / 9) .
AV:* . Ak : (Ct a ^ Ct /3) -> V.
k f

c p s A p p : A p p C t =
A a : * . A ^ : * . A f : C t (C t a ^ C t ^) . A x : C t a
AV: * . A k : / 9 ^ V.
f V (A g : C t a C t / 9 . g x V k)

c p s TA b s : TA b s C t =
A a : * . A s t r i p : S t r i p C t a . A f : a .
A V : * . A k : a V .
k f

cpsTApp : TApp Ct =
A a : * . A f : C t a .

A / 9 : * . A i n s t : a C t 0 .
A V : * . A k : / 9 V .
f V (A e : a . i n s t e V k)

c p s : (Va : U . E x p a C P S a) =
foldExp Ct cpsAbs cpsApp cpsTAbs cpsTApp

Implementation of cps.

K N a t : * - ^ * = A a : * . N a t

s i z e A b s : A b s K N a t =
A a : * . A / 9 : * . A f : N a t ^ N a t . s u c c (f (s u c c z e r o))

sizeApp : App KNat =
A a : * . A / 9 : * . A f : N a t . A x : N a t . s u c c (p l u s f x)

s i z e T A b s : T A b s K N a t =
A a : * . A s t r i p : S t r i p K N a t a . A f : a .
s u c c (s t r i p N a t (A a : * . A x : N a t . x) f)

sizeTApp : TApp KNat =
A a : * . A f : N a t . A / 9 : * . A i n s t : a ^ N a t . s u c c f

s i z e : (Va : U . E x p a N a t) =
foldExp KNat sizeAbs sizeApp sizeTAbs sizeTApp

Implementation of size.

K B o o l s : * ^ * = A a : * . B o o l s

n f A b s : A b s K B o o l s =
A a : * . A / 9 : * . A f : B o o l s B o o l s .
b o o l s (f s t (f (b o o l s t r u e t r u e))) f a l s e

nfApp : App KBools =
A a : * . A / 3 \ ^ . A f : B o o l s . A x : B o o l s .
b o o l s (a n d (s n d f) (f s t x)) (a n d (s n d f) (f s t x))

n f T A b s : T A b s K B o o l s =
A a : * . A s t r i p : S t r i p K B o o l s a . A f : a .
b o o l s (f s t (s t r i p B o o l s (A a : * . A x : B o o l s . x) f))

f a l s e

nfTApp : TApp KBools =
A a : * . A f : B o o l s . A / 9 : * . A i n s t : (a B o o l s) .
b o o l s (s n d f) (s n d f)

n f : (Va :U . Exp a ^ Boo l) =
Aa:U. Ae:Exp a .
fst (foldExp KBools nfAbs nfApp nfTAbs nfTApp e)

Implementation of nf.

Figure 4: Five operations on representations of Fa; terms.

T. The type function Id is the identity function, and the
operation Op Id recovers a type from its representation.
Theorem 7.3. //T h r ; then Op Id r = r.

Theorem 7.4. // () h e : r, then unquote r e —e.
isAbs. Our second operation isAbs is a simple inten-

sional predicate that checks whether its input represents an
abstraction or an application. It returns a boolean on all
inputs. Its result types are interpretations under KBool, the
constant Bool function. The interpretation of any type un
der KBool is equivalent to Bool:

Theorem 7.5. //F h r ; then Op KBool r = Bool.

Theorem 7.6. Suppose () I- e : r. If e is an abstraction
then isAbs r e —^-^true. Otherwise e is an application and
i s A b s r e — ^▶ ' ' f a l s e .

cps. Our third operation cps is a call-by-name continuat
ion-passing-style transformation. Its result types are inter
pretations under Ct. We have also implemented a call-by-
value CPS transformation, though we omit the details be
cause it is rather similar to our call-by-name CPS. We do not
formally prove the correctness of our CPS transformation.
However, being defined in Fa; it is guaranteed to terminate
for all inputs, and the types of the case functions provide
some confidence in its correctness.

size. Our fourth operation size measures the size of
its input representation. Its result types are interpretations
under KNat, the constant Nat function. The interpretation
of any type under KNat is equivalent to Nat:

Theorem 7.7. I fThr :* , then Op KNat r = Nat .

