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This document describes the specification for 3D Tiles, an open standard for streaming massive

heterogeneous 3D geospatial datasets.

1. 3D Tiles Format Specification

1.1. Introduction

3D Tiles is designed for streaming and rendering massive 3D geospatial content such as

Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a

hierarchical data structure and a set of tile formats which deliver renderable content. 3D Tiles does

not define explicit rules for visualization of the content; a client may visualize 3D Tiles data

however it sees fit.

In 3D Tiles, a tileset is a set of tiles organized in a spatial data structure, the tree. A tileset is

described by at least one tileset JSON file containing tileset metadata and a tree of tile objects, each

of which may reference renderable content.

glTF 2.0 is the primary tile format for 3D Tiles. glTF is an open specification designed for the

efficient transmission and loading of 3D content. A glTF asset includes geometry and texture

information for a single tile, and may be extended to include metadata, model instancing, and

compression. glTF may be used for a wide variety of 3D content including:

• Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D building exteriors and

interiors, massive models

• 3D model instances. E.g. trees, windmills, bolts

• Massive point clouds

See glTF Tile Format for more details.

Tiles may also reference the legacy 3D Tiles 1.0 formats listed below. These formats were
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deprecated in 3D Tiles 1.1 and may be removed in a future version of 3D Tiles.

Legacy Format Uses

Batched 3D Model (b3dm) Heterogeneous 3D models

Instanced 3D Model (i3dm) 3D model instances

Point Cloud (pnts) Massive number of points

Composite (cmpt) Concatenate tiles of different formats into one tile

A tile’s content is an individual instance of a tile format. A tile may have multiple contents.

The content references a set of features, such as 3D models representing buildings or trees, or

points in a point cloud. Each feature has position and appearance properties and additional

application-specific properties. A client may choose to select features at runtime and retrieve their

properties for visualization or analysis.

Tiles are organized in a tree which incorporates the concept of Hierarchical Level of Detail (HLOD)

for optimal rendering of spatial data. Each tile has a bounding volume, an object defining a spatial

extent completely enclosing its content. The tree has spatial coherence; the content for child tiles

are completely inside the parent’s bounding volume.
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Figure 1. A tree of tiles

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes (like a Web

Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at several levels of detail (or

zoom levels). However since the content of a tileset is often non-uniform or may not easily be

organized in only two dimensions, the tree can be any spatial data structure with spatial coherence,

including k-d trees, quadtrees, octrees, and grids. Implicit tiling defines a concise representation of

quadtrees and octrees.

Application-specific metadata may be provided at multiple granularities within a tileset. Metadata

may be associated with high-level entities like tilesets, tiles, contents, or features, or with individual

vertices and texels. Metadata conforms to a well-defined type system described by the 3D Metadata

Specification, which may be extended with application- or domain-specific semantics.

Optionally a 3D Tiles Style, or style, may be applied to a tileset. A style defines expressions to be

evaluated which modify how each feature is displayed.
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1.2. File Extensions and Media Types

3D Tiles uses the following file extensions and Media Types.

• Tileset files should use the .json extension and the application/json Media Type.

• Tile content files should use the file extensions and Media Type specific to their tile format

specification.

• Metadata schema files should use the .json extension and the application/json Media Type.

• Tileset style files should use the .json extension and the application/json Media Type.

• JSON subtree files should use the .json extension and the application/json Media Type.

• Binary subtree files should use the .subtree extension and the application/octet-stream Media

Type.

• Files representing binary buffers should use the .bin extension and application/octet-stream

Media Type.

Explicit file extensions are optional. Valid implementations may ignore it and identify a content’s

format by the magic field in its header.

1.3. JSON encoding

3D Tiles has the following restrictions on JSON formatting and encoding.

1. JSON must use UTF-8 encoding without BOM.

2. All strings defined in this spec (properties names, enums) use only ASCII charset and must be

written as plain text, without JSON escaping.

3. Non-ASCII characters that appear as property values in JSON may be escaped.

4. Names (keys) within JSON objects must be unique, i.e., duplicate keys aren’t allowed.

5. Some properties are defined as integers in the schema. Such values may be stored as decimals

with a zero fractional part or by using exponent notation, as defined in RFC 8259, Section 6.

1.4. URIs

3D Tiles uses URIs to reference tile content. These URIs may point to relative external references

(RFC3986) or be data URIs that embed resources in the JSON. Embedded resources use the "data"

URL scheme (RFC2397).

When the URI is relative, its base is always relative to the referring tileset JSON file.

Client implementations are required to support relative external references and embedded

resources. Optionally, client implementations may support other schemes (such as http://). All URIs

must be valid and resolvable.
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1.5. Units

The unit for all linear distances is meters.

All angles are in radians.

1.6. Coordinate reference system (CRS)

3D Tiles uses a right-handed Cartesian coordinate system; that is, the cross product of x and y yields

z. 3D Tiles defines the z axis as up for local Cartesian coordinate systems. A tileset’s global

coordinate system will often be in a WGS 84 Earth-centered, Earth-fixed (ECEF) reference frame

(EPSG 4978), but it doesn’t have to be, e.g., a power plant may be defined fully in its local coordinate

system for use with a modeling tool without a geospatial context.

The CRS of a tileset may be defined explicitly, as part of the tileset metadata. The metadata for the

tileset can contain a property that has the TILESET_CRS_GEOCENTRIC semantic, which is a string that

represents the EPSG Geodetic Parameter Dataset identifier.

An additional tile transform may be applied to transform a tile’s local coordinate system to the

parent tile’s coordinate system.

The region bounding volume specifies bounds using a geographic coordinate system (latitude,

longitude, height), specifically, EPSG 4979. The reference ellipsoid is assumed to be the same as the

reference ellipsoid of the tileset.

1.7. Concepts

1.7.1. Tiles

Tiles consist of metadata used to determine if a tile is rendered, a reference to the renderable

content, and an array of any children tiles.

Tile Content

A tile can be associated with renderable content. A tile can either have a single tile.content object,

or multiple content objects, stored in a tile.contents array. The latter allows for flexible tileset

structures: for example, a single tile may contain multiple representations of the same geometry

data.

The content.uri of each content object refers to the tile’s content in one of the tile formats that are

defined in the Tile format specifications), or another tileset JSON to create a tileset of tilesets (see

External tilesets).

The content.group property assigns the content to a group. Contents of different tiles or the contents

of a single tile can be assigned to groups in order to categorize the content. Additionally, each group

can be associated with Metadata.

Each content can be associated with a bounding volume. While the tile.boundingVolume is a

bounding volume encloses all contents of the tile, each individual content.boundingVolume is a
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tightly fit bounding volume enclosing just the respective content. More details about the role of tile-

and content bounding volumes are given in the bounding volume section.

Geometric error

Tiles are structured into a tree incorporating Hierarchical Level of Detail (HLOD) so that at runtime

a client implementation will need to determine if a tile is sufficiently detailed for rendering and if

the content of tiles should be successively refined by children tiles of higher resolution. An

implementation will consider a maximum allowed Screen-Space Error (SSE), the error measured in

pixels.

A tile’s geometric error defines the selection metric for that tile. Its value is a nonnegative number

that specifies the error, in meters, of the tile’s simplified representation of its source geometry.

Generally, the root tile will have the largest geometric error, and each successive level of children

will have a smaller geometric error than its parent, with leaf tiles having a geometric error of or

close to 0.

In a client implementation, geometric error is used with other screen space metrics—e.g., distance

from the tile to the camera, screen size, and resolution-- to calculate the SSE introduced if this tile is

rendered and its children are not. If the introduced SSE exceeds the maximum allowed, then the

tile is refined and its children are considered for rendering.

The geometric error is formulated based on a metric like point density, mesh or texture decimation,

or another factor specific to that tileset. In general, a higher geometric error means a tile will be

refined more aggressively, and children tiles will be loaded and rendered sooner.

Refinement

Refinement determines the process by which a lower resolution parent tile renders when its higher

resolution children are selected to be rendered. Permitted refinement types are replacement

("REPLACE") and additive ("ADD"). If the tile has replacement refinement, the children tiles are

rendered in place of the parent, that is, the parent tile is no longer rendered. If the tile has additive

refinement, the children are rendered in addition to the parent tile.

A tileset can use replacement refinement exclusively, additive refinement exclusively, or any

combination of additive and replacement refinement.

A refinement type is required for the root tile of a tileset; it is optional for all other tiles. When

omitted, a tile inherits the refinement type of its parent.

Replacement

If a tile uses replacement refinement, when refined it renders its children in place of itself.
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Parent Tile Refined

Additive

If a tile uses additive refinement, when refined it renders itself and its children simultaneously.

Parent Tile Refined

Bounding volumes

A bounding volume defines the spatial extent enclosing a tile or a tile’s content. To support tight

fitting volumes for a variety of datasets such as regularly divided terrain, cities not aligned with a

line of latitude or longitude, or arbitrary point clouds, the bounding volume types include an

oriented bounding box, a bounding sphere, and a geographic region defined by minimum and

maximum latitudes, longitudes, and heights.

Bounding box Bounding sphere Bounding region
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Region

The boundingVolume.region property is an array of six numbers that define the bounding geographic

region with latitude, longitude, and height coordinates with the order [west, south, east, north,

minimum height, maximum height]. Latitudes and longitudes are in the WGS 84 datum as defined in

EPSG 4979 and are in radians. Heights are in meters above (or below) the WGS 84 ellipsoid.

Figure 2. A bounding region

"boundingVolume": {

  "region": [

    -1.3197004795898053,

    0.6988582109,

    -1.3196595204101946,

    0.6988897891,

    0,

    20

  ]

}

Box

The boundingVolume.box property is an array of 12 numbers that define an oriented bounding box in

a right-handed 3-axis (x, y, z) Cartesian coordinate system where the z-axis is up. The first three

elements define the x, y, and z values for the center of the box. The next three elements (with

indices 3, 4, and 5) define the x-axis direction and half-length. The next three elements (indices 6, 7,

and 8) define the y-axis direction and half-length. The last three elements (indices 9, 10, and 11)

define the z-axis direction and half-length.
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Figure 3. A bounding box

"boundingVolume": {

  "box": [

    0,   0,   10,

    100, 0,   0,

    0,   100, 0,

    0,   0,   10

  ]

}

Sphere

The boundingVolume.sphere property is an array of four numbers that define a bounding sphere. The

first three elements define the x, y, and z values for the center of the sphere in a right-handed 3-axis

(x, y, z) Cartesian coordinate system where the z-axis is up. The last element (with index 3) defines

the radius in meters.
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Figure 4. A bounding sphere

"boundingVolume": {

  "sphere": [

    0,

    0,

    10,

    141.4214

  ]

}

Content Bounding Volume

The bounding volume can be given for each tile, via the tile.boundingVolume property. Additionally,

it is possible to specify the bounding volume for each tile content individually. The

content.boundingVolume may be a more tight-fitting bounding volume. This enables tight view

frustum culling, excluding from rendering any content not in the volume of what is potentially in

view. When it is not defined, the tile’s bounding volume is still used for culling (see Grids).

The screenshot below shows the bounding volumes for the root tile for Canary Wharf. The

tile.boundingVolume, shown in red, encloses the entire area of the tileset; content.boundingVolume

shown in blue, encloses just the four features (models) in the root tile.

11



Figure 5. Bounding volumes for the root tile of a tileset. Building data from CyberCity3D. Imagery data from

Bing Maps

Extensions

Other bounding volume types are supported through extensions.

• 3DTILES_bounding_volume_S2

Viewer request volume

A tile’s viewerRequestVolume can be used for combining heterogeneous datasets, and can be

combined with external tilesets.

The following example has a point cloud inside a building. The point cloud tile’s boundingVolume is a

sphere with a radius of 1.25. It also has a larger sphere with a radius of 15 for the

viewerRequestVolume. Since the geometricError is zero, the point cloud tile’s content is always

rendered (and initially requested) when the viewer is inside the large sphere defined by

viewerRequestVolume.
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{

  "children": [{

    "transform": [

      4.843178171884396,   1.2424271388626869, 0,                  0,

      -0.7993325488216595,  3.1159251367235608, 3.8278032889280675, 0,

      0.9511533376784163, -3.7077466670407433, 3.2168186118075526, 0,

      1215001.7612985559, -4736269.697480114,  4081650.708604793,  1

    ],

    "boundingVolume": {

      "box": [

        0,     0,    6.701,

        3.738, 0,    0,

        0,     3.72, 0,

        0,     0,    13.402

      ]

    },

    "geometricError": 32,

    "content": {

      "uri": "building.glb"

    }

  }, {

    "transform": [

      0.968635634376879,    0.24848542777253732, 0,                  0,

      -0.15986650990768783,  0.6231850279035362,  0.7655606573007809, 0,

      0.19023066741520941, -0.7415493329385225,  0.6433637229384295, 0,

      1215002.0371330238,  -4736270.772726648,   4081651.6414821907, 1

    ],

    "viewerRequestVolume": {

      "sphere": [0, 0, 0, 15]

    },

    "boundingVolume": {

      "sphere": [0, 0, 0, 1.25]

    },

    "geometricError": 0,

    "content": {

      "uri": "points.glb"

    }

  }]

}

For more on request volumes, see the sample tileset and demo video.

Transforms

Tile transforms

To support local coordinate systems—e.g., so a building tileset inside a city tileset can be defined in

its own coordinate system, and a point cloud tileset inside the building could, again, be defined in

its own coordinate system—each tile has an optional transform property.
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The transform property is a 4x4 affine transformation matrix, stored in column-major order, that

transforms from the tile’s local coordinate system to the parent tile’s coordinate system—or the

tileset’s coordinate system in the case of the root tile.

The transform property applies to

• tile.content

◦ Each feature’s position.

◦ Each feature’s normal should be transformed by the top-left 3x3 matrix of the inverse-

transpose of transform to account for correct vector transforms when scale is used.

◦ content.boundingVolume, except when content.boundingVolume.region is defined, which is

explicitly in EPSG:4979 coordinates.

• tile.boundingVolume, except when tile.boundingVolume.region is defined, which is explicitly in

EPSG:4979 coordinates.

• tile.viewerRequestVolume, except when tile.viewerRequestVolume.region is defined, which is

explicitly in EPSG:4979 coordinates.

The transform property scales the geometricError by the largest scaling factor from the matrix.

