Skip to content
This repository
Fetching contributors…

Cannot retrieve contributors at this time

executable file 863 lines (719 sloc) 31.591 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
"""Image.py

Image - Represents an image with secondary attributes such as a mask and labels
ImageSetList - Represents the list of image filenames that make up a pipeline run

CellProfiler is distributed under the GNU General Public License.
See the accompanying file LICENSE for details.

Copyright (c) 2003-2009 Massachusetts Institute of Technology
Copyright (c) 2009-2012 Broad Institute
All rights reserved.

Please see the AUTHORS file for credits.

Website: http://www.cellprofiler.org
"""
__version__ = "$Revision$"

import logging
import numpy as np
import math
import sys

from struct import unpack
from zlib import decompress
from StringIO import StringIO
from numpy import fromstring, uint8, uint16
from cPickle import dump, Unpickler

logger = logging.getLogger(__name__)

class Image(object):
    """An image composed of a Numpy array plus secondary attributes such as mask and label matrices
The secondary attributes:
mask - a binary image indicating the points of interest in the image.
The mask is the same size as the child image.
crop_mask - the binary image used to crop the parent image to the
dimensions of the child (this) image. The crop_mask is
the same size as the parent image.
parent_image - for derived images, the parent that was used to create
this image. This image may inherit attributes from
the parent image, such as the masks used to create the
parent
masking_objects - the labels matrix from these objects is used to
mask and crop the parent image to make this image.
The labels are available as mask_labels and crop_labels.
convert - true to try to coerce whatever dtype passed (other than bool
or float) to a scaled image.
path_name - the path name to the file holding the image or None
for a derived image
file_name - the file name of the file holding the image or None for a
derived image
scale - the scaling suggested by the initial image format (e.g. 4095 for
a 12-bit a/d converter).
Resolution of mask and cropping_mask properties:
The Image class looks for the mask and cropping_mask in the following
places:
* self: if set using the properties or specified in the initializer
* masking_objects: if set using the masking_object property or
specified in the initializer. The crop_mask and
mask are composed of all of the labeled points.
* parent_image: if set using the initializer. The child image inherits
the mask and cropping mask of the parent.
Otherwise, the image has no mask or cropping mask and all pixels are
significant.
"""
    def __init__(self,
                 image=None,
                 mask=None,
                 crop_mask = None,
                 parent_image=None,
                 masking_objects = None,
                 convert = True,
                 path_name = None,
                 file_name = None,
                 scale = None):
        self.__image = None
        self.__mask = None
        self.__has_mask = False
        self.__parent_image = parent_image
        self.__crop_mask = crop_mask
        self.__masking_objects = masking_objects
        self.__scale = scale
        if image!=None:
            self.set_image(image, convert)
        if mask!=None:
            self.set_mask(mask)
        self.__file_name = file_name
        self.__path_name = path_name
        self.__channel_names = None
        
    def get_image(self):
        """Return the primary image"""
        return self.__image
    
    def set_image(self,image,convert=True):
        """Set the primary image
Convert the image to a numpy array of dtype = np.float64.
Rescale according to Matlab's rules for im2double:
* single/double values: keep the same
* uint8/16/32/64: scale 0 to max to 0 to 1
* int8/16/32/64: scale min to max to 0 to 1
* logical: save as is (and get if must_be_binary)
"""
        img = np.asanyarray(image)
        if img.dtype.name == "bool" or not convert:
            if img is image:
                # make sure we have our own copy.
                img = img.copy()
            self.__image = img
            return
        mval = 0.
        scale = 1.
        fix_range = False
        if issubclass(img.dtype.type,np.floating):
            pass
        elif img.dtype.type is np.uint8:
            scale = math.pow(2.0,8.0)-1
        elif img.dtype.type is np.uint16:
            scale = math.pow(2.0,16.0)-1
        elif img.dtype.type is np.uint32:
            scale = math.pow(2.0,32.0)-1
        elif img.dtype.type is np.uint64:
            scale = math.pow(2.0,64.0)-1
        elif img.dtype.type is np.int8:
            scale = math.pow(2.0,8.0)
            mval = -scale / 2.0
            scale -=1
            fix_range = True
        elif img.dtype.type is np.int16:
            scale = math.pow(2.0,16.0)
            mval = -scale / 2.0
            scale -= 1
            fix_range = True
        elif img.dtype.type is np.int32:
            scale = math.pow(2.0,32.0)
            mval = -scale / 2.0
            scale -= 1
            fix_range = True
        elif img.dtype.type is np.int64:
            scale = math.pow(2.0,64.0)
            mval = -scale / 2.0
            scale -= 1
            fix_range = True
        # Avoid temporaries by doing the shift/scale in place.
        img = img.astype(np.float32)
        img -= mval
        img /= scale
        if fix_range:
            # These types will always have ranges between 0 and 1. Make it so.
            np.clip(img, 0, 1, out=img)
        check_consistency(img,self.__mask)
        self.__image = img
    