The size of a term excludes the types. We formally define
t h e s i z e o f a t e r m i n o r d e r t o s t a t e t h e c o r r e c t n e s s o f s i z e .

Definition 7.1. The size of a term e, denoted |e|, is de
fined as:

| x | = 1
|Ax :T.e | =1 + | e |
|ei 02 1 =1 + |ei| + 102 1
I Aa: K. 01 =1 + 101
| 0 r | = 1 + | 0 |

The results of siz0 are Church encodings of natural
numbers. We define a type Nat and a Z0ro element and
a successor function succ. We use the notation churchn to
denote the Church-encoding of the natural number n. For
example, churcho = Z0ro, churchi = succ Z0ro, church2
= succ (succ Z0ro), and so on.

Theorem 7.8. // () h 0 : r and |0|=n, then siz0 r 0
— > * c h u r c h n

nf. Our fifth operation checks whether its input term is
in ^-normal form. Its results have types that are interpre
tations under KBools, the constant Bools function, where
Bools is the type of pairs of boolean values.

Theorem 7.9. //F h r ; then Op KBools r = Bools.

We program nf in two steps: first, we compute a pair of
booleans by folding over the input term. Then we return
the first component of the pair. The first boolean encodes
whether a term is ^-normal. The second encodes whether
a term is normal and neutral. Intuitively, a neutral term is
one that can be used in function position of an application

without introducing a redex. We provide a formal definition
of normal and neutral in the Appendix.

Theorem 7.10. Suppose () I- 0 : r.
1. If e is 0-normal, then nf r 0 —>*true.
2. If e is not ^-normal, then nf r 0 —>* false.

8 . Expe r imen ts
We have validated our techniques using an implementation
of Fa, in Haskell, consisting of a parser, type checker, evalu-
ator, /^-equivalence checker, and our quoter. Each operation
has been programmed, type checked, and tested. We have
also confirmed that the representation of each operation type
checks with the expected type.

Each of our operations are self-applicable, meaning it can
be applied to a representation of itself. We have checked
that the self-application of each operation type checks with
the expected type. Further, we have checked that the self-
application of unquot0 is /3-equivalent to itself:

unquot0 (Va:U. Exp a -> Op Id a) unquot0
u n q u o t 0

We plan to submit our implementation for artifact eval
u a t i o n .

9 . R e l a t e d W o r k

Typed Self-Interpretation. Pfenning and Lee [18] stud
ied self-interpretation of Systems F and Fa;. They concluded
that it seemed to be impossible for each language, and de
fined representations and self-interpreters of System F in Fa;
and Fa; in Fj. They used the intensional approach discussed
in Section 4, and did not consider our extensional approach.

Rendel, et al. [20] presented the first typed self-represent
ation and self-interpreter. Their language System F* ex
tends Fa; with a Typ0:Typ0 rule that luiifies the levels of
types and kinds. As a result, F* is not strongly-normalizing,
and type checking is undecidable. They used the intensional
approach to representing polymorphism. They implemented
unquot0 and siz0 operations. Their implementation of siz0
relied on a special J_ type to strip redundant quantifiers. The
type ± inhabits every kind, but is not used to type check
terms. We strip redundant quantifiers using special instan
tiation functions that are generated by the quoter.

Jay and Palsberg [13] presented a typed self-representation
and self-interpreter for a combinator calculus, with a A-
calculus siu'face syntax. Their calculus had undecidable type
checking and was not strongly normalizing.

Brown and Palsberg [4] presented a typed self-represent
ation for System U, which is not strongly normalizing but
does have decidable type checking. This was the first self-
representation for a language with decidable type checking.
They implemented unquot0, isAbs, and cps operations.
They also represented types, though they only represented
types of kind * and did not have a substitution theorem like
our Theorem 5.2. They instead used a kind of coercion to
change the type of a representation after a type application,
which ensured that type was properly represented. Our
type representation is designed to avoid the need for such
coercions, which simplifies our representation and the proofs
o f o u r t h e o r e m s .

Typed Meta-Programming. Typed self-interpretation
is a particular instance of typed meta-programming, which
involves a typed representation of one language in a possibly

different language, and operations on that representation.
Typed meta-programming has been studied extensively, and
continues to be an active research area. Chen and Xi [7, 8]
demonstrated that types can make meta-programming less
e r r o r - p r o n e .