When transform is not defined, it defaults to the identity matrix:

[

  1.0, 0.0, 0.0, 0.0,

  0.0, 1.0, 0.0, 0.0,

  0.0, 0.0, 1.0, 0.0,

  0.0, 0.0, 0.0, 1.0

]

The transformation from each tile’s local coordinate system to the tileset’s global coordinate system

is computed by a top-down traversal of the tileset and by post-multiplying a child’s transform with

its parent’s transform like a traditional scene graph or node hierarchy in computer graphics.

glTF transforms

glTF defines its own node hierarchy and uses a y-up coordinate system. Any transforms specific to a

tile format and the tile.transform property are applied after these transforms are resolved.

glTF node hierarchy

First, glTF node hierarchy transforms are applied according to the glTF specification.

y-up to z-up

Next, for consistency with the z-up coordinate system of 3D Tiles, glTFs must be transformed from y

-up to z-up at runtime. This is done by rotating the model about the x-axis by ?/2 radians.

Equivalently, apply the following matrix transform (shown here as row-major):
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[

  1.0, 0.0,  0.0, 0.0,

  0.0, 0.0, -1.0, 0.0,

  0.0, 1.0,  0.0, 0.0,

  0.0, 0.0,  0.0, 1.0

]

More broadly the order of transformations is:

1. glTF node hierarchy transformations

2. glTF y-up to z-up transform

3. Tile transform

NOTE

Implementation Note

When working with source data that is inherently z-up, such as data in WGS 84

coordinates or in a local z-up coordinate system, a common workflow is:

• Mesh data, including positions and normals, are not modified - they remain z

-up.

• The root node matrix specifies a column-major z-up to y-up transform. This

transforms the source data into a y-up coordinate system as required by glTF.

• At runtime the glTF is transformed back from y-up to z-up with the matrix

above. Effectively the transforms cancel out.

Example glTF root node:

"nodes": [

 {

   "matrix": [1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,1],

   "mesh": 0,

   "name": "rootNode"

 }

]

Example

For an example of the computed transforms (transformToRoot in the code above) for a tileset,

consider:
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Figure 6. Structure of an example tileset with tiles that contain glTF content

The computed transform for each tile is:

• TO: [T0]

• T1: [T0][T1]

• T2: [T0][T2]

• T3: [T0][T1][T3]

• T4: [T0][T1][T4]

The full computed transforms, taking into account the glTF y-up to z-up transform and glTF

Transforms are

• TO: [T0]

• T1: [T0][T1]

• T2: [T0][T2][glTF y-up to z-up][glTF transform]

• T3: [T0][T1][T3][glTF y-up to z-up][glTF transform]

• T4: [T0][T1][T4][glTF y-up to z-up][glTF transform]

Implementation example

This section is non-normative

The following JavaScript code shows how to compute this using Cesium’s Matrix4 and Matrix3
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types.

function computeTransforms(tileset) {

  const root = tileset.root;

  const transformToRoot = defined(root.transform) ? Matrix4.fromArray(root.transform)

: Matrix4.IDENTITY;

  computeTransform(root, transformToRoot);

}

function computeTransform(tile, transformToRoot) {

  // Apply 4x4 transformToRoot to this tile's positions and bounding volumes

  let normalTransform = Matrix4.getRotation(transformToRoot, new Matrix4());

  normalTransform = Matrix3.inverseTranspose(normalTransform, normalTransform);

  // Apply 3x3 normalTransform to this tile's normals

  const children = tile.children;

  if (defined(children)) {

    const length = children.length;

    for (let i = 0; i < length; ++i) {

      const child = children[i];

      let childToRoot = defined(child.transform) ? Matrix4.fromArray(child.transform)

: Matrix4.clone(Matrix4.IDENTITY);

      childToRoot = Matrix4.multiplyTransformation(transformToRoot, childToRoot,

childToRoot);

      computeTransform(child, childToRoot);

    }

  }

}

Tile JSON

A tile JSON object consists of the following properties.
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Figure 7. Elements of a tile JSON object

The following example shows one non-leaf tile.
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{

  "boundingVolume": {

    "region": [

      -1.2419052957251926,

      0.7395016240301894,

      -1.2415404171917719,

      0.7396563300150859,

      0,

      20.4

    ]

  },

  "geometricError": 43.88464075650763,

  "refine" : "ADD",

  "content": {

    "boundingVolume": {

      "region": [

        -1.2418882438584018,

        0.7395016240301894,

        -1.2415422846940714,

        0.7396461198389616,

        0,

        19.4

      ]

    },

    "uri": "2/0/0.glb"

  },

  "children": [...]

}

The boundingVolume defines a volume enclosing the tile, and is used to determine which tiles to

render at runtime. The above example uses a region volume, but other bounding volumes, such as

box or sphere, may be used.

The geometricError property is a nonnegative number that defines the error, in meters, introduced

if this tile is rendered and its children are not. At runtime, the geometric error is used to compute

Screen-Space Error (SSE), the error measured in pixels. The SSE determines if a tile is sufficiently

detailed for the current view or if its children should be considered, see Geometric error.

The optional viewerRequestVolume property (not shown above) defines a volume, using the same

schema as boundingVolume, that the viewer must be inside of before the tile’s content will be

requested and before the tile will be refined based on geometricError. See the Viewer request

volume section.

The refine property is a string that is either "REPLACE" for replacement refinement or "ADD" for

additive refinement, see Refinement. It is required for the root tile of a tileset; it is optional for all

other tiles. A tileset can use any combination of additive and replacement refinement. When the

refine property is omitted, it is inherited from the parent tile.

The content property is an object that describes the tile content. A file extension is not required for
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content.uri. A content’s tile format can be identified by the magic field in its header, or else as an

external tileset if the content is JSON.

The content.boundingVolume property defines an optional bounding volume similar to the top-level

tile.boundingVolume property. But unlike the top-level boundingVolume property,

content.boundingVolume is a tightly fit bounding volume enclosing just the tile’s content.

It is also possible to define multiple contents for a tile: The contents property (not shown above) is

an array containing one or more contents. contents and content are mutually exclusive. When a tile

has a single content it should use content for backwards compatibility with engines that only

support 3D Tiles 1.0. Multiple contents allow for different representations of the tile content — for

example, one as a triangle mesh and one as a point cloud:

Figure 8. An example of a tile that defines multiple contents

Contents can also be arranged into groups, using the content.group property:
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{

  "root": {

    "refine": "ADD",

    "geometricError": 0.0,

    "boundingVolume": {

      "region": [-1.707, 0.543, -1.706, 0.544, 203.895, 253.113]

    },

    "contents": [

      {

        "uri": "buildings.glb",

        "group": 0

      },

      {

        "uri": "trees.glb",

        "group": 1

      },

      {

        "uri": "cars.glb",

        "group": 2

      }

    ]

  }

}

These groups can be associated with group metadata: The value of the content.group property is an

index into the array of groups that are defined in a top-level array of the tileset. Each element of this

array is a metadata entity, as defined in the metadata section. This allows applications to perform

styling or filtering based on the group that the content belongs to:

Figure 9. Illustration of rendering options based on content groups

The optional transform property (not shown above) defines a 4x4 affine transformation matrix that

transforms the tile’s content, boundingVolume, and viewerRequestVolume as described in the Tile

transform section.

The optional implicitTiling property (not shown above) defines how the tile is subdivided and
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where to locate content resources. See Implicit Tiling.

The children property is an array of objects that define child tiles. Each child tile’s content is fully

enclosed by its parent tile’s boundingVolume and, generally, a geometricError less than its parent tile’s

geometricError. For leaf tiles, the length of this array is zero, and children may not be defined. See

the Tileset JSON section below.

The full JSON schema can be found in tile.schema.json.

1.7.2. Tileset JSON

3D Tiles uses one main tileset JSON file as the entry point to define a tileset. Both entry and external

tileset JSON files are not required to follow a specific naming convention.

Here is a subset of the tileset JSON used for Canary Wharf:
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{

  "asset" : {

    "version": "1.1",

    "tilesetVersion": "e575c6f1-a45b-420a-b172-6449fa6e0a59",

  },

  "properties": {

    "Height": {

      "minimum": 1,

      "maximum": 241.6

    }

  },

  "geometricError": 494.50961650991815,

  "root": {

    "boundingVolume": {

      "region": [

        -0.0005682966577418737,

        0.8987233516605286,

        0.00011646582098558159,

        0.8990603398325034,

        0,

        241.6

      ]

    },

    "geometricError": 268.37878244706053,

    "refine": "ADD",

    "content": {

      "uri": "0/0/0.glb",

      "boundingVolume": {

        "region": [

          -0.0004001690908972599,

          0.8988700116775743,

          0.00010096729722787196,

          0.8989625664878067,

          0,

          241.6

        ]

      }

    },

    "children": [...]

  }

}

The tileset JSON has four top-level properties: asset, properties, geometricError, and root.

asset is an object containing metadata about the entire tileset. The asset.version property is a

string that defines the 3D Tiles version, which specifies the JSON schema for the tileset and the base

set of tile formats. The tilesetVersion property is an optional string that defines an application-

specific version of a tileset, e.g., for when an existing tileset is updated.
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NOTE

Implementation Note

The tilesetVersion can be used as a query parameter when requesting content to

avoid using outdated content from a cache.

properties is an object containing objects for each per-feature property in the tileset. This tileset

JSON snippet is for 3D buildings, so each tile has building models, and each building model has a

Height property (see Batch Table). The name of each object in properties matches the name of a per-

feature property, and its value defines its minimum and maximum numeric values, which are useful, for

example, for creating color ramps for styling.

geometricError is a nonnegative number that defines the error, in meters, that determines if the

tileset is rendered. At runtime, the geometric error is used to compute Screen-Space Error (SSE), the

error measured in pixels. If the SSE does not exceed a required minimum, the tileset should not be

rendered, and none of its tiles should be considered for rendering, see Geometric error.

root is an object that defines the root tile using the tile JSON described in the above section.

root.geometricError is not the same as the tileset’s top-level geometricError. The tileset’s

geometricError is used at runtime to determine the SSE at which the tileset’s root tile renders;

root.geometricError is used at runtime to determine the SSE at which the root tile’s children are

rendered.

External tilesets

To create a tree of trees, a tile’s content.uri can point to an external tileset (the uri of another tileset

JSON file). This enables, for example, storing each city in a tileset and then having a global tileset of

tilesets.
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Figure 10. A tileset that refers to other tilesets

When a tile points to an external tileset, the tile:

• Cannot have any children; tile.children must be undefined or an empty array.

• Cannot be used to create cycles, for example, by pointing to the same tileset file containing the

tile or by pointing to another tileset file that then points back to the initial file containing the

tile.

• Will be transformed by both the tile’s transform and root tile’s transform. For example, in the

following tileset referencing an external tileset, the computed transform for T3 is

[T0][T1][T2][T3].
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Figure 11. The chain of transforms for a tileset that refers to another tileset

If an external tileset defines asset.tilesetVersion, this overrides the value from the parent tileset. If

the external tileset does not define asset.tilesetVersion, the value is inherited from the parent

tileset (if defined).

Bounding volume spatial coherence

As described above, the tree has spatial coherence; each tile has a bounding volume completely

enclosing its content, and the content for child tiles are completely inside the parent’s bounding

volume. This does not imply that a child’s bounding volume is completely inside its parent’s

bounding volume. For example:
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Figure 12. Bounding sphere for a terrain tile.
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Figure 13. Bounding spheres for the four child tiles. The children’s content is completely inside the parent’s

bounding volume, but the children’s bounding volumes are not since they are not tightly fit.

Spatial data structures

3D Tiles incorporates the concept of Hierarchical Level of Detail (HLOD) for optimal rendering of

spatial data. A tileset is composed of a tree, defined by root and, recursively, its children tiles, which

can be organized by different types of spatial data structures.

A runtime engine is generic and will render any tree defined by a tileset. Any combination of tile

formats and refinement approaches can be used, enabling flexibility in supporting heterogeneous

datasets, see Refinement.

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes (like a Web

Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at several levels of detail (or

zoom levels). However since the content of a tileset is often non-uniform or may not easily be

organized in only two dimensions, other spatial data structures may be more optimal.

Included below is a brief description of how 3D Tiles can represent various spatial data structures.

Quadtrees

A quadtree is created when each tile has four uniformly subdivided children (e.g., using the center

latitude and longitude), similar to typical 2D geospatial tiling schemes. Empty child tiles can be

omitted.
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Figure 14. Classic quadtree subdivision

3D Tiles enable quadtree variations such as non-uniform subdivision and tight bounding volumes

(as opposed to bounding, for example, the full 25% of the parent tile, which is wasteful for sparse

datasets).

Figure 15. Quadtree with tight bounding volumes around each child

For example, here is the root tile and its children for Canary Wharf. Note the bottom left, where the

bounding volume does not include the water on the left where no buildings will appear:
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Figure 16. Building data from CyberCity3D. Imagery data from Bing Maps

3D Tiles also enable other quadtree variations such as loose quadtrees, where child tiles overlap

but spatial coherence is still preserved, i.e., a parent tile completely encloses all of its children. This

approach can be useful to avoid splitting features, such as 3D models, across tiles.
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Figure 17. Quadtree with non-uniform and overlapping tiles

Below, the green buildings are in the left child and the purple buildings are in the right child. Note

that the tiles overlap so the two green and one purple building in the center are not split.
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Figure 18. Building data from CyberCity3D. Imagery data from Bing Maps

K-d trees

A k-d tree is created when each tile has two children separated by a splitting plane parallel to the x,

y, or z axis (or latitude, longitude, height). The split axis is often round-robin rotated as levels

increase down the tree, and the splitting plane may be selected using the median split, surface area

heuristics, or other approaches.
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Figure 19. Example k-d tree. Note the non-uniform subdivision

Note that a k-d tree does not have uniform subdivision like typical 2D geospatial tiling schemes and,

therefore, can create a more balanced tree for sparse and non-uniformly distributed datasets.

3D Tiles enables variations on k-d trees such as multi-way k-d trees where, at each leaf of the tree,

there are multiple splits along an axis. Instead of having two children per tile, there are n children.

Octrees

An octree extends a quadtree by using three orthogonal splitting planes to subdivide a tile into

eight children. Like quadtrees, 3D Tiles allows variations to octrees such as non-uniform

subdivision, tight bounding volumes, and overlapping children.
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Figure 20. Traditional octree subdivision

Figure 21. Non-uniform octree subdivision for a point cloud using additive refinement. Point Cloud of the

Church of St Marie at Chappes, France by Prof. Peter Allen, Columbia University Robotics Lab. Scanning by

Alejandro Troccoli and Matei Ciocarlie.

Grids

3D Tiles enables uniform, non-uniform, and overlapping grids by supporting an arbitrary number

of child tiles. For example, here is a top-down view of a non-uniform overlapping grid of

Cambridge:
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Figure 22. Building data from CyberCity3D. Imagery data from Bing Maps

3D Tiles takes advantage of empty tiles: those tiles that have a bounding volume, but no content.

Since a tile’s content property does not need to be defined, empty non-leaf tiles can be used to

accelerate non-uniform grids with hierarchical culling. This essentially creates a quadtree or octree

without hierarchical levels of detail (HLOD).