    image=property(get_image,set_image)
    pixel_data=property(get_image,set_image)

    def get_parent_image(self):
        """The image from which this one was derived"""
        return self.__parent_image
    
    def set_parent_image(self, parent_image):
        self.__parent_image = parent_image
        
    parent_image = property(get_parent_image, set_parent_image)
    
    def get_has_parent_image(self):
        """True if this image has a defined parent"""
        return self.__parent_image != None
    has_parent_image = property(get_has_parent_image)

    def get_masking_objects(self):
        """The objects used to crop and mask this image"""
        return self.__masking_objects
    
    def set_masking_objects(self, value):
        self.__masking_objects = value
    
    masking_objects = property(get_masking_objects, set_masking_objects)
    
    def get_has_masking_objects(self):
        """True if the image was cropped with objects
If this is true, there will also be a valid labels matrix
available through the labels property
"""
        return self.__masking_objects != None
    has_masking_objects = property(get_has_masking_objects)
    
    def get_labels(self):
        """Get the segmentation labels from the masking objects
returns the "segmented" labels: others are available through
the masking_object.
"""
        if not self.has_masking_objects:
            return None
        return self.crop_image_similarly(self.masking_objects.segmented)
    labels = property(get_labels)
    
    def get_mask(self):
        """Return the mask (pixels to be considered) for the primary image
"""
        if not self.__mask == None:
            return self.__mask
        
        if self.has_masking_objects:
            return self.crop_image_similarly(self.crop_mask)
        
        if self.has_parent_image:
            mask = self.parent_image.mask
            return self.crop_image_similarly(mask)
        
        return np.ones(self.__image.shape[0:2],dtype=np.bool)
    
    def set_mask(self, mask):
        """Set the mask (pixels to be considered) for the primary image
Convert the input into a numpy array. If the input is numeric,
we convert it to boolean by testing each element for non-zero.
"""
        m = np.array(mask)
        if not(m.dtype.type is np.bool):
            m = (m != 0)
        check_consistency(self.__image,m)
        self.__mask = m
        self.__has_mask = True

    mask=property(get_mask,set_mask)
    
    def get_has_mask(self):
        """True if the image has a mask"""
        if self.__has_mask:
            return True
        if self.has_crop_mask:
            return True
        if self.parent_image != None:
            return self.parent_image.has_mask
        return False
    
    has_mask = property(get_has_mask)
    
    def get_crop_mask(self):
        """Return the mask used to crop this image"""
        if not self.__crop_mask == None:
            return self.__crop_mask
        
        if self.has_masking_objects:
            return self.masking_objects.segmented != 0
        
        if self.has_parent_image:
            return self.parent_image.crop_mask
        #
        # If no crop mask, return the mask which should be all ones
        #
        return self.mask
    
    def set_crop_mask(self,crop_mask):
        self.__crop_mask = crop_mask
        
    crop_mask = property(get_crop_mask, set_crop_mask)
    
    @property
    def has_crop_mask(self):
        '''True if the image or its ancestors has a crop mask'''
        return (self.__crop_mask is not None or
                self.has_masking_objects or
                (self.has_parent_image and self.parent_image.has_crop_mask))
    
    def crop_image_similarly(self, image):
        """Crop a 2-d or 3-d image using this image's crop mask
image - a np.ndarray to be cropped (of any type)
"""
        if image.shape[:2] == self.pixel_data.shape[:2]:
            # Same size - no cropping needed
            return image
        if any([my_size > other_size
                for my_size,other_size
                in zip(self.pixel_data.shape,image.shape)]):
            raise ValueError("Image to be cropped is smaller: %s vs %s"%
                             (repr(image.shape),
                              repr(self.pixel_data.shape)))
        if not self.has_crop_mask:
            raise RuntimeError(
                "Images are of different size and no crop mask available.\n"
                "Use the Crop and Align modules to match images of different sizes.")
        cropped_image = crop_image(image,self.crop_mask)
        if cropped_image.shape[0:2] != self.pixel_data.shape[0:2]:
            raise ValueError("Cropped image is not the same size as the reference image: %s vs %s"%
                             (repr(cropped_image.shape),
                              repr(self.pixel_data.shape)))
        return cropped_image
    