Carette et al. [5] introduced tagless representations,
which are more efficient than other techniques and use sim
pler types. Our representation is also tagless, though we
use ordinary A-abstractions to abstract over the case func
tions of an operation, while they use Haskell type classes or
OCaml modules. The object languages they represented did
not include polymorphism. Our extensional technique could
be used to program tagless representations of polymorphic
languages in Haskell or OCaml.

MetaML [24] supports generative typed meta-programming
for multi-stage programming. It includes a built-in unquoter,
while we program unquote as a typed Fu^ term.

Trifonov et al. [25] define a language with fully reflex
ive intensional type analysis, which supports type-safe run
time type introspection. Instead of building representations
of types, their language includes special operators to sup
port iterating over types. They programmed generic pro
grams like marshalling values for transmission over a net
work. Generic programming and meta-programming are dif
ferent techniques: generic programs operate on programs or
program values, and meta-programs operate on representa
tions of programs. These differences mean that each tech
nique is better suited to some problems than other.

Dependen t l y -Typed Represen ta t i on . Some t yped
representations use dependent types to ensure that only
well-typed terms can be represented. For example. Harper
and Licata [12] represented simply-typed A-calculus in LF,
and Schiirmann et al. [21] represented Fa; in LF. Chapman
[6] presented a meta-circular representation of a dependent
type theory in Agda. These representations are quite useful
for mechanized metatheory - machine-checked proofs of the
metatheorems for the represented language. The demands of
mechanized metatheory appear to be rather different from
those of self-interpretation. It is an open question whether
a dependently-typed self-representation can support a self-
i n t e rp re te r.

Un typed Represen ta t ion . The l i t e ra tu re con ta ins
many examples of untyped representations for typed lan
guages, including for Coq [3] and Haskell [17]. Untyped
representations generally use a single type like Exp to type
check all representations, and permit ill-typed terms to be
represented. Template Haskell [22] uses an untyped repre
sentation and supports user-defined operations on repre
sentations. Since representations are not guaranteed to be
well-typed by construction, generated code needs to be type
c h e c k e d .

C o e r c i o n s . O u r i n s t a n t i a t i o n f u n c t i o n s a r e s i m i l a r t o
coercions or retyping functions: they change the type of a
term without affecting its behavior. Cretin and Remy [10]
studied erasable coercions for System F,, [15], including co
ercions that perform instantiations. We conjecture that our
self-representation technique would work for an extension
of Fa; with erasable coercions for instantiations, and that
erasable coercions could replace instantiation functions in
our extensional approach to representing polymorphism.

1 0 . C o n c l u s i o n
Our self-interpreter for System Fo^ opens to door to self-
representations and self-interpreters for other strongly nor
malizing languages. For example, it might be possible

to use kind-instantiation functions to define a deep self-
representation of . Similarly, universe-instantiation func
tions might enable self-representation for languages like Coq
that include an infinite hierarchy of universes and universe
polymorphism.

We have solved two open problems posed by Pfenning and
Lee: First, we define a shallow self-representation technique
that supports self-interpretation for each of System F and
System Fa;. Second, we define a deep self-representation for
System Fa; that supports a variety of operations including a
self-interpreter. It is still an open question whether System
F can support a deep self-representation.

Our techniques create new opportunities for type-checking
self-applicable metaprograms, with potential applications in
typed macro systems, partial evaluators, compilers, and the
o r e m p r o v e r s .

R e f e r e n c e s

[1] Henk Barendregt. Self-interpretations in lambda calculus. J.
Panct. Program, l(2):229-233, 1991.

[2] HP Barendregt. Handbook of Logic in Computer Science
(vol. 2): Background: Computational Structures: Abramski,
S. (ed), chapter Lambda Calculi with Types. Oxford Univer
sity Press, Inc., New York, NY, 1993.

[3] Bruno Barras and Benjamin Werner. Coq in coq. Technical
report, 1997.

[4] Matt Brown and Jens Palsberg. Self-Representation in Gi-
rard's System U. In Proceedings of the 4^nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program
ming Languages, POPL '15, pages 471-484, New York, NY,
USA, 2015. ACM.

[5] Jacques Carette, Gleg Kiselyov, and Chung-chieh Shan. Fi
nally tagless, partially evaluated: Tagless staged interpreters
for simpler typed languages. Journal of Functional Program
ming, 19(5):509-543, 2009.