Implicit Tiling

The bounding volume hierarchy may be defined explicitly — as shown previously — which enables

a wide variety of spatial data structures. Certain common data structures such as quadtrees and

octrees may be defined implicitly without providing bounding volumes for every tile. This regular

pattern allows for random access of tiles based on their tile coordinates which enables accelerated

spatial queries, new traversal algorithms, and efficient updates of tile content, among other use

cases.
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Figure 23. Quadtree with tile coordinates

In order to support sparse datasets, availability data determines which tiles exist. To support

massive datasets, availability is partitioned into fixed-size subtrees. Subtrees may store metadata

for available tiles and contents.

An implicitTiling object may be added to any tile in the tileset JSON. The object defines how the tile

is subdivided and where to locate content resources. It may be added to multiple tiles to create

more complex subdivision schemes.

The following example shows a quadtree defined on the root tile, with template URIs pointing to

content and subtree files.
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{

  "root": {

    "boundingVolume": {

      "region": [-1.318, 0.697, -1.319, 0.698, 0, 20]

    },

    "refine": "REPLACE",

    "geometricError": 5000,

    "content": {

      "uri": "content/{level}/{x}/{y}.glb"

    },

    "implicitTiling": {

      "subdivisionScheme": "QUADTREE",

      "availableLevels": 21,

      "subtreeLevels": 7,

      "subtrees": {

        "uri": "subtrees/{level}/{x}/{y}.json"

      }

    }

  }

}

See Implicit Tiling for more details about the implicitTiling object structure and the subtree file

format.

1.7.3. Metadata

Application-specific metadata may be provided at multiple granularities within a tileset. Metadata

may be associated with high-level entities like tilesets, tiles, contents, or features, or with individual

vertices and texels. Metadata conforms to a well-defined type system described by the the 3D

Metadata Specification, which may be extended with application- or domain-specific semantics.

Metadata enables additional use cases and functionality for the format:

• Inspection: Applications displaying a tileset within a user interface (UI) may allow users to click

or hover over specific tiles or tile contents, showing informative metadata about a selected

entity in the UI.

• Collections: Tile content groups may be used to define collections (similar to map layers), such

that each collection may be shown, hidden, or visually styled with effects synchronized across

many tiles.

• Structured Data: Metadata supports both embedded and externally-referenced schemas, such

that tileset authors may define new data models for common domains (e.g. for AEC or scientific

datasets) or fully customized, application-specific data (e.g. for a particular video game).

• Optimization: Per-content metadata may include properties with performance-related

semantics, enabling engines to optimize traversal and streaming algorithms significantly.

The metadata can be associated with elements of a tileset at various levels of granularity:

• Tileset - The tileset as a whole may be associated with global metadata. Common examples
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might include year of collection, author details, or other general context for the tileset contents.

• Tile - Tiles may be individually associated with more specific metadata. This may be the

timestamp when a tile was last updated or the maximum height of the tile, or spatial hints to

optimize traversal algorithms.

• Groups - Tile contents may be organized into groups. Each group definition represents a

metadata entity that can be assigned to the tile contents by specifying the index within this list

as the group property of the content. This is useful for working with collections of contents as

layers, e.g. to manage visibility or visual styling.

• Content - Tile contents may be individually associated with more specific metadata, such as a

list of attribution strings.

• Features glTF 2.0 assets with feature metadata can be included as tile contents. The

EXT_structural_metadata extension allows associating metadata with vertices or texels.

The figure below shows the relationship between these entities, and examples of metadata that

may be associated with these entities:

Figure 24. Illustration of the different granularity levels for applying metadata
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Although they are defined independently, the metadata structure in 3D Tiles and in the

EXT_structural_metadata extension both conform to the the 3D Metadata Specification and build

upon the Reference Implementation of the 3D Metadata Specification. Concepts and terminology

used here refer to the 3D Metadata Specification, which should be considered a normative

reference for definitions and requirements. This document provides inline definitions of terms

where appropriate.

Metadata Schema

The Metadata schema defines the structure of the metadata. It contains a definition of the metadata

classes, which are templates for the metadata instances, and define the set of properties that each

metadata instance has. The metadata schema is stored within a tileset in the form of a JSON

representation according to the Metadata Schema Reference Implementation. This reference

implementation includes the definition of the JSON schema for the metadata schema.

Schemas may be embedded in tilesets with the schema property, or referenced externally by the

schemaUri property. Multiple tilesets and glTF contents may refer to the same schema to avoid

duplication.
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NOTE

Example

Schema with a building class having three properties, "height", "owners", and

"buildingType". The "buildingType" property refers to the buildingType enum as its

data type, also defined in the schema. Later examples show how entities declare

their class and supply values for their properties.

{

  "schema": {

    "classes": {

      "building": {

        "properties": {

          "height": {

            "type": "SCALAR",

            "componentType": "FLOAT32"

          },

          "owners": {

            "type": "STRING",

            "array": true,

            "description": "Names of owners."

          },

          "buildingType": {

            "type": "ENUM",

            "enumType": "buildingType"

          }

        }

      }

    },

    "enums": {

      "buildingType": {

        "values": [

          {"value": 0, "name": "Residential"},

          {"value": 1, "name": "Commercial"},

          {"value": 2, "name": "Other"}

        ]

      }

    }

  }

}

NOTE

Example

External schema referenced by a URI.

{

  "schemaUri": "https://example.com/metadata/buildings/1.0/schema.json"

}
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Assigning Metadata

While classes within a schema define the data types and meanings of properties, properties do not

take on particular values until a metadata is assigned (i.e. the class is "instantiated") as a particular

metadata entity within the 3D Tiles hierarchy.

The common structure of metadata entities that appear in a tileset is defined in

metadataEntity.schema.json. Each metadata entity contains the name of the class that it is an

instance of, as well as a dictionary of property values that correspond to the properties of that class.

Each property value assigned must be defined by a class property with the same property ID, with

values matching the data type of the class property. An entity may provide values for only a subset

of the properties of its class, but class properties marked required: true must not be omitted.

NOTE

Example

A metadata entity for the building class presented earlier. Such an entity could be

assigned to a tileset, a tile, or tile content, by storing it as their respective metadata

property.

  "metadata": {

    "class": "building",

    "properties": {

      "height": 16.8,

      "owners": [ "John Doe", "Jane Doe" ],

      "buildingType": "Residential"

    }

  }

Most property values are encoded as JSON within the entity. One notable exception is metadata

assigned to implicit tiles and contents, stored in a more compact binary form. See Implicit Tiling.

Metadata Statistics

Statistics provide aggregate information about the distribution of property values, summarized

over all instances of a metadata class within a tileset. For example, statistics may include the

minimum/maximum values of a numeric property, or the number of occurrences for specific enum

values.

These summary statistics allow applications to analyze or display metadata, e.g. with the

declarative styling language, without first having to process the complete dataset to identify bounds

for color ramps and histograms. Statistics are provided on a per-class basis, so that applications can

provide styling or context based on the tileset as a whole, while only needing to download and

process a subset of its tiles.
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Figure 25. Illustration of how to use metadata statistics for rendering an analytics

The statistics are stored in the top-level statistics object of the tileset. The structure of this

statistics object is defined in statistics.schema.json. The statistics are defined for each metadata

class, including the following elements:

• count is the number of entities of a class occurring within the tileset

• properties contains summary statistics about properties of a class occurring within the tileset

Properties may include the following built-in statistics:

Name Description Type

minimum The minimum property

value

Scalars, vector, matrices

maximum The maximum property

value

…

mean The arithmetic mean of the

property values

…

median The median of the property

values

…

standardDeviation The standard deviation of

the property values

…

variance The variance of the property

values

…

sum The sum of the property

values

…

occurrences Frequencies of value

occurrences

Object in which keys are property

values (for enums, the enum

name), and values are the

number of occurrences of that

property value

Tileset authors may define their own additional statistics, like mode in the example below.

Application-specific statistics should use an underscore prefix (*) and lowerCamelCase for
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consistency and to avoid conflicting with future built-in statistics.

NOTE

Example

Definition of a "building" class, with three properties. Summary statistics provide a

minimum, maximum, and (application-specific) "_mode" for the numerical "height"

property. The enum "buildingType" property is summarized by the number of

distinct enum value occurrences.

{

  "schema": {

    "classes": {

      "building": {

        "properties": {

          "height": {

            "type": "SCALAR",

            "componentType": "FLOAT32"

          },

          "owners": {

            "type": "STRING",

            "array": true

          },

          "buildingType": {

            "type": "ENUM",

            "enumType": "buildingType"

          }

        }

      }

    },

    "enums": {

      "buildingType": {

        "valueType": "UINT16",

        "values": [

          {"name": "Residential", "value": 0},

          {"name": "Commercial", "value": 1},

          {"name": "Hospital", "value": 2},

          {"name": "Other", "value": 3}

        ]

      }

    }

  },

  "statistics": {

    "classes": {

      "building": {

        "count": 100000,

        "properties": {

          "height": {

            "minimum": 3.9,

            "maximum": 341.7,

            "_mode": 5.0

          },
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          "buildingType": {

            "occurrences": {

              "Residential": 50000,

              "Commercial": 40950,

              "Hospital": 50

            }

          }

        }

      }

    }

  }

}

1.7.4. Specifying extensions and application specific extras

3D Tiles defines extensions to allow the base specification to have extensibility for new features.

Extensions

Extensions allow the base specification to be extended with new features. The optional extensions

dictionary property may be added to any 3D Tiles JSON object, which contains the name of the

extensions and the extension specific objects. The following example shows a tile object with a

hypothetical vendor extension which specifies a separate collision volume.
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{

  "transform": [

     4.843178171884396,   1.2424271388626869, 0,                  0,

    -0.7993325488216595,  3.1159251367235608, 3.8278032889280675, 0,

     0.9511533376784163, -3.7077466670407433, 3.2168186118075526, 0,

     1215001.7612985559, -4736269.697480114,  4081650.708604793,  1

  ],

  "boundingVolume": {

    "box": [

      0,     0,    6.701,

      3.738, 0,    0,

      0,     3.72, 0,

      0,     0,    13.402

    ]

  },

  "geometricError": 32,

  "content": {

    "uri": "building.glb"

  },

  "extensions": {

    "VENDOR_collision_volume": {

      "box": [

        0,     0,    6.8,

        3.8,   0,    0,

        0,     3.8,  0,

        0,     0,    13.5

      ]

    }

  }

}

All extensions used in a tileset or any descendant external tilesets must be listed in the entry tileset

JSON in the top-level extensionsUsed array property, e.g.,

{

  "extensionsUsed": [

    "VENDOR_collision_volume"

  ]

}

All extensions required to load and render a tileset or any descendant external tilesets must also be

listed in the entry tileset JSON in the top-level extensionsRequired array property, such that

extensionsRequired is a subset of extensionsUsed. All values in extensionsRequired must also exist in

extensionsUsed.

Extras

The extras property allows application specific metadata to be added to any 3D Tiles JSON object.
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The following example shows a tile object with an additional application specific name property.

{

  "transform": [

     4.843178171884396,   1.2424271388626869, 0,                  0,

    -0.7993325488216595,  3.1159251367235608, 3.8278032889280675, 0,

     0.9511533376784163, -3.7077466670407433, 3.2168186118075526, 0,

     1215001.7612985559, -4736269.697480114,  4081650.708604793,  1

  ],

  "boundingVolume": {

    "box": [

      0,     0,    6.701,

      3.738, 0,    0,

      0,     3.72, 0,

      0,     0,    13.402

    ]

  },

  "geometricError": 32,

  "content": {

    "uri": "building.glb"

  },

  "extras": {

    "name": "Empire State Building"

  }

}

The full JSON schema can be found in tileset.schema.json.

1.8. Tile format specifications

Each tile’s content.uri property is a uri to a file containing information for rendering the tile’s 3D

content. The content is an instance of one of the formats listed below.

glTF 2.0 is the primary tile format for 3D Tiles. glTF is an open specification designed for the

efficient transmission and loading of 3D content. A glTF asset includes geometry and texture

information for a single tile, and may be extended to include metadata, model instancing, and

compression. glTF may be used for a wide variety of 3D content including:

• Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D building exteriors and

interiors, massive models

• 3D model instances. E.g. trees, windmills, bolts

• Massive point clouds

See glTF Tile Format for more details.

Tiles may also reference the legacy 3D Tiles 1.0 formats listed below. These formats were

deprecated in 3D Tiles 1.1 and may be removed in a future version of 3D Tiles.
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Legacy Format Uses

Batched 3D Model (b3dm) Heterogeneous 3D models

Instanced 3D Model (i3dm) 3D model instances

Point Cloud (pnts) Massive number of points

Composite (cmpt) Concatenate tiles of different formats into one tile

1.9. Declarative styling specification

3D Tiles includes concise declarative styling defined with JSON and expressions written in a small

subset of JavaScript augmented for styling.

Styles define how a featured is displayed, for example show and color (RGB and translucency), using

an expression based on a feature’s properties.

The following example colors features with a height above 90 as red and the others as white.

{

  "color" : "(${Height} > 90) ? color('red') : color('white')"

}

For complete details, see the Declarative Styling specification.

2. Tile Formats

The tile content in a 3D Tiles tileset represents the renderable content of a tile. It is referred to with

the content.uri of the tile JSON.

The primary tile format in 3D Tiles 1.1 is the glTF Tile Format. It is built on glTF 2.0 and allows

modeling many different use cases and different forms of renderable content in 3D Tiles.

2.1. Legacy Tile Formats

The following tile formats have been part of 3D Tiles 1.0, and have been superseded by the glTF Tile

Format.

Legacy Format Uses

Batched 3D Model (b3dm) Heterogeneous 3D models

Instanced 3D Model (i3dm) 3D model instances

Point Cloud (pnts) Massive number of points

Composite (cmpt) Concatenate tiles of different formats into one tile

See the See migration guide. for further information about how these use cases can be modeled

based on the glTF tile format.
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2.2. glTF

2.2.1. Overview

glTF 2.0 is the primary tile format for 3D Tiles. glTF is an open specification designed for the

efficient transmission and loading of 3D content. A glTF asset includes geometry and texture

information for a single tile, and may be extended to include metadata, model instancing, and

compression. glTF may be used for a wide variety of 3D content including:

• Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D building exteriors and

interiors, massive models

• Massive point clouds

• 3D model instances. E.g. trees, windmills, bolts

2.2.2. Use Cases

3D Models

glTF provides flexibilty for a wide range of mesh and material configurations, and is well suited for

photogrammetry as well as stylized 3D models.

Photogrammetry 3D Buildings

San Francisco photogrammetry model from

Aerometrex in O3DE
3D buildings from swisstopo in CesiumJS

Point Clouds

glTF supports point clouds with the 0 (POINTS) primitive mode. Points can have positions, colors,

normals, and custom attributes as specified in the primitive.attributes field.