    def get_file_name(self):
        '''The name of the file holding this image
If the image is derived, then return the file name of the first
ancestor that has a file name. Return None if the image does not have
an ancestor or if no ancestor has a file name.
'''
        if not self.__file_name is None:
            return self.__file_name
        elif self.has_parent_image:
            return self.parent_image.file_name
        else:
            return None
    
    file_name = property(get_file_name)
    
    def get_path_name(self):
        '''The path to the file holding this image

If the image is derived, then return the path name of the first
ancestor that has a path name. Return None if the image does not have
an ancestor or if no ancestor has a file name.
'''
        if not self.__path_name is None:
            return self.__path_name
        elif self.has_parent_image:
            return self.parent_image.path_name
        else:
            return None
    
    path_name = property(get_path_name)
    
    def get_channel_names(self):
        '''The user-defined names of the channels in a channel stack'''
        return self.__channel_names
    
    def set_channel_names(self, names):
        self.__channel_names = tuple(names)

    channel_names = property(get_channel_names, set_channel_names)
    
    @property
    def has_channel_names(self):
        '''True if there are channel names on this image'''
        return self.__channel_names is not None
    
    def get_scale(self):
        '''The scale at acquisition
This is the intensity scale used by the acquisition device. For
instance, a microscope might use a 12-bit a/d converter to acquire
an image and store that information using the TIF MaxSampleValue
tag = 4095.
'''
        if self.__scale is None and self.has_parent_image:
            return self.parent_image.scale
        return self.__scale
    scale = property(get_scale)
    
def crop_image(image, crop_mask,crop_internal = False):
    """Crop an image to the size of the nonzero portion of a crop mask"""
    i_histogram = crop_mask.sum(axis=1)
    i_cumsum = np.cumsum(i_histogram != 0)
    j_histogram = crop_mask.sum(axis=0)
    j_cumsum = np.cumsum(j_histogram != 0)
    if i_cumsum[-1] == 0:
        # The whole image is cropped away
        return np.zeros((0,0),dtype=image.dtype)
    if crop_internal:
        #
        # Make up sequences of rows and columns to keep
        #
        i_keep = np.argwhere(i_histogram>0)
        j_keep = np.argwhere(j_histogram>0)
        #
        # Then slice the array by I, then by J to get what's not blank
        #
        return image[i_keep.flatten(),:][:,j_keep.flatten()].copy()
    else:
        #
        # The first non-blank row and column are where the cumsum is 1
        # The last are at the first where the cumsum is it's max (meaning
        # what came after was all zeros and added nothing)
        #
        i_first = np.argwhere(i_cumsum==1)[0]
        i_last = np.argwhere(i_cumsum==i_cumsum.max())[0]
        i_end = i_last+1
        j_first = np.argwhere(j_cumsum==1)[0]
        j_last = np.argwhere(j_cumsum==j_cumsum.max())[0]
        j_end = j_last+1
        if image.ndim == 3:
            return image[i_first:i_end,j_first:j_end,:].copy()
        return image[i_first:i_end,j_first:j_end].copy()

class GrayscaleImage(object):
    """A wrapper around a non-grayscale image
This is meant to be used if the image is 3-d but all channels
are the same or if the image is binary.
"""
    def __init__(self, image):
        self.__image = image

    def __getattr__(self, name):
        return getattr(self.__image, name)
    
    def get_pixel_data(self):
        """One 2-d channel of the color image as a numpy array"""
        if self.__image.pixel_data.dtype.kind == 'b':
            return self.__image.pixel_data.astype(np.float64)
        return self.__image.pixel_data[:,:,0]
    
    pixel_data = property(get_pixel_data)
    
class RGBImage(object):
    """A wrapper that discards the alpha channel
This is meant to be used if the image is 3-d + alpha but the alpha
channel is discarded
"""
    def __init__(self, image):
        self.__image = image

    def __getattr__(self, name):
        return getattr(self.__image, name)
    
    def get_pixel_data(self):
        '''Return the pixel data without the alpha channel'''
        return self.__image.pixel_data[:,:,:3]
    
    pixel_data = property(get_pixel_data)
    