[6] James Chapman. Type theory should eat itself. Electronic
Notes in Theoretical Computer Science, 228:21-36, 2009.

[7] Chiyan Chen and Hongwei Xi. Meta-Programming through
Typeful Code Representation. In Proceedings of the Eighth
ACM SIC PLAN Internat ional Conference on Funct ional
Programming, pages 275-286, Uppsala, Sweden, August
2 0 0 3 .

[8] Chiyan Chen and Hongwei Xi. Meta-Programming through
Typeful Code Representation. Journal of Functional Pro
gramming, 15(6):797-835, 2005.

[9] Adam Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. In Proceedings of the 13th ACM SIC-
PLAN Internat ional Conference on Funct ional Program
ming, ICFP '08, pages 143-156, New York, NY, USA, 2008.
A C M .

[10] Julien Cretin and Didier Remy. On the power of coer
cion abstraction. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program
ming Languages, POPL '12, pages 361-372, New York, NY,
USA, 2012. ACM.

[11] N. Cutland. Computability: An Introduction to Recursive
Function Theory, Cambridge University Press, 1980.

[12] Robert Harper and Daniel R. Licata. Mechanizing metathe
ory in a logical framework. J. Funct Program., 17(4-5):613-
673, July 2007.

[13] Barry Jay and Jens Palsberg. Typed self-interpretation by
pattern matching. In Proceedings of ICFP'11, ACM SIG-
PLAN Internat ional Conference on Funct ional Program
ming, pages 247-258, Tokyo, September 2011.

[14] Stephen C. Kleene. A-definability and recursiveness. Duke
Math. J., pages 340-353, 1936.

[15] John C. Mitchell. Polymorphic type inference and contain
ment. Inf. Comput, 76(2-3):211-249, February 1988.

[1 6] G r e g M o r r i s e t t . F - o m e g a - t h e
w o r k h o r s e o f m o d e r n c o m p i l e r s .
http://www.eecs.harvard.edu/ greg/cs256sp2005/lecl6.txt,
2 0 0 5 .

[17] Matthew Naylor. Evaluating Haskell in Haskell. The
Monad.Reader, 10:25-33, 2008.

[18] Frank Pfenning and Peter Lee. Metacircularity in the
polymorphic A-calculus. Theoretical Computer Science,
89(1):137-159, 1991.

[19] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, 2002.

[20] Tillmann Rendel, Klaus Ostermann, and Christian Hofer.
Typed self-representation. In Proceedings of PLDIW, ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 293-303, June 2009.

[21] Carsten Schiirmann, Dachuan Yu, and Zhaozhong Ni. A
r e p r e s e n t a t i o n o f f c j i n I f . E l e c t r o n i c N o t e s i n T h e o r e t i c a l
Computer Science, 58(1):79 - 96, 2001.

[22] Tim Sheard and Simon Peyton Jones. Template meta-
programming for haskell. SIGPLAN Not, 37(12):60-75,
D e c e m b e r 2 0 0 2 .

[23] T. Stuart. Understanding Computation: Impossible Code
and the Meaning of Programs. Understanding Computation.
O'Reilly Media, Incorporated, 2013.

[24] Walid Taha and Tim Sheard. Metaml and multi-stage pro
gramming with explicit annotations. In Theoretical Com
puter Science, pages 203-217. ACM Press, 1999.

[25] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflex
ive intensional type analysis. SIGPLAN Not, 35(9):82-93,
September 2000.

[26] David Turner. Total functional programming. Journal of
Universal Computer Science, 10:187-209, 2004.

[27] N.K. Vereshchagin and A. Shen. Computable Functions. Stu
dent mathematical library. American Mathematical Society,
2 0 0 3 .

[28] Philip Wadler. Theorems for free! In Functional Program
ming Languages and Computer Architecture, pages 347-359.
ACM Press, 1989.

[29] Geoffrey Washburn and Stephanie Weirich. Boxes go ba
nanas: Encoding higher-order abstract syntax with paramet
ric polymorphism. In Proceedings of the Eighth ACM SIG
PLAN International Conference on Functional Program
ming, ICFP '03, pages 249-262, New York, NY, USA, 2003.
A C M .