48

https://github.com/KhronosGroup/glTF


Figure 26. 40 billion point cloud from the City of Montreal with ASPRS classification codes (CC-BY 4.0)

When using the EXT_mesh_features extension points can be assigned feature IDs and these features

can have associated metadata.

Figure 27. A point cloud with two property tables, one storing metadata for groups of points and the other

storing metadata for individual points

Instancing

glTF can leverage GPU instancing with the EXT_mesh_gpu_instancing extension. Instances can be

given unique translations, rotations, scales, and other per-instance attributes.
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Figure 28. Instanced tree models in Philadelphia from OpenTreeMap

When using the EXT_instance_features extension instances can be assigned feature IDs and these

features can have associated metadata.

Figure 29. Instanced tree models where trees are assigned to groups with a per-instance feature ID

attribute. One feature table stores per-group metadata and the other stores per-tree metadata

2.2.3. Feature Identification

EXT_mesh_features provides a means of assigning identifiers to geometry and subcomponents of

geometry within a glTF 2.0 asset. Feature IDs can de assigned to vertices or texels.

EXT_instance_features allows feature IDs to be assigned to individial instances.
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Figure 30. Street level photogrammetry of San Francisco Ferry Building from Aerometrex. Left: per-texel

colors showing the feature classification, e.g., roof, sky roof, windows, window frames, and AC units . Right:

classification is used to determine rendering material properties, e.g., make the windows translucent

2.2.4. Metadata

EXT_structural_metadata stores metadata at per-vertex, per-texel, and per-feature granularity and

uses the type system defined in the 3D Metadata Specification. This metadata can be used for

visualization and analysis.
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Figure 31. An example of metadata associated with glTF models

2.2.5. Compression

glTF has several extensions for geometry and texture compression. These extensions can help

reduce file sizes and GPU memory usage.

Geometry Compression

• KHR_mesh_quantization

• EXT_meshopt_compression

• KHR_draco_mesh_compression

Texture Compression

• KHR_texture_basisu

2.2.6. File Extensions and Media Types

See glTF File Extensions and Media Types.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s

format through other means, such as the magic field in the binary glTF header or the presence of an

asset field in JSON glTF.
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2.3. Batch Table

WARNING Batch Table was deprecated in 3D Tiles 1.1. See glTF migration guide.

2.3.1. Overview

A Batch Table is a component of a tile’s binary body and contains per-feature application-specific

properties in a tile. These properties are queried at runtime for declarative styling and any

application-specific use cases such as populating a UI or issuing a REST API request. Some example

Batch Table properties are building heights, geographic coordinates, and database primary keys.

A Batch Table is used by the following tile formats:

• Batched 3D Model (b3dm)

• Instanced 3D Model (i3dm)

• Point Cloud (pnts)

2.3.2. Layout

A Batch Table is composed of two parts: a JSON header and an optional binary body in little endian.

The JSON describes the properties, whose values either can be defined directly in the JSON as an

array, or can refer to sections in the binary body. It is more efficient to store long numeric arrays in

the binary body. The following figure shows the Batch Table layout:

Figure 32. Data layout of a Batch Table

When a tile format includes a Batch Table, the Batch Table immediately follows the tile’s Feature

Table. The header will also contain batchTableJSONByteLength and batchTableBinaryByteLength uint32

fields, which can be used to extract each respective part of the Batch Table.

Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The JSON

header must be padded with trailing Space characters (0x20) to satisfy this requirement.

The binary body must start and end on an 8-byte boundary within the containing tile binary. The

binary body must be padded with additional bytes, of any value, to satisfy this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the property’s

componentType. For example, a property with the component type FLOAT has 4 bytes per element, and

therefore must start at an offset that is a multiple of 4. Preceding binary properties must be padded

with additional bytes, of any value, to satisfy this requirement.
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JSON header

Batch Table values can be represented in the JSON header in two different ways:

1. An array of values, e.g., "name" : ['name1', 'name2', 'name3'] or "height" : [10.0, 20.0, 15.0].

◦ Array elements can be any valid JSON data type, including objects and arrays. Elements may

be null.

◦ The length of each array is equal to batchLength, which is specified in each tile format. This is

the number of features in the tile. For example, batchLength may be the number of models in

a b3dm tile, the number of instances in a i3dm tile, or the number of points (or number of

objects) in a pnts tile.

2. A reference to data in the binary body, denoted by an object with byteOffset, componentType, and

type properties, e.g., "height" : { "byteOffset" : 24, "componentType" : "FLOAT", "type" :

"SCALAR"}.

◦ byteOffset specifies a zero-based offset relative to the start of the binary body. The value of

byteOffset must be a multiple of the size in bytes of the property’s componentType, e.g., a

property with the component type FLOAT must have a byteOffset value that is a multiple of 4.

◦ componentType is the datatype of components in the attribute. Allowed values are "BYTE",

"UNSIGNED_BYTE", "SHORT", "UNSIGNED_SHORT", "INT", "UNSIGNED_INT", "FLOAT", and "DOUBLE".

◦ type specifies if the property is a scalar or vector. Allowed values are "SCALAR", "VEC2",

"VEC3", and "VEC4".

The Batch Table JSON is a UTF-8 string containing JSON.

NOTE

Implementation Note

In JavaScript, the Batch Table JSON can be extracted from an ArrayBuffer using the

TextDecoder JavaScript API and transformed to a JavaScript object with JSON.parse.

A batchId is used to access elements in each array and extract the corresponding properties. For

example, the following Batch Table has properties for a batch of two features:

{

    "id" : ["unique id", "another unique id"],

    "displayName" : ["Building name", "Another building name"],

    "yearBuilt" : [1999, 2015],

    "address" : [{"street" : "Main Street", "houseNumber" : "1"}, {"street" : "Main

Street", "houseNumber" : "2"}]

}

The properties for the feature with batchId = 0 are

id[0] = 'unique id';

displayName[0] = 'Building name';

yearBuilt[0] = 1999;

address[0] = {street : 'Main Street', houseNumber : '1'};
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The properties for batchId = 1 are

id[1] = 'another unique id';

displayName[1] = 'Another building name';

yearBuilt[1] = 2015;

address[1] = {street : 'Main Street', houseNumber : '2'};

Binary body

When the JSON header includes a reference to the binary section, the provided byteOffset is used to

index into the data, as shown in the following figure:

Figure 33. An example showing how to access the binary body, based on the information from the JSON

header

Values can be retrieved using the number of features, batchLength; the desired batch id, batchId;

and the componentType and type defined in the JSON header.

The following tables can be used to compute the byte size of a property.

componentType Size in bytes

"BYTE" 1

"UNSIGNED_BYTE" 1

"SHORT" 2

"UNSIGNED_SHORT" 2

"INT" 4

"UNSIGNED_INT" 4

"FLOAT" 4

"DOUBLE" 8

type Number of components

"SCALAR" 1

"VEC2" 2

"VEC3" 3
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type Number of components

"VEC4" 4

2.3.3. Extensions

The following extensions can be applied to a Batch Table.

• 3DTILES_batch_table_hierarchy

2.3.4. Implementation example

This section is non-normative

The following examples access the "height" and "geographic" values respectively given the

following Batch Table JSON with batchLength of 10:

{

    "height" : {

        "byteOffset" : 0,

        "componentType" : "FLOAT",

        "type" : "SCALAR"

    },

    "geographic" : {

        "byteOffset" : 40,

        "componentType" : "DOUBLE",

        "type" : "VEC3"

    }

}

To get the "height" values:

var height = batchTableJSON.height;

var byteOffset = height.byteOffset;

var componentType = height.componentType;

var type = height.type;

var heightArrayByteLength = batchLength * sizeInBytes(componentType) *

numberOfComponents(type); // 10 * 4 * 1

var heightArray = new Float32Array(batchTableBinary.buffer, byteOffset,

heightArrayByteLength);

var heightOfFeature = heightArray[batchId];

To get the "geographic" values:
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var geographic = batchTableJSON.geographic;

var byteOffset = geographic.byteOffset;

var componentType = geographic.componentType;

var type = geographic.type;

var componentSizeInBytes = sizeInBytes(componentType)

var numberOfComponents = numberOfComponents(type);

var geographicArrayByteLength = batchLength * componentSizeInBytes *

numberOfComponents // 10 * 8 * 3

var geographicArray = new Float64Array(batchTableBinary.buffer, byteOffset,

geographicArrayByteLength);

var geographicOfFeature = positionArray.subarray(batchId * numberOfComponents, batchId

* numberOfComponents + numberOfComponents); // Using subarray creates a view into the

array, and not a new array.

Code for reading the Batch Table can be found in Cesium3DTileBatchTable.js in the CesiumJS

implementation of 3D Tiles.

2.4. Feature Table

WARNING Feature Table was deprecated in 3D Tiles 1.1. See See glTF migration guide.

2.4.1. Overview

A Feature Table is a component of a tile’s binary body and describes position and appearance

properties required to render each feature in a tile. The Batch Table, on the other hand, contains

per-feature application-specific properties not necessarily used for rendering.

A Feature Table is used by tile formats like Batched 3D Model (b3dm) where each model is a

feature, and Point Cloud (pnts) where each point is a feature.

Per-feature properties are defined using tile format-specific semantics defined in each tile format’s

specification. For example, for Instanced 3D Model, SCALE_NON_UNIFORM defines the non-uniform scale

applied to each 3D model instance.

2.4.2. Layout

A Feature Table is composed of two parts: a JSON header and an optional binary body in little

endian. The JSON property names are tile format-specific semantics, and their values can either be

defined directly in the JSON, or refer to sections in the binary body. It is more efficient to store long

numeric arrays in the binary body. The following figure shows the Feature Table layout:
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Figure 34. Data layout of a Feature Table

When a tile format includes a Feature Table, the Feature Table immediately follows the tile’s

header. The header will also contain featureTableJSONByteLength and featureTableBinaryByteLength

uint32 fields, which can be used to extract each respective part of the Feature Table.

Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The JSON

header must be padded with trailing Space characters (0x20) to satisfy this requirement.

The binary body must start and end on an 8-byte boundary within the containing tile binary. The

binary body must be padded with additional bytes, of any value, to satisfy this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the property’s

implicit component type. For example, a property with the implicit component type FLOAT has 4

bytes per element, and therefore must start at an offset that is a multiple of 4. Preceding binary

properties must be padded with additional bytes, of any value, to satisfy this requirement.

JSON header

Feature Table values can be represented in the JSON header in two different ways:

1. A single value or object, e.g., "INSTANCES_LENGTH" : 4.

◦ This is used for global semantics like "INSTANCES_LENGTH", which defines the number of

model instances in an Instanced 3D Model tile.

2. A reference to data in the binary body, denoted by an object with a byteOffset property, e.g.,

"SCALE" : { "byteOffset" : 24}.

◦ byteOffset specifies a zero-based offset relative to the start of the binary body. The value of

byteOffset must be a multiple of the size in bytes of the property’s implicit component type,

e.g., the "POSITION" property has the component type FLOAT (4 bytes), so the value of

byteOffset must be of a multiple of 4.

◦ The semantic defines the allowed data type, e.g., when "POSITION" in Instanced 3D Model

refers to the binary body, the component type is FLOAT and the number of components is 3.

◦ Some semantics allow for overriding the implicit component type. These cases are specified

in each tile format, e.g., "BATCH_ID" : { "byteOffset" : 24, "componentType" :

"UNSIGNED_BYTE"}. The only valid properties in the JSON header are the defined semantics by

the tile format and optional extras and extensions properties. Application-specific data

should be stored in the Batch Table.
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Binary body

When the JSON header includes a reference to the binary, the provided byteOffset is used to index

into the data. The following figure shows indexing into the Feature Table binary body:

Figure 35. An example showing how to access the binary body, based on the information from the JSON

header

Values can be retrieved using the number of features, featuresLength; the desired feature id,

featureId; and the data type (component type and number of components) for the feature semantic.

2.4.3. Implementation example

This section is non-normative

The following example accesses the position property using the POSITION semantic, which has a

float32[3] data type:

var byteOffset = featureTableJSON.POSITION.byteOffset;

var positionArray = new Float32Array(featureTableBinary.buffer, byteOffset,

featuresLength * 3); // There are three components for each POSITION feature.

var position = positionArray.subarray(featureId * 3, featureId * 3 + 3); // Using

subarray creates a view into the array, and not a new array.

Code for reading the Feature Table can be found in Cesium3DTileFeatureTable.js in the CesiumJS

implementation of 3D Tiles.

2.5. Batched 3D Model

WARNING Batched 3D Model was deprecated in 3D Tiles 1.1. See b3dm migration guide.

2.5.1. Overview

Batched 3D Model allows offline batching of heterogeneous 3D models, such as different buildings

in a city, for efficient streaming to a web client for rendering and interaction. Efficiency comes from

transferring multiple models in a single request and rendering them in the least number of WebGL

draw calls necessary. Using the core 3D Tiles spec language, each model is a feature.
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Per-model properties, such as IDs, enable individual models to be identified and updated at

runtime, e.g., show/hide, highlight color, etc. Properties may be used, for example, to query a web

service to access metadata, such as passing a building’s ID to get its address. Or a property might be

referenced on the fly for changing a model’s appearance, e.g., changing highlight color based on a

property value.

A Batched 3D Model tile is a binary blob in little endian.

2.5.2. Layout

A tile is composed of two sections: a header immediately followed by a body. The following figure

shows the Batched 3D Model layout (dashes indicate optional fields):

Figure 36. Data layout of a Batched 3D Model

Padding

A tile’s byteLength must be aligned to an 8-byte boundary. The contained Feature Table and Batch

Table must conform to their respective padding requirement.

The binary glTF must start and end on an 8-byte boundary so that glTF’s byte-alignment guarantees

are met. This can be done by padding the Feature Table or Batch Table if they are present.

2.5.3. Header

The 28-byte header contains the following fields:

Field name Data type Description

magic 4-byte ANSI

string

"b3dm". This can be used to identify the content

as a Batched 3D Model tile.
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Field name Data type Description

version uint32 The version of the Batched 3D Model format. It is

currently 1.

byteLength uint32 The length of the entire tile, including the

header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON section in

bytes.

featureTableBinaryByteLength uint32 The length of the Feature Table binary section in

bytes.

batchTableJSONByteLength uint32 The length of the Batch Table JSON section in

bytes. Zero indicates there is no Batch Table.

batchTableBinaryByteLength uint32 The length of the Batch Table binary section in

bytes. If batchTableJSONByteLength is zero, this

will also be zero.

The body section immediately follows the header section, and is composed of three fields: Feature

Table, Batch Table, and Binary glTF.

2.5.4. Feature Table

Contains values for b3dm semantics.

More information is available in the Feature Table specification.