def check_consistency(image, mask):
    """Check that the image, mask and labels arrays have the same shape and that the arrays are of the right dtype"""
    assert (image==None) or (len(image.shape) in (2,3)),"Image must have 2 or 3 dimensions"
    assert (mask==None) or (len(mask.shape)==2),"Mask must have 2 dimensions"
    assert (image==None) or (mask==None) or (image.shape[:2] == mask.shape), "Image and mask sizes don't match"
    assert (mask==None) or (mask.dtype.type is np.bool_), "Mask must be boolean, was %s"%(repr(mask.dtype.type))

class AbstractImageProvider(object):
    """Represents an image provider that returns images
"""
    def provide_image(self, image_set):
        """Return the image that is associated with the image set
"""
        raise NotImplementedError("Please implement ProvideImage for your class")

    def __get_name(self):
        """Call the abstract function, "get_name"
"""
        return self.get_name()
    
    def get_name(self):
        """The user-visible name for the image
"""
        raise NotImplementedError("Please implement get_name for your class")
    
    def release_memory(self):
        '''Release whatever memory is associated with the image'''
        logger.warning("Warning: no memory release function implemented for %s image",
                       self.get_name())

    name = property(__get_name)

class VanillaImageProvider(AbstractImageProvider):
    """This image provider returns the image given to it in the constructor
"""
    def __init__(self,name,image):
        """Constructor takes the name of the image and the CellProfiler.Image.Image instance to be returned
"""
        self.__name = name
        self.__image = image
    def provide_image(self, image_set):
        return self.__image
    
    def get_name(self):
        return self.__name
    
    def release_memory(self):
        self.__image = None
    

class CallbackImageProvider(AbstractImageProvider):
    """An image provider proxy that calls the indicated callback functions (presumably in your module) to implement the methods
"""
    def __init__(self,name,image_provider_fn):
        """Constructor
name - name returned by the Name method
image_provider_fn - function called during ProvideImage with the arguments, image_set and the CallbackImageProvider instance
"""
        
        self.__name = name
        self.__image_provider_fn = image_provider_fn
        
    def provide_image(self, image_set):
        return self.__image_provider_fn(image_set,self)
    
    def get_name(self):
        return self.__name
    
class ImageSet(object):
    """Represents the images for a particular iteration of a pipeline
An image set is composed of one image provider per image in the set.
The image provider loads or creates an image, given a dictionary of keys
(which might represent things like the plate/well for the image set or the
frame number in a movie, etc.)
"""
    def __init__(self, number, keys,legacy_fields):
        """Constructor:
number = image set index
keys = dictionary of key/value pairs that uniquely identify the image set
"""
        self.__image_providers = []
        self.__images = {}
        self.__keys = keys
        self.__number = number
        self.__legacy_fields = legacy_fields
    
    def get_number(self):
        """The (zero-based) image set index
"""
        return self.__number
    
    number = property(get_number)
    
    @property
    def image_number(self):
        '''The image number as used in measurements and the database'''
        return self.__number + 1
    
    def get_keys(self):
        """The keys that uniquely identify the image set
"""
        return self.__keys
    
    keys = property(get_keys)
    
    def get_image(self, name,
                 must_be_binary=False,
                 must_be_color=False,
                 must_be_grayscale=False,
                 must_be_rgb = False,
                 cache = True):
        """Return the image associated with the given name
name - name of the image within the image_set
must_be_color - raise an exception if not a color image
must_be_grayscale - raise an exception if not a grayscale image
must_be_rgb - raise an exception if 2-d or if # channels not 3 or 4,
discard alpha channel.
"""
        name = str(name)
        if not self.__images.has_key(name):
            image = self.get_image_provider(name).provide_image(self)
            if cache:
                self.__images[name] = image
        else:
            image = self.__images[name]
        if must_be_binary and image.pixel_data.ndim == 3:
            raise ValueError("Image must be binary, but it was color")
        if must_be_binary and image.pixel_data.dtype != np.bool:
            raise ValueError("Image was not binary")
        if must_be_color and image.pixel_data.ndim != 3:
            raise ValueError("Image must be color, but it was grayscale")
        if (must_be_grayscale and
            (image.pixel_data.ndim != 2)):
            pd = image.pixel_data
            if pd.shape[2] >= 3 and\
               np.all(pd[:,:,0]==pd[:,:,1]) and\
               np.all(pd[:,:,0]==pd[:,:,2]):
                return GrayscaleImage(image)
            raise ValueError("Image must be grayscale, but it was color")
        if must_be_grayscale and image.pixel_data.dtype.kind == 'b':
            return GrayscaleImage(image)
        if must_be_rgb:
            if image.pixel_data.ndim != 3:
                raise ValueError("Image must be RGB, but it was grayscale")
            elif image.pixel_data.shape[2] not in (3,4):
                raise ValueError("Image must be RGB, but it had %d channels" %
                                 image.pixel_data.shape[2])
            elif image.pixel_data.shape[2] == 4:
                logger.warning("Discarding alpha channel.")
                return RGBImage(image)
        return image
    