Semantics

Feature semantics

There are currently no per-feature semantics.

Global semantics

These semantics define global properties for all features.

Semantic Data Type Description Required

BATCH_LENGTH uint32 The number of distinguishable

models, also called features, in the

batch. If the Binary glTF does not

have a batchId attribute, this field

must be 0.

Yes.

RTC_CENTER float32[3] A 3-component array of numbers

defining the center position when

positions are defined relative-to-

center, (see Coordinate system).

No.
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2.5.5. Batch Table

The Batch Table contains per-model application-specific properties, indexable by batchId, that can

be used for declarative styling and application-specific use cases such as populating a UI or issuing

a REST API request. In the binary glTF section, each vertex has a numeric batchId attribute in the

integer range [0, number of models in the batch - 1]. The batchId indicates the model to which the

vertex belongs. This allows models to be batched together and still be identifiable.

See the Batch Table reference for more information.

2.5.6. Binary glTF

Batched 3D Model embeds glTF 2.0 containing model geometry and texture information.

The binary glTF immediately follows the Feature Table and Batch Table. It may embed all of its

geometry, texture, and animations, or it may refer to external sources for some or all of these data.

As described above, each vertex has a batchId attribute indicating the model to which it belongs.

For example, vertices for a batch with three models may look like this:

batchId:  [0,   0,   0,   ..., 1,   1,   1,   ..., 2,   2,   2,   ...]

position: [xyz, xyz, xyz, ..., xyz, xyz, xyz, ..., xyz, xyz, xyz, ...]

normal:   [xyz, xyz, xyz, ..., xyz, xyz, xyz, ..., xyz, xyz, xyz, ...]

Vertices do not need to be ordered by batchId, so the following is also OK:

batchId:  [0,   1,   2,   ..., 2,   1,   0,   ..., 1,   2,   0,   ...]

position: [xyz, xyz, xyz, ..., xyz, xyz, xyz, ..., xyz, xyz, xyz, ...]

normal:   [xyz, xyz, xyz, ..., xyz, xyz, xyz, ..., xyz, xyz, xyz, ...]

Note that a vertex can’t belong to more than one model; in that case, the vertex needs to be

duplicated so the batchIds can be assigned.

The batchId parameter is specified in a glTF mesh primitive by providing the _BATCHID attribute

semantic, along with the index of the batchId accessor. For example,

"primitives": [

    {

        "attributes": {

            "_BATCHID": 0

        }

    }

]
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{

    "accessors": [

        {

            "bufferView": 1,

            "byteOffset": 0,

            "componentType": 5126,

            "count": 4860,

            "max": [2],

            "min": [0],

            "type": "SCALAR"

        }

    ]

}

The accessor.type must be a value of "SCALAR". All other properties must conform to the glTF

schema, but have no additional requirements.

When a Batch Table is present or the BATCH_LENGTH property is greater than 0, the _BATCHID attribute

is required; otherwise, it is not.

Coordinate system

By default embedded glTFs use a right handed coordinate system where the y-axis is up. For

consistency with the z-up coordinate system of 3D Tiles, glTFs must be transformed at runtime. See

glTF transforms for more details.

Vertex positions may be defined relative-to-center for high-precision rendering, see Precisions,

Precisions. If defined, RTC_CENTER specifies the center position that all vertex positions are relative to

after the coordinate system transform and glTF node hierarchy transforms have been applied.

Specifically, when the RTC_CENTER is defined in the feature table of a Batched 3D Model, the

computation of the tile transform is done as follows:

1. glTF node hierarchy transformations

2. glTF y-up to z-up transform

3. The transform for the RTC_CENTER, which is used to translate model vertices

4. Tile transform

2.5.7. File extension and MIME type

Batched 3D Model tiles use the .b3dm extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s

format by the magic field in its header.

2.5.8. Implementation example

This section is non-normative
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Code for reading the header can be found in Batched3DModelTileContent.js in the CesiumJS

implementation of 3D Tiles.

2.6. Instanced 3D Model

WARNING
Instanced 3D Model was deprecated in 3D Tiles 1.1. See See i3dm migration

guide.

2.6.1. Overview

Instanced 3D Model is a tile format for efficient streaming and rendering of a large number of

models, called instances, with slight variations. In the simplest case, the same tree model, for

example, may be located—or instanced--in several places. Each instance references the same model

and has per-instance properties, such as position. Using the core 3D Tiles spec language, each

instance is a feature.

In addition to trees, Instanced 3D Model is useful for exterior features such as fire hydrants, sewer

caps, lamps, and traffic lights, and for interior CAD features such as bolts, valves, and electrical

outlets.

An Instanced 3D Model tile is a binary blob in little endian.

NOTE

Implementation Note

A Composite tile can be used to create tiles with different types of instanced models,

e.g., trees and traffic lights by combing two Instanced 3D Model tiles.

NOTE

Implementation Note

Instanced 3D Model maps well to the ANGLE_instanced_arrays extension for efficient

rendering with WebGL.

2.6.2. Layout

A tile is composed of a header section immediately followed by a binary body. The following figure

shows the Instanced 3D Model layout (dashes indicate optional fields):
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Figure 37. Data layout for Instanced 3D Models

Padding

A tile’s byteLength must be aligned to an 8-byte boundary. The contained Feature Table and Batch

Table must conform to their respective padding requirement.

The binary glTF (if present) must start and end on an 8-byte boundary so that glTF’s byte-alignment

guarantees are met. This can be done by padding the Feature Table or Batch Table if they are

present.

Otherwise, if the glTF field is a UTF-8 string, it must be padded with trailing Space characters (0x20)

to satisfy alignment requirements of the tile, which must be removed at runtime before requesting

the glTF asset.

2.6.3. Header

The 32-byte header contains the following fields:

Field name Data type Description

magic 4-byte ANSI

string

"i3dm". This can be used to identify the content

as an Instanced 3D Model tile.

version uint32 The version of the Instanced 3D Model format. It

is currently 1.

byteLength uint32 The length of the entire tile, including the

header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON section in

bytes.
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Field name Data type Description

featureTableBinaryByteLength uint32 The length of the Feature Table binary section in

bytes.

batchTableJSONByteLength uint32 The length of the Batch Table JSON section in

bytes. Zero indicates that there is no Batch Table.

batchTableBinaryByteLength uint32 The length of the Batch Table binary section in

bytes. If batchTableJSONByteLength is zero, this

will also be zero.

gltfFormat uint32 Indicates the format of the glTF field of the body.

0 indicates it is a URI, 1 indicates it is embedded

binary glTF. See the glTF section below.

The body section immediately follows the header section and is composed of three fields: Feature

Table, Batch Table, and glTF.

2.6.4. Feature Table

The Feature Table contains values for i3dm semantics used to create instanced models. More

information is available in the Feature Table specification.

Semantics

Instance semantics

These semantics map to an array of feature values that are used to create instances. The length of

these arrays must be the same for all semantics and is equal to the number of instances. The value

for each instance semantic must be a reference to the Feature Table binary body; they cannot be

embedded in the Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined. If both SCALE

and SCALE_NON_UNIFORM are defined for an instance, both scaling operations will be applied. If both

POSITION and POSITION_QUANTIZED are defined for an instance, the higher precision POSITION will be

used. If NORMAL_UP, NORMAL_RIGHT, NORMAL_UP_OCT32P, and NORMAL_RIGHT_OCT32P are defined for an

instance, the higher precision NORMAL_UP and NORMAL_RIGHT will be used.

Semantic Data Type Description Required

POSITION float32[3] A 3-component array of numbers

containing x, y, and z Cartesian

coordinates for the position of the

instance.

Yes, unless
POSITION_Q

UANTIZED is

defined.

POSITION_QUANTIZED uint16[3] A 3-component array of numbers

containing x, y, and z in quantized

Cartesian coordinates for the

position of the instance.

Yes, unless

POSITION is

defined.
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Semantic Data Type Description Required

NORMAL_UP float32[3] A unit vector defining the up

direction for the orientation of the

instance.

No, unless
NORMAL_RIG

HT is

defined.

NORMAL_RIGHT float32[3] A unit vector defining the right

direction for the orientation of the

instance. Must be orthogonal to up.

No, unless

NORMAL_UP

is defined.

NORMAL_UP_OCT32P uint16[2] An oct-encoded unit vector with 32-

bits of precision defining the up

direction for the orientation of the

instance.

No, unless
NORMAL_RIG

HT_OCT32P

is defined.

NORMAL_RIGHT_OCT32P uint16[2] An oct-encoded unit vector with 32-

bits of precision defining the right

direction for the orientation of the

instance. Must be orthogonal to up.

No, unless
NORMAL_UP_

OCT32P is

defined.

SCALE float32 A number defining a scale to apply

to all axes of the instance.

No.

SCALE_NON_UNIFORM float32[3] A 3-component array of numbers

defining the scale to apply to the x,

y, and z axes of the instance.

No.

BATCH_ID uint8, uint16 (default),

or uint32

The batchId of the instance that can

be used to retrieve metadata from

the Batch Table.

No.

Global semantics

These semantics define global properties for all instances.

Semantic Data Type Description Required

INSTANCES_LENGTH uint32 The number of instances to

generate. The length of each array

value for an instance semantic

should be equal to this.

Yes.

RTC_CENTER float32[3] A 3-component array of numbers

defining the center position when

instance positions are defined

relative-to-center.

No.

QUANTIZED_VOLUME_OFFSE
T

float32[3] A 3-component array of numbers

defining the offset for the quantized

volume.

No, unless
POSITION_Q

UANTIZED is

defined.
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Semantic Data Type Description Required

QUANTIZED_VOLUME_SCALE float32[3] A 3-component array of numbers

defining the scale for the quantized

volume.

No, unless
POSITION_Q

UANTIZED is

defined.

EAST_NORTH_UP boolean When true and per-instance

orientation is not defined, each

instance will default to the

east/north/up reference frame’s

orientation on the WGS84 ellipsoid.

No.

Examples using these semantics can be found in the examples section.

Instance orientation

An instance’s orientation is defined by an orthonormal basis created by an up and right vector. The

orientation will be transformed by the tile transform.

The x vector in the standard basis maps to the right vector in the transformed basis, and the y

vector maps to the up vector. The z vector would map to a forward vector, but it is omitted because it

will always be the cross product of right and up.

Figure 38. A box in the standard basis

Figure 39. A box transformed into a rotated basis
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Oct-encoded normal vectors

If NORMAL_UP and NORMAL_RIGHT are not defined for an instance, its orientation may be stored as oct-

encoded normals in NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P. These define up and right using the

oct-encoding described in A Survey of Efficient Representations of Independent Unit Vectors. Oct-

encoded values are stored in unsigned, unnormalized range ([0, 65535]) and then mapped to a

signed normalized range ([-1.0, 1.0]) at runtime.

NOTE

Implementation Note

An implementation for encoding and decoding these unit vectors can be found in

CesiumJS’s AttributeCompression module.

Default orientation

If NORMAL_UP and NORMAL_RIGHT or NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P are not present, the

instance will not have a custom orientation. If EAST_NORTH_UP is true, the instance is assumed to be

on the WGS84 ellipsoid and its orientation will default to the east/north/up reference frame at its

cartographic position. This is suitable for instanced models such as trees whose orientation is

always facing up from their position on the ellipsoid’s surface.

Instance position

POSITION defines the location for an instance before any tile transforms are applied.

RTC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions, Precisions.

If defined, RTC_CENTER specifies the center position and all instance positions are treated as relative

to this value. See Coordinate System for the effect that this property has on the transform.

Quantized positions

If POSITION is not defined for an instance, its position may be stored in POSITION_QUANTIZED, which

defines the instance position relative to the quantized volume. If neither POSITION or

POSITION_QUANTIZED are defined, the instance will not be created.

A quantized volume is defined by offset and scale to map quantized positions into local space, as

shown in the following figure:
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Figure 40. Illustration of the quantization that is used for the POSITION_QUANTIZED semantic

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in the global

semantic QUANTIZED_VOLUME_SCALE. If those global semantics are not defined, POSITION_QUANTIZED

cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 + QUANTIZED_VOLUME_OFFSET

Compressed attributes should be decompressed before any other transforms are applied.

Instance scaling

Scaling can be applied to instances using the SCALE and SCALE_NON_UNIFORM semantics. SCALE applies a

uniform scale along all axes, and SCALE_NON_UNIFORM applies scaling to the x, y, and z axes

independently.

Examples

These examples show how to generate JSON and binary buffers for the Feature Table.

Positions only

In this minimal example, we place four instances on the corners of a unit length square with the

default orientation:
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var featureTableJSON = {

    INSTANCES_LENGTH : 4,

    POSITION : {

        byteOffset : 0

    }

};

var featureTableBinary = new Buffer(new Float32Array([

    0.0, 0.0, 0.0,

    1.0, 0.0, 0.0,

    0.0, 0.0, 1.0,

    1.0, 0.0, 1.0

]).buffer);

Quantized positions and oct-encoded normals

In this example, the four instances will be placed with an orientation up of [0.0, 1.0, 0.0] and

right of [1.0, 0.0, 0.0] in oct-encoded format and they will be placed on the corners of a

quantized volume that spans from -250.0 to 250.0 units in the x and z directions:
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var featureTableJSON = {

    INSTANCES_LENGTH : 4,

    QUANTIZED_VOLUME_OFFSET : [-250.0, 0.0, -250.0],

    QUANTIZED_VOLUME_SCALE : [500.0, 0.0, 500.0],

    POSITION_QUANTIZED : {

        byteOffset : 0

    },

    NORMAL_UP_OCT32P : {

        byteOffset : 24

    },

    NORMAL_RIGHT_OCT32P : {

        byteOffset : 40

    }

};

var positionQuantizedBinary = new Buffer(new Uint16Array([

    0, 0, 0,

    65535, 0, 0,

    0, 0, 65535,

    65535, 0, 65535

]).buffer);

var normalUpOct32PBinary = new Buffer(new Uint16Array([

    32768, 65535,

    32768, 65535,

    32768, 65535,

    32768, 65535

]).buffer);

var normalRightOct32PBinary = new Buffer(new Uint16Array([

    65535, 32768,

    65535, 32768,

    65535, 32768,

    65535, 32768

]).buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary, normalUpOct32PBinary,

normalRightOct32PBinary]);

2.6.5. Batch Table

Contains metadata organized by batchId that can be used for declarative styling. See the Batch

Table reference for more information.

2.6.6. glTF

Instanced 3D Model embeds glTF 2.0 containing model geometry and texture information.

The glTF asset to be instanced is stored after the Feature Table and Batch Table. It may embed all of
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its geometry, texture, and animations, or it may refer to external sources for some or all of these

data.

header.gltfFormat determines the format of the glTF field

• When the value of header.gltfFormat is 0, the glTF field is a UTF-8 string, which contains a URI of

the glTF or binary glTF model content.