    def get_providers(self):
        """The list of providers (populated during the image discovery phase)"""
        return self.__image_providers
    
    providers = property(get_providers)
    
    def get_image_provider(self, name):
        """Get a named image provider
name - return the image provider with this name
"""
        providers = filter(lambda x: x.name == name, self.__image_providers)
        assert len(providers)>0, "No provider of the %s image"%(name)
        assert len(providers)==1, "More than one provider of the %s image"%(name)
        return providers[0]
    
    def remove_image_provider(self, name):
        """Remove a named image provider
name - the name of the provider to remove
"""
        self.__image_providers = filter(lambda x: x.name != name,
                                        self.__image_providers)
        
    def clear_image(self, name):
        '''Remove the image memory associated with a provider
name - the name of the provider
'''
        self.get_image_provider(name).release_memory()
        if self.__images.has_key(name):
            del self.__images[name]
            
    def clear_cache(self):
        '''Remove all of the cached images'''
        self.__images.clear()
    
    def get_names(self):
        """Get the image provider names
"""
        return [provider.name for provider in self.providers]
    
    names = property(get_names)
    
    def get_legacy_fields(self):
        """Matlab modules can stick legacy junk into the Images handles field. Save it in this dictionary.
"""
        return self.__legacy_fields
    
    legacy_fields = property(get_legacy_fields)
    
    def add(self, name, image):
        old_providers = [provider for provider in self.providers
                         if provider.name == name]
        if len(old_providers) > 0:
            self.clear_image(name)
        for provider in old_providers:
            self.providers.remove(provider)
        provider = VanillaImageProvider(name,image)
        self.providers.append(provider)
    
class ImageSetList(object):
    """Represents the list of image sets in a pipeline run
"""
    def __init__(self, test_mode = False):
        self.__image_sets = []
        self.__image_sets_by_key = {}
        self.__legacy_fields = {}
        self.__associating_by_key = None
        self.__test_mode = test_mode
        self.combine_path_and_file = False
    
    @property
    def test_mode(self):
        '''True if we are in test mode'''
        return self.__test_mode
    
    def get_image_set(self,keys_or_number):
        """Return either the indexed image set (keys_or_number = index) or the image set with matching keys
"""
        if not isinstance(keys_or_number, dict):
            keys = {'number':keys_or_number }
            number = keys_or_number
            if self.__associating_by_key is None:
                self.__associating_by_key = False
            k = make_dictionary_key(keys)
        else:
            keys = keys_or_number
            k = make_dictionary_key(keys)
            if self.__image_sets_by_key.has_key(k):
                number = self.__image_sets_by_key[k].get_number()
            else:
                number = len(self.__image_sets)
            self.__associating_by_key = True
        if number >= len(self.__image_sets):
            self.__image_sets += [ None ]*(number - len(self.__image_sets)+1)
        if self.__image_sets[number] is None:
            image_set = ImageSet(number, keys, self.__legacy_fields)
            self.__image_sets[number] = image_set
            self.__image_sets_by_key[k] = image_set
            if self.associating_by_key:
                k = make_dictionary_key(dict(number=number))
                self.__image_sets_by_key[k] = image_set
        else:
            image_set = self.__image_sets[number]
        return image_set
    