• When the value of header.gltfFormat is 1, the glTF field is a binary blob containing binary glTF.

When the glTF field contains a URI, then this URI may point to a relative external reference

(RFC3986). When the URI is relative, its base is always relative to the referring .i3dm file. Client

implementations are required to support relative external references. Optionally, client

implementations may support other schemes (such as http://). All URIs must be valid and

resolvable.

Coordinate system

By default glTFs use a right handed coordinate system where the y-axis is up. For consistency with

the z-up coordinate system of 3D Tiles, glTFs must be transformed at runtime. See glTF transforms

for more details.

When the RTC_CENTER is defined in the feature table of an Instanced 3D Model, the computation of

the tile transform is done as follows:

1. glTF node hierarchy transformations

2. glTF y-up to z-up transform

3. The per-instance positions and scales, as defined in the feature table of the Instanced 3D Model.

4. The transform for the RTC_CENTER, which is used to translate model vertices

5. Tile transform

2.6.7. File extension and MIME type

Instanced 3D models tiles use the .i3dm extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s

format by the magic field in its header.

2.7. Point Cloud

WARNING Point Cloud was deprecated in 3D Tiles 1.1. See See pnts migration guide.

2.7.1. Overview

The Point Cloud tile format enables efficient streaming of massive point clouds for 3D visualization.

Each point is defined by a position and by optional properties used to define its appearance, such as

color and normal, as well as optional properties that define application-specific metadata.
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Using 3D Tiles terminology, each point is a feature.

A Point Cloud tile is a binary blob in little endian.

2.7.2. Layout

A tile is composed of a header section immediately followed by a body section. The following figure

shows the Point Cloud layout (dashes indicate optional fields):

Figure 41. Data layout for a Point Cloud

Padding

A tile’s byteLength must be aligned to an 8-byte boundary. The contained Feature Table and Batch

Table must conform to their respective padding requirement.

2.7.3. Header

The 28-byte header contains the following fields:

Field name Data type Description

magic 4-byte ANSI

string

"pnts". This can be used to identify the content

as a Point Cloud tile.

version uint32 The version of the Point Cloud format. It is

currently 1.

byteLength uint32 The length of the entire tile, including the

header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON section in

bytes.

featureTableBinaryByteLength uint32 The length of the Feature Table binary section in

bytes.

batchTableJSONByteLength uint32 The length of the Batch Table JSON section in

bytes. Zero indicates that there is no Batch Table.
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Field name Data type Description

batchTableBinaryByteLength uint32 The length of the Batch Table binary section in

bytes. If batchTableJSONByteLength is zero, this

will also be zero.

The body section immediately follows the header section, and is composed of a Feature Table and

Batch Table.

2.7.4. Feature Table

Contains per-tile and per-point values that define where and how to render points. More

information is available in the Feature Table specification.

The full JSON schema can be found in pnts.featureTable.schema.json.

Semantics

Point semantics

These semantics map to an array of feature values that define each point. The length of these arrays

must be the same for all semantics and is equal to the number of points. The value for each point

semantic must be a reference to the Feature Table binary body; they cannot be embedded in the

Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined. If both

POSITION and POSITION_QUANTIZED are defined for a point, the higher precision POSITION will be used.

If both NORMAL and NORMAL_OCT16P are defined for a point, the higher precision NORMAL will be used.

Semantic Data Type Description Required

POSITION float32[3] A 3-component array of numbers

containing x, y, and z Cartesian

coordinates for the position of the

point.

Yes, unless
POSITION_Q

UANTIZED is

defined.

POSITION_QUANTIZED uint16[3] A 3-component array of numbers

containing x, y, and z in quantized

Cartesian coordinates for the

position of the point.

Yes, unless

POSITION is

defined.

RGBA uint8[4] A 4-component array of values

containing the RGBA color of the

point.

No.

RGB uint8[3] A 3-component array of values

containing the RGB color of the point.

No.

RGB565 uint16 A lossy compressed color format

that packs the RGB color into 16 bits,

providing 5 bits for red, 6 bits for

green, and 5 bits for blue.

No.
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Semantic Data Type Description Required

NORMAL float32[3] A unit vector defining the normal of

the point.

No.

NORMAL_OCT16P uint8[2] An oct-encoded unit vector with 16

bits of precision defining the

normal of the point.

No.

BATCH_ID uint8, uint16 (default),

or uint32

The batchId of the point that can be

used to retrieve metadata from the

Batch Table.

No.

Global semantics

These semantics define global properties for all points.

Semantic Data Type Description Required

POINTS_LENGTH uint32 The number of points to render. The

length of each array value for a

point semantic should be equal to

this.

Yes.

RTC_CENTER float32[3] A 3-component array of numbers

defining the center position when

point positions are defined relative-

to-center.

No.

QUANTIZED_VOLUME_OFFSE
T

float32[3] A 3-component array of numbers

defining the offset for the quantized

volume.

No, unless
POSITION_Q

UANTIZED is

defined.

QUANTIZED_VOLUME_SCALE float32[3] A 3-component array of numbers

defining the scale for the quantized

volume.

No, unless
POSITION_Q

UANTIZED is

defined.

CONSTANT_RGBA uint8[4] A 4-component array of values

defining a constant RGBA color for all

points in the tile.

No.

BATCH_LENGTH uint32 The number of unique BATCH_ID

values.

No, unless

BATCH_ID is

defined.

Examples using these semantics can be found in the examples section below.

Point positions

POSITION defines the position for a point before any tileset transforms are applied.
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Coordinate reference system (CRS)

3D Tiles local coordinate systems use a right-handed 3-axis (x, y, z) Cartesian coordinate system;

that is, the cross product of x and y yields z. 3D Tiles defines the z axis as up for local Cartesian

coordinate systems (also see coordinate reference system).

RTC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions, Precisions.

If defined, RTC_CENTER specifies the center position and all point positions are treated as relative to

this value.

Quantized positions

If POSITION is not defined, positions may be stored in POSITION_QUANTIZED, which defines point

positions relative to the quantized volume. If neither POSITION nor POSITION_QUANTIZED is defined, the

tile does not need to be rendered.

A quantized volume is defined by offset and scale to map quantized positions to a position in local

space. The following figure shows a quantized volume based on offset and scale:

Figure 42. Illustration of the quantization that is used for the POSITION_QUANTIZED semantic

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in the global

semantic QUANTIZED_VOLUME_SCALE. If those global semantics are not defined, POSITION_QUANTIZED

cannot be used.

Quantized positions can be mapped to local space using the following formula:
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POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 + QUANTIZED_VOLUME_OFFSET

Compressed attributes should be decompressed before any other transforms are applied.

Point colors

If more than one color semantic is defined, the precedence order is RGBA, RGB, RGB565, then

CONSTANT_RGBA. For example, if a tile’s Feature Table contains both RGBA and CONSTANT_RGBA properties,

the runtime would render with per-point colors using RGBA.

If no color semantics are defined, the runtime is free to color points using an application-specific

default color.

In any case, 3D Tiles Styling may be used to change the final rendered color and other visual

properties at runtime.

Point normals

Per-point normals are an optional property that can help improve the visual quality of points by

enabling lighting, hidden surface removal, and other rendering techniques. The normals will be

transformed using the inverse transpose of the tileset transform.

Oct-encoded normal vectors

Oct-encoding is described in A Survey of Efficient Representations of Independent Unit Vectors. Oct-

encoded values are stored in unsigned, unnormalized range ([0, 255]) and then mapped to a

signed normalized range ([-1.0, 1.0]) at runtime.

NOTE

Implementation Note

An implementation for encoding and decoding these unit vectors can be found in

CesiumJS’s AttributeCompression module.

Compressed attributes should be decompressed before any other transforms are applied.

Batched points

Points that make up distinct features of the Point Cloud may be batched together using the BATCH_ID

semantic. For example, the points that make up a door in a house would all be assigned the same

BATCH_ID, whereas points that make up a window would be assigned a different BATCH_ID. This is

useful for per-object picking and storing application-specific metadata for declarative styling and

application-specific use cases such as populating a UI or issuing a REST API request on a per-object

instead of per-point basis.

The BATCH_ID semantic may have a componentType of UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_INT.

When componentType is not present, UNSIGNED_SHORT is used. The global semantic BATCH_LENGTH defines

the number of unique batchId values, similar to the batchLength field in the Batched 3D Model

header.
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Examples

This section is non-normative

These examples show how to generate JSON and binary buffers for the Feature Table.

Positions only

This minimal example has four points on the corners of a unit length square:

var featureTableJSON = {

    POINTS_LENGTH : 4,

    POSITION : {

        byteOffset : 0

    }

};

var featureTableBinary = new Buffer(new Float32Array([

    0.0, 0.0, 0.0,

    1.0, 0.0, 0.0,

    0.0, 0.0, 1.0,

    1.0, 0.0, 1.0

]).buffer);

Positions and colors

The following example has four points (red, green, blue, and yellow) above the globe. Their

positions are defined relative to center:
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var featureTableJSON = {

    POINTS_LENGTH : 4,

    RTC_CENTER : [1215013.8, -4736316.7, 4081608.4],

    POSITION : {

        byteOffset : 0

    },

    RGB : {

        byteOffset : 48

    }

};

var positionBinary = new Buffer(new Float32Array([

    0.0, 0.0, 0.0,

    1.0, 0.0, 0.0,

    0.0, 0.0, 1.0,

    1.0, 0.0, 1.0

]).buffer);

var colorBinary = new Buffer(new Uint8Array([

    255, 0, 0,

    0, 255, 0,

    0, 0, 255,

    255, 255, 0,

]).buffer);

var featureTableBinary = Buffer.concat([positionBinary, colorBinary]);

Quantized positions and oct-encoded normals

In this example, the four points will have normals pointing up [0.0, 1.0, 0.0] in oct-encoded

format, and they will be placed on the corners of a quantized volume that spans from -250.0 to

250.0 units in the x and z directions:
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var featureTableJSON = {

    POINTS_LENGTH : 4,

    QUANTIZED_VOLUME_OFFSET : [-250.0, 0.0, -250.0],

    QUANTIZED_VOLUME_SCALE : [500.0, 0.0, 500.0],

    POSITION_QUANTIZED : {

        byteOffset : 0

    },

    NORMAL_OCT16P : {

        byteOffset : 24

    }

};

var positionQuantizedBinary = new Buffer(new Uint16Array([

    0, 0, 0,

    65535, 0, 0,

    0, 0, 65535,

    65535, 0, 65535

]).buffer);

var normalOct16PBinary = new Buffer(new Uint8Array([

    128, 255,

    128, 255,

    128, 255,

    128, 255

]).buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary, normalOct16PBinary]);

Batched points

In this example, the first two points have a batchId of 0, and the next two points have a batchId of 1.

Note that the Batch Table only has two names:
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var featureTableJSON = {

    POINTS_LENGTH : 4,

    BATCH_LENGTH : 2,

    POSITION : {

        byteOffset : 0

    },

    BATCH_ID : {

        byteOffset : 48,

        componentType : "UNSIGNED_BYTE"

    }

};

var positionBinary = new Buffer(new Float32Array([

    0.0, 0.0, 0.0,

    1.0, 0.0, 0.0,

    0.0, 0.0, 1.0,

    1.0, 0.0, 1.0

]).buffer);

var batchIdBinary = new Buffer(new Uint8Array([

    0,

    0,

    1,

    1

]).buffer);

var featureTableBinary = Buffer.concat([positionBinary, batchIdBinary]);

var batchTableJSON = {

    names : ['object1', 'object2']

};

Per-point properties

In this example, each of the 4 points will have metadata stored in the Batch Table JSON and binary.
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var featureTableJSON = {

    POINTS_LENGTH : 4,

    POSITION : {

        byteOffset : 0

    }

};

var featureTableBinary = new Buffer(new Float32Array([

    0.0, 0.0, 0.0,

    1.0, 0.0, 0.0,

    0.0, 0.0, 1.0,

    1.0, 0.0, 1.0

]).buffer);

var batchTableJSON = {

    names : ['point1', 'point2', 'point3', 'point4']

};

2.7.5. Batch Table

The Batch Table contains application-specific metadata, indexable by batchId, that can be used for

declarative styling and application-specific use cases such as populating a UI or issuing a REST API

request.

• If the BATCH_ID semantic is defined, the Batch Table stores metadata for each batchId, and the

length of the Batch Table arrays will equal BATCH_LENGTH.

• If the BATCH_ID semantic is not defined, then the Batch Table stores per-point metadata, and the

length of the Batch Table arrays will equal POINTS_LENGTH.

See the Batch Table reference for more information.

2.7.6. Extensions

The following extensions can be applied to a Point Cloud tile.

• 3DTILES_draco_point_compression

2.7.7. File extension and MIME type

Point cloud tiles use the .pnts extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s

format by the magic field in its header.

2.7.8. Implementation example

This section is non-normative

Code for reading the header can be found in PointCloud3DModelTileContent.js in the CesiumJS
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implementation of 3D Tiles.

2.8. Composite

WARNING Composite was deprecated in 3D Tiles 1.1. See See cmpt migration guide.

2.8.1. Overview

The Composite tile format enables concatenating tiles of different formats into one tile.

3D Tiles and the Composite tile allow flexibility for streaming heterogeneous datasets. For example,

buildings and trees could be stored either in two separate Batched 3D Model and Instanced 3D

Model tiles or, using a Composite tile, the tiles can be combined.

Supporting heterogeneous datasets with both inter-tile (separate tiles of different formats that are

in the same tileset) and intra-tile (different tile formats that are in the same Composite tile) options

allows conversion tools to make trade-offs between number of requests, optimal type-specific

subdivision, and how visible/hidden layers are streamed.

A Composite tile is a binary blob in little endian.

2.8.2. Layout

Composite layout (dashes indicate optional fields):

Figure 43. Data layout of a Composite tile

Padding

A tile’s byteLength must be aligned to an 8-byte boundary. All tiles contained in a composite tile

must also be aligned to an 8-byte boundary.

2.8.3. Header

The 16-byte header section contains the following fields:

Field name Data type Description

magic 4-byte ANSI

string

"cmpt". This can be used to identify the content

as a Composite tile.

version uint32 The version of the Composite format. It is

currently 1.
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Field name Data type Description

byteLength uint32 The length of the entire Composite tile, including

this header and each inner tile, in bytes.

tilesLength uint32 The number of tiles in the Composite.

2.8.4. Inner tiles

Inner tile fields are stored tightly packed immediately following the header section. The following

information describes general characteristics of all tile formats that a Composite tile reader might

exploit to find the boundaries of the inner tiles:

• Each tile starts with a 4-byte ANSI string, magic, that can be used to determine the tile format for

further parsing. See tile format specifications for a list of possible formats. Composite tiles can

contain Composite tiles.