    @property
    def associating_by_key(self):
        '''True if some image set has been added with a key instead of a number
This will return "None" if no association has been done.
'''
        return self.__associating_by_key
    
    def purge_image_set(self, number):
        """Remove the memory associated with an image set"""
        keys = self.__image_sets[number].keys
        image_set = self.__image_sets[number]
        image_set.clear_cache()
        for provider in image_set.providers:
            provider.release_memory()
        self.__image_sets[number] = None
        self.__image_sets_by_key[repr(keys)] = None
    
    def add_provider_to_all_image_sets(self, provider):
        """Provide an image to every image set
provider - an instance of AbstractImageProvider
"""
        for image_set in self.__image_sets:
            image_set.providers.append(provider)
        
    def count(self):
        return len(self.__image_sets)

    def get_legacy_fields(self):
        """Matlab modules can stick legacy junk into the Images handles field. Save it in this dictionary.
"""
        return self.__legacy_fields
    
    legacy_fields = property(get_legacy_fields)
    
    def get_groupings(self, keys):
        '''Return the groupings of an image set list over a set of keys
keys - a sequence of keys that match some of the image set keys
returns an object suitable for use by CPModule.get_groupings:
tuple of keys, groupings
keys - the keys as passed into the function
groupings - a sequence of groupings of image sets where
each element of the sequence is a two-tuple.
The first element of the two-tuple is a dictionary
that gives the group's values for each key.
The second element is a list of image numbers of
the images in the group
'''
        #
        # Sort order for dictionary keys
        #
        sort_order = []
        dictionaries = []
        #
        # Dictionary of key_values to list of image numbers
        #
        d = {}
        for i in range(self.count()):
            image_set = self.get_image_set(i)
            assert isinstance(image_set, ImageSet)
            key_values = tuple([str(image_set.keys[key]) for key in keys])
            if not d.has_key(key_values):
                d[key_values] = []
                sort_order.append(key_values)
            d[key_values].append(i+1)
        return (keys, [(dict(zip(keys,k)),d[k]) for k in sort_order])
    
    def save_state(self):
        '''Return a string that can be used to load the image_set_list's state
load_state will restore the image set list's state. No image_set can
have image providers before this call.
'''
        f = StringIO()
        dump(self.count(),f)
        for i in range(self.count()):
            image_set = self.get_image_set(i)
            assert isinstance(image_set, ImageSet)
            assert len(image_set.providers)==0, "An image set cannot have providers while saving its state"
            dump(image_set.keys, f)
        dump(self.legacy_fields, f)
        return f.getvalue()
    
    def load_state(self, state):
        '''Load an image_set_list's state from the string returned from save_state'''
        
        self.__image_sets = []
        self.__image_sets_by_key = {}

        # Make a safe unpickler
        p = Unpickler(StringIO(state))
        def find_global(module_name, class_name):
            logger.debug("Pickler wants %s:%s",module_name, class_name)
            if (module_name not in ("numpy", "numpy.core.multiarray")):
                logger.critical(
                    "WARNING WARNING WARNING - your batch file has asked to load %s.%s."
                    " If this looks in any way suspicious please contact us at www.cellprofiler.org",
                    module_name, class_name)
                raise ValueError("Illegal attempt to unpickle class %s.%s",
                                 (module_name, class_name))
            __import__(module_name)
            mod = sys.modules[module_name]
            return getattr(mod, class_name)
        p.find_global = find_global

        count = p.load()
        all_keys = [p.load() for i in range(count)]
        self.__legacy_fields = p.load()
        #
        # Have to do in this order in order for the image set's
        # legacy_fields property to hook to the right legacy_fields
        #
        for i in range(count):
            self.get_image_set(all_keys[i])

def make_dictionary_key(key):
    '''Make a dictionary into a stable key for another dictionary'''
    return u", ".join([u":".join([unicode(y) for y in x])
                       for x in sorted(key.iteritems())])

def readc01(fname):
    '''Read a Cellomics file into an array
fname - the name of the file
'''
    def readint(f):
        return unpack("<l", f.read(4))[0]
    
    def readshort(f):
        return unpack("<h", f.read(2))[0]
    
    f = open(fname, "rb")
    
    # verify it's a c01 format, and skip the first four bytes
    assert readint(f) == 16 << 24

    # decompress
    g = StringIO(decompress(f.read()))
    
    # skip four bytes
    g.seek(4, 1)
    
    x = readint(g)
    y = readint(g)
    
    nplanes = readshort(g)
    nbits = readshort(g)

    compression = readint(g)
    assert compression == 0, "can't read compressed pixel data"
    
    # skip 4 bytes
    g.seek(4, 1)

    pixelwidth = readint(g)
    pixelheight = readint(g)
    colors = readint(g)
    colors_important = readint(g)

    # skip 12 bytes
    g.seek(12, 1)


    data = fromstring(g.read(), uint16 if nbits == 16 else uint8, x * y)
    return data.reshape(x, y).T
Something went wrong with that request. Please try again.