• Each tile’s header contains a uint32 byteLength, which defines the length of the inner tile,

including its header, in bytes. This can be used to traverse the inner tiles.

• For any tile format’s version 1, the first 12 bytes of all tiles is the following fields:

Field name Data type Description

magic 4-byte ANSI

string

Indicates the tile format

version uint32 1

byteLength uint32 Length, in bytes, of the entire tile.

Refer to the spec for each tile format for more details.

2.8.5. File extension and MIME type

Composite tiles use the .cmpt extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a content’s

format by the magic field in its header.

2.8.6. Implementation examples

This section is non-normative

• Python packcmpt tool in gltf2glb toolset contains code for combining one or more Batched 3D

Model or Instanced 3D Model tiles into a single Composite tile file.

• Code for reading the header can be found in Composite3DTileContent.js in the CesiumJS

implementation of 3D Tiles.

3. Implicit Tiling

85

https://github.com/Geopipe/gltf2glb
https://github.com/Geopipe/gltf2glb
https://github.com/Geopipe/gltf2glb
https://github.com/CesiumGS/cesium/blob/main/Source/Scene/Composite3DTileContent.js


3.1. Overview

Implicit tiling defines a concise representation of quadtrees and octrees in 3D Tiles. This regular

pattern allows for random access of tiles based on their tile coordinates which enables accelerated

spatial queries, new traversal algorithms, and efficient updates of tile content, among other use

cases.

Implicit tiling also allows for better interoperability with existing GIS data formats with implicitly

defined tiling schemes. Some examples are TMS, WMTS, S2, and CDB.

In order to support sparse datasets, availability data determines which tiles exist. To support

massive datasets, availability is partitioned into fixed-size subtrees. Subtrees may store metadata

for available tiles and contents.

An implicitTiling object may be added to any tile in the tileset JSON. The object defines how the tile

is subdivided and where to locate content resources. It may be added to multiple tiles to create

more complex subdivision schemes.

Figure 44. A point cloud organized into a sparse octree. Data source: Trimble

3.2. Implicit Root Tile

An implicitTiling object may be added to any tile in the tileset JSON. Such a tile is called an

implicit root tile, to distinguish it from the root tile of the tileset JSON.
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{

  "root": {

    "boundingVolume": {

      "region": [-1.318, 0.697, -1.319, 0.698, 0, 20]

    },

    "refine": "REPLACE",

    "geometricError": 5000,

    "content": {

      "uri": "content/{level}/{x}/{y}.glb"

    },

    "implicitTiling": {

      "subdivisionScheme": "QUADTREE",

      "availableLevels": 21,

      "subtreeLevels": 7,

      "subtrees": {

        "uri": "subtrees/{level}/{x}/{y}.json"

      }

    }

  }

}

The implicitTiling object has the following properties:

Property Description

subdivisionScheme Either QUADTREE or OCTREE. See Subdivision scheme.

availableLevels How many levels there are in the tree with available tiles.

subtreeLevels How many levels there are in each subtree.

subtrees Template URI for subtree files. See Subtrees.

Template URIs are used for locating subtree files as well as tile contents. For content, the template

URI is specified in the tile’s content.uri property.

The following constraints apply to implicit root tiles:

• The tile must omit the children property

• The tile must omit the metadata property

• The content.uri must not point to an external tileset

• The content must omit the boundingVolume property

3.3. Subdivision Scheme

A subdivision scheme is a recursive pattern for dividing a bounding volume of a tile into smaller

children tiles that take up the same space.

A quadtree divides space only on the x and y dimensions. It divides each tile into 4 smaller tiles

where the x and y dimensions are halved. The quadtree z minimum and maximum remain
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unchanged. The resulting tree has 4 children per tile.

Figure 45. Subdivision in a quadtree

An octree divides space along all 3 dimensions. It divides each tile into 8 smaller tiles where each

dimension is halved. The resulting tree has 8 children per tile.

Figure 46. Subdivision in an octree

For a region bounding volume, x, y, and z refer to longitude, latitude, and height respectively.

Sphere bounding volumes are disallowed, as these cannot be divided into a quadtree or octree.

For subdivision of S2 bounding volumes refer to 3DTILES_bounding_volume_S2.

The following diagrams illustrate the subdivision in the bounding volume types supported by 3D

Tiles:

Root Box Quadtree Octree
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Root Region Quadtree Octree

3.3.1. Subdivision Rules

Implicit tiling only requires defining the subdivision scheme, refinement strategy, bounding

volume, and geometric error at the implicit root tile. For descendant tiles, these properties are

computed automatically, based on the following rules:

Property Subdivision Rule

subdivisionScheme Constant for all descendant tiles

refine Constant for all descendant tiles

boundingVolume Divided into four or eight parts depending on the
subdivisionScheme

geometricError Each child’s geometricError is half of its parent’s geometricError

NOTE

Implementation Note

In order to maintain numerical stability during this subdivision process, the actual

bounding volumes should not be computed progressively by subdividing a non-root

tile volume. Instead, the exact bounding volumes should be computed directly for a

given level.

Let the extent of the root bounding volume along one dimension d be (mind, maxd).

The number of bounding volumes along that dimension for a given level is 2
level

. The

size of each bounding volume at this level, along dimension d, is sized = (maxd - mind)

/ 2
level

. The extent of the bounding volume of a child can then be computed directly

as (mind + sized * i, mind + sized * (i + 1)), where i is the index of the child in

dimension d.

The computed tile boundingVolume and geometricError can be overridden with tile metadata, if

desired. Content bounding volumes are not computed automatically but they may be provided by

content metadata. Tile and content bounding volumes must maintain spatial coherence.

3.4. Tile Coordinates

Tile coordinates are a tuple of integers that uniquely identify a tile. Tile coordinates are either

(level, x, y) for quadtrees or (level, x, y, z) for octrees. All tile coordinates are 0-indexed.

level is 0 for the implicit root tile. This tile’s children are at level 1, and so on.
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x, y, and z coordinates define the location of the tile within the level.

For box bounding volumes:

Coordinate Positive Direction

x Along the +x axis of the bounding box

y Along the +y axis of the bounding box

z Along the +z axis of the bounding box

Figure 47. Coordinates of an octree node with a bounding box, and its child nodes

For region bounding volumes:

Coordinate Positive Direction

x From west to east (increasing longitude)

y From south to north (increasing latitude)

z From bottom to top (increasing height)
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Figure 48. Coordinates of an octree node with a bounding region, and its child nodes

3.5. Template URIs

A Template URI is a URI pattern used to refer to tiles by their tile coordinates.

Template URIs must include the variables {level}, {x}, {y}. Template URIs for octrees must also

include {z}. When referring to a specific tile, the tile’s coordinates are substituted for these

variables.

Template URIs, when given as relative paths, are resolved relative to the tileset JSON file.

Figure 49. Examples of template URIs to identify the content for implicit tiles

3.6. Subtrees

In order to support sparse datasets, additional information is needed to indicate which tiles or
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contents exist. This is called availability.

Subtrees are fixed size sections of the tileset tree used for storing availability. The tileset is

partitioned into subtrees to bound the size of each availability buffer for optimal network transfer

and caching. The subtreeLevels property defines the number of levels in each subtree. The

subdivision scheme determines the number of children per tile.

Figure 50. The structure of a subtree for implicit tiling

After partitioning a tileset into subtrees, the result is a tree of subtrees.

Figure 51. A tree of subtrees representing an implicit tileset

3.6.1. Availability

Each subtree contains tile availability, content availability, and child subtree availability.

• Tile availability indicates which tiles exist within the subtree

• Content availability indicates which tiles have associated content resources

• Child subtree availability indicates what subtrees are reachable from this subtree

Each type of availability is represented as a separate bitstream. Each bitstream is a 1D array where

each element represents a node in the quadtree or octree. A 1 bit indicates that the element is

available, while a 0 bit indicates that the element is unavailable. Alternatively, if all the bits in a
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bitstream are the same, a single constant value can be used instead.

To form the 1D bitstream, the tiles are ordered with the following rules:

• Within each level of the subtree, the tiles are ordered using the Morton Z-order curve

• The bits for each level are concatenated into a single bitstream

Figure 52. The computation of indices for accessing an availability bistream, based on the coordinates of

implicit tiles

In the diagram above, colored cells represent 1 bits, grey cells represent 0 bits.

Storing tiles in Morton order provides these benefits:

• Efficient indexing - The Morton index for a tile is computed in constant time by interleaving

bits.

• Efficient traversal - The Morton index for a parent or child tile are computed in constant time

by removing or adding bits, respectively.

• Locality of reference - Consecutive tiles are near to each other in 3D space.

• Better Compression - Locality of reference leads to better compression of availability

bitstreams.

For more detailed information about working with Morton indices and availability bitstreams, see

Availability Indexing.

Tile Availability

Tile availability determines which tiles exist in a subtree.

Tile availability has the following restrictions:

• If a non-root tile’s availability is 1, its parent tile’s availability must also be 1.

• A subtree must have at least one available tile.
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Figure 53. Illustration of a tile availability bitstream. Tiles that are available are represented with a 1 in the

bitstream.

Content Availability

Content availability determines which tiles have a content resource. The content resource is located

using the content.uri template URI. If there are no tiles with a content resource, tile.content must

be omitted.

Content availability has the following restrictions:

• If content availability is 1 its corresponding tile availability must also be 1. Otherwise, it would

be possible to specify content files that are not reachable by the tiles of the tileset.

• If content availability is 0 and its corresponding tile availability is 1 then the tile is considered to

be an empty tile.

Figure 54. Illustration of a content availability bitstream. Tiles that have associated content are represented

with a 1 in the bitstream.
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Child Subtree Availability

Child subtree availability determines which subtrees are reachable from the deepest level of this

subtree. This links subtrees together to form a tree.

Unlike tile and content availability, which store bits for every level in the subtree, child subtree

availability stores bits for nodes one level deeper than the deepest level of the subtree, and

represent the root nodes of child subtrees. This is used to determine which other subtrees are

reachable before requesting tiles. If availability is 0 for all child subtrees, then the tileset does not

subdivide further.

Figure 55. Illustration of a child subtree availability bitstream. Tiles that are the roots of available subtrees

are represented by a 1 in the bitstream.

3.6.2. Metadata

Subtrees may store metadata at multiple granularities.

• Tile metadata - metadata for available tiles in the subtree

• Content metadata - metadata for available content in the subtree

• Subtree metadata - metadata about the subtree as a whole

Tile Metadata

When tiles are listed explicitly within a tileset, each tile’s metadata is also embedded explicitly

within the tile definition. When the tile hierarchy is implicit, as enabled by implicit tiling, tiles are

not listed exhaustively and metadata cannot be directly embedded in tile definitions. To support

metadata for tiles within implicit tiling schemes, property values for all available tiles in a subtree

are encoded in a property table. The binary representation is particularly efficient for larger

datasets with many tiles.

Tile metadata exists only for available tiles and is tightly packed by an increasing tile index
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according to the Availability Ordering. Each available tile must have a value — representation of

missing values within a tile is possible only with the noData indicator defined by the Binary Table

Format specification.

NOTE

Implementation Note

To determine the index into a property value array for a particular tile, count the

number of available tiles occurring before that index, according to the tile

Availability Ordering. If i available tiles occur before a particular tile, that tile’s

property values are stored at index i of each property value array. These indices

may be precomputed for all available tiles, as a single pass over the subtree

availability buffer.

Tile properties can have Semantics which define how property values should be interpreted. In

particular, TILE_BOUNDING_BOX, TILE_BOUNDING_REGION, TILE_BOUNDING_SPHERE, TILE_MINIMUM_HEIGHT, and

TILE_MAXIMUM_HEIGHT semantics each define a more specific bounding volume for a tile than is

implicitly calculated from implicit tiling. If more than one of these semantics are available for a tile,

clients may select the most appropriate option based on use case and performance requirements.
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NOTE

Example

The following diagram shows how tile height semantics may be used to define

tighter bounding regions for an implicit tileset: The overall height of the bounding

region of the whole tileset is 320. The bounding regions for the child tiles will be

computed by splitting the bounding regions of the respective parent tile at its

center. By default, the height will remain constant. By storing the actual height of

the contents in the respective region, and providing it as the TILE_MAXIMUM_HEIGHT for

each available tile, it is possible to define the tightest-fitting bounding region for

each level.

Figure 56. Illustration of storing the actual heights of individual tiles using the

TILE_MAXIMUM_HEIGHT semantic

The TILE_GEOMETRIC_ERROR semantic allows tiles to provide a geometric error that overrides the

implicitly computed geometric error.

Content Metadata

Subtrees may also store metadata for tile content. Content metadata exists only for available

content and is tightly packed by increasing tile index. Binary property values are encoded in a

compact Binary Table Format defined by the 3D Metadata Specification and are stored in a property

table. If the implicit root tile has multiple contents then content metadata is stored in multiple

property tables.

Content bounding volumes are not computed automatically by implicit tiling but may be provided

by properties with semantics CONTENT_BOUNDING_BOX, CONTENT_BOUNDING_REGION,

CONTENT_BOUNDING_SPHERE, CONTENT_MINIMUM_HEIGHT, and CONTENT_MAXIMUM_HEIGHT.

If the tile content is assigned to a group then all contents in the implicit tree are assigned to that
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group.

Subtree Metadata

Properties assigned to subtrees provide metadata about the subtree as a whole. Subtree metadata is

encoded in JSON according to the JSON Format specification.

3.7. Subtree JSON Format

Defined in subtree.schema.json.

A subtree file is a JSON file that contains availability and metadata information for a single

subtree. A subtree may reference external files containing binary data. An alternative Binary

Format allows the JSON and binary data to be embedded into a single binary file.

3.7.1. Buffers and Buffer Views

The property table defines the storage of metadata in a binary form based on buffer views that are

parts of a buffer.

A buffer is a binary blob. Each buffer has a uri that refers to an external file containing buffer data

and a byteLength describing the buffer size in bytes. Relative paths are relative to the subtree file.

Data URIs are not allowed.

In the Binary Format the first buffer may instead refer to the binary chunk of the subtree file, in

which case the uri property must be undefined. This buffer is referred to as the internal buffer.

A buffer view is a contiguous subset of a buffer. A buffer view’s buffer property is an integer index

to identify the buffer. A buffer view has a byteOffset and a byteLength to describe the range of bytes

within the buffer. The byteLength does not include any padding. There may be multiple buffer views

referencing a single buffer.

For efficient memory access, the byteOffset of a buffer view must be aligned to a multiple of 8

bytes.

3.7.2. Availability

Tile availability (tileAvailability) and child subtree availability (childSubtreeAvailability) must

always be provided for a subtree.

Content availability (contentAvailability) is an array of content availability objects. If the implicit

root tile has a single content this array will have one element; if the tile has multiple contents this

array will have multiple elements. If the implicit root tile does not have content then

contentAvailability must be omitted.

Availability may be represented either as a bitstream or a constant value. bitstream is an integer

index that identifies the buffer view containing the availability bistream. constant is an integer

indicating whether all of the elements are available (1) or all are unavailable (0). availableCount is

an integer indicating how many 1 bits exist in the availability bitstream.
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Availability bitstreams are packed in binary using the format described in the Booleans section of

the 3D Metadata Specification.

NOTE

Example

The JSON description of a subtree where each tile is available, but not all tiles have

content, and not all child subtrees are available:

{

  "buffers": [

    {

      "name": "Internal Buffer",

      "byteLength": 16

    },

    {

      "name": "External Buffer",

      "uri": "external.bin",

      "byteLength": 32

    }

  ],

  "bufferViews": [

    {

      "buffer": 0,

      "byteOffset": 0,

      "byteLength": 11

    },

    {

      "buffer": 1,

      "byteOffset": 0,

      "byteLength": 32

    }

  ],

  "tileAvailability": {

    "constant": 1,

  },

  "contentAvailability": [{

    "bitstream": 0,

    "availableCount": 60

  }],

  "childSubtreeAvailability": {

    "bitstream": 1

  }

}

The tile availability can be encoded by setting tileAvailability.constant to 1,

without needing an explicit bitstream, because all tiles in the subtree are available.

Only some tiles have content, and contentAvailability.bufferView indicates where

the bitstream for the content availability is stored: The bufferView with index 0

refers to the buffer with index 0. This buffer does not have a uri property, and
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therefore refers to the internal buffer that is stored directly in the binary chunk of

the subtree binary file. The byteOffset and byteLength indicate that the content

availability bitstream is stored in the bytes [0...11) of the internal buffer.

Some child subtrees exist, so childSubtreeAvailability.bufferView refers to another

bitstream. The bufferView with index 1 refers to the buffer with index 1. This buffer

has a uri property, indicating that this second bitstream is stored in an external

binary file.

3.7.3. Metadata

Subtrees may store metadata at multiple granularities. tileMetadata is a property table containing

metadata for available tiles. contentMetadata is an array of property tables containing metadata for

available content. If the implicit root tile has a single content this array will have one element; if the

tile has multiple contents then this array will have multiple elements. If the implicit root tile does

not have content then contentMetadata must be omitted.

Subtree metadata (subtreeMetadata) is encoded in JSON according to the JSON Format specification.

NOTE

Example

The same JSON description of a subtree extended with tile, content, and subtree

metadata. The subtree JSON refers to a class ID in the root tileset schema. Tile and

content metadata is stored in property table; subtree metadata is encoded directly

in JSON.

Schema in the root tileset JSON

{

  "schema": {

    "classes": {

      "tile": {

        "properties": {

          "horizonOcclusionPoint": {

            "semantic": "TILE_HORIZON_OCCLUSION_POINT",

            "type": "VEC3",

            "componentType": "FLOAT64",

          },

          "countries": {

            "description": "Countries a tile intersects",

            "type": "STRING",

            "array": true

          }

        }

      },

      "content": {

        "properties": {

          "attributionIds": {

            "semantic": "ATTRIBUTION_IDS",

            "type": "SCALAR",

100



            "componentType": "UINT16",

            "array": true

          },

          "minimumHeight": {

            "semantic": "CONTENT_MINIMUM_HEIGHT",

            "type": "SCALAR",

            "componentType": "FLOAT64"

          },

          "maximumHeight": {

            "semantic": "CONTENT_MAXIMUM_HEIGHT",

            "type": "SCALAR",

            "componentType": "FLOAT64"

          },

          "triangleCount": {

            "type": "SCALAR",

            "componentType": "UINT32"

          }

        }

      },

      "subtree": {

        "properties": {

          "attributionStrings": {

            "semantic": "ATTRIBUTION_STRINGS",

            "type": "STRING",

            "array": true

          }

        }

      }

    }

  }

}

Subtree JSON

{

  "buffers": [

    {

      "name": "Availability Buffer",

      "uri": "availability.bin",

      "byteLength": 48

    },

    {

      "name": "Metadata Buffer",

      "uri": "metadata.bin",

      "byteLength": 6512

    }

  ],

  "bufferViews": [

    { "buffer": 0, "byteOffset": 0, "byteLength": 11 },

    { "buffer": 0, "byteOffset": 16, "byteLength": 32 },

101



    { "buffer": 1, "byteOffset": 0, "byteLength": 2040 },

    { "buffer": 1, "byteOffset": 2040, "byteLength": 1530 },

    { "buffer": 1, "byteOffset": 3576, "byteLength": 344 },

    { "buffer": 1, "byteOffset": 3920, "byteLength": 1024 },

    { "buffer": 1, "byteOffset": 4944, "byteLength": 240 },

    { "buffer": 1, "byteOffset": 5184, "byteLength": 122 },

    { "buffer": 1, "byteOffset": 5312, "byteLength": 480 },

    { "buffer": 1, "byteOffset": 5792, "byteLength": 480 },

    { "buffer": 1, "byteOffset": 6272, "byteLength": 240 }

  ],

  "propertyTables": [

    {

      "class": "tile",

      "count": 85,

      "properties": {

        "horizonOcclusionPoint": {

          "values": 2

        },

        "countries": {

          "values": 3,

          "arrayOffsets": 4,

          "stringOffsets": 5,

          "arrayOffsetType": "UINT32",

          "stringOffsetType": "UINT32"

        }

      }

    },

    {

      "class": "content",

      "count": 60,

      "properties": {

        "attributionIds": {

          "values": 6,

          "arrayOffsets": 7,

          "arrayOffsetType": "UINT16"

        },

        "minimumHeight": {

          "values": 8

        },

        "maximumHeight": {

          "values": 9

        },

        "triangleCount": {

          "values": 10,

          "min": 520,

          "max": 31902

        }

      }

    }

  ],

  "tileAvailability": {
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    "constant": 1

  },

  "contentAvailability": [{

    "bitstream": 0,

    "availableCount": 60

  }],

  "childSubtreeAvailability": {

    "bitstream": 1

  },

  "tileMetadata": 0,

  "contentMetadata": [1],

  "subtreeMetadata": {

    "class": "subtree",

    "properties": {

      "attributionStrings": [

        "Source A",

        "Source B",

        "Source C",

        "Source D"

      ]

    }

  }

}

3.7.4. Multiple Contents

When the implicit root tile has multiple contents then contentAvailability and contentMetadata are

provided for each content layer.

NOTE

Example

JSON description of a subtree with multiple contents. In this example all tiles are

available, all building contents are available, and only some tree contents are

available.

Implicit root tile
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{

  "root": {

    "boundingVolume": {

      "region": [-1.318, 0.697, -1.319, 0.698, 0, 20]

    },

    "refine": "ADD",

    "geometricError": 5000,

    "contents": [

      {

        "uri": "buildings/{level}/{x}/{y}.glb",

      },

      {

        "uri": "trees/{level}/{x}/{y}.glb",

      }

    ],

    "implicitTiling": {

      "subdivisionScheme": "QUADTREE",

      "availableLevels": 21,

      "subtreeLevels": 7,

      "subtrees": {

        "uri": "subtrees/{level}/{x}/{y}.json"

      }

    }

  }

}

Subtree JSON
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{

  "propertyTables": [

    {

      "class": "building",

      "count": 85,

      "properties": {

        "height": {

          "values": 1

        },

        "owners": {

          "values": 2,

          "arrayOffsets": 3,

          "stringOffsets": 4

        }

      }

    },

    {

      "class": "tree",

      "count": 52,

      "properties": {

        "height": {

          "values": 5

        },

        "species": {

          "values": 6

        }

      }

    }

  ],

  "tileAvailability": {

    "constant": 1

  },

  "contentAvailability": [

    {

      "constant": 1

    },

    {

      "bitstream": 0,

      "availableCount": 52

    }

  ],

  "childSubtreeAvailability": {

    "constant": 1

  },

  "contentMetadata": [0, 1]

}
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3.8. Subtree Binary Format

The subtree binary format is an alternative to the JSON file format that allows the JSON and binary

data to be embedded into a single binary file.

The binary subtree format is little-endian and consists of a 24-byte header and a variable length

payload:

Figure 57. Data layout for the subtree binary format

Header fields:

Bytes Field Type Description

0-3 Magic UINT32 A magic number identifying this as a subtree

file. This is always 0x74627573, the four bytes of

the ASCII string subt stored in little-endian

order.

4-7 Version UINT32 The version number. Always 1 for this version of

the specification.

8-15 JSON byte

length

UINT64 The length of the subtree JSON, including any

padding.

16-23 Binary byte

length

UINT64 The length of the buffer (or 0 if the buffer does

not exist) including any padding.

Each chunk must be padded so it ends on an 8-byte boundary:

• The JSON chunk must be padded with trailing Space chars (0x20)

• If it exists, the binary chunk must be padded with trailing zeros (0x00)

4. 3D Metadata Specification

4.1. Overview

The 3D Metadata Specification defines a standard format for structured metadata in 3D content.

Metadata — represented as entities and properties — may be closely associated with parts of 3D

content, with data representations appropriate for large, distributed datasets. For the most detailed

use cases, properties allow vertex- and texel-level associations; higher-level property associations

are also supported.
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Many domains benefit from structured metadata — typical examples include historical details of

buildings in a city, names of components in a CAD model, descriptions of regions on textured

surfaces, and classification codes for point clouds.

The specification defines core concepts to be used by multiple 3D formats, and is language and

format agnostic. This document defines concepts with purpose and terminology, but does not

impose a particular schema or serialization format for implementation. For use of the format

outside of abstract conceptual definitions, see:

• 3D Tiles Metadata - Assigns metadata to tilesets, tiles, and contents in 3D Tiles 1.1

• 3DTILES_metadata - An extension for 3D Tiles 1.0 that assigns metadata to tilesets, tiles, and

contents

• EXT_structural_metadata (glTF 2.0) —  Assigns metadata to vertices, texels, and features in a glTF

asset

The specification does not enumerate or define the semantic meanings of metadata, and assumes

that separate specifications will define semantics for their particular application or domain. One

example is the 3D Metadata Semantic Reference which defines built-in semantics for 3D Tiles and

glTF. Identifiers for externally-defined semantics can be stored within the 3D Metadata

Specification.

4.2. Concepts

This specification defines metadata schemas and methods for encoding metadata.

Schemas contain a set of classes and enums. A class represents a category of similar entities, and

is defined as a set of properties. Each property describes values of a particular type. An enum

defines a set of named values representing a single value type, and may be referenced by class

properties. Schema definitions do not describe how entities or properties are stored, and may be

represented in a file format in various ways. Schemas can be reused across multiple assets or even

file formats.

Entities are instantiations of a class, populated with property values conforming to the class

definition. Every property value of an entity must be defined by its class, and an entity must not

have extraneous property values. Properties of a class may be required, in which case all entities

instantiating the class are required to include them.

NOTE

Implementation Note

Entities may be defined at various levels of abstraction. Within a large dataset,

individual vertices or texels may represent entities with granular metadata

properties. Vertices and texels may be organized into higher-order groups (such as

meshes, scene graphs, or tilesets) having their own associated properties.

Metadata, as used throughout this specification, refers to any association of 3D content with

entities and properties, such that entities represent meaningful units within an overall structure.

Other common definitions of metadata, particularly in relation to filesystems or networking as

opposed to 3D content, remain outside the scope of the document.
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Property values are stored with flexible representations to allow compact transmission and

efficient lookups. This specification defines two possible storage formats.

4.2.1. Identifiers

Throughout this specification, IDs (identifiers) are strings that match the regular expression ^[a-zA-

Z_][a-zA-Z0-9_]*$: Strings that consist of upper- or lowercase letters, digits, or underscores, starting

with either a letter or an underscore. These strings should be camel case strings that are human-

readable (wherever possible). When IDs subject to these restrictions are not sufficiently clear for

human readers, applications should also provide a name for the structures that support dedicated

names.

4.3. Schemas

4.3.1. Schema

A schema defines the organization and types of metadata used in 3D content, represented as a set of

classes and enums. Class definitions are referenced by entities whose metadata conforms to the

class definition. This provides a consistent and machine-readable structure for all entities in a

dataset.

Components of a schema are listed below, and implementations may define additional components.

ID

IDs (id) are unique identifiers for a schema.

Version

Schema version (version) is an application-specific identifier for a given schema revision. Version

must be a string, and should be syntactically compatible with SemVer.

When a schema has multiple versions, the (id, version) pair uniquely identifies a particular

schema and revision.

NOTE
Example

Valid semantic versions include strings like 0.1.2, 1.2.3, and 1.2.3-alpha.

Name

Names (name) provide a human-readable label for a schema, and are not required to be unique.

Names must be valid Unicode strings, and should be written in natural language.

Description

Descriptions (description) provide a human-readable explanation of a schema, its purpose, or its

contents. Typically at least a phrase, and possibly several sentences or paragraphs. Descriptions

must be valid Unicode strings.
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Enums

Unordered set of enums.

Classes

Unordered set of classes.

4.3.2. Enum

An enum consists of a set of named values, represented as (string, integer) pairs. Each enum is

identified by a unique ID.

NOTE

Example

A "species" enum with three possible tree species, as well as an "Unknown" value.

• ID: "species"

• Name: "Species"

• Description: "Common tree species identified in the study."

• Value type: INT32

name value

"Oak" 0

"Pine" 1

"Maple" 2

"Unknown" -1

ID

IDs (id) are unique identifiers for an enum within a schema.

Name

Names (name) provide a human-readable label for an enum, and are not required to be unique

within a schema. Names must be valid Unicode strings, and should be written in natural language.

Description

Descriptions (description) provide a human-readable explanation of an enum, its purpose, or its

contents. Typically at least a phrase, and possibly several sentences or paragraphs. Descriptions

must be valid Unicode strings.

Values

An enum consists of a set of named values, represented as (string, integer) pairs. The following

enum value types are supported: INT8, UINT8, INT16, UINT16, INT32, UINT32, INT64, and UINT64. See the

109



Component Type section for definitions of each. Smaller enum types limit the range of possible

enum values, and allow more efficient binary encoding. Duplicate names or values within the same

enum are not allowed.

4.3.3. Class

Classes represent categories of similar entities, and are defined by a collection of one or more

properties shared by the entities of a class. Each class has a unique ID within the schema, and each

property has a unique ID within the class, to be used for references within the schema and

externally.

ID

IDs (id) are unique identifiers for a class within a schema.

Name

Names (name) provide a human-readable label for a class, and are not required to be unique within

a schema. Names must be valid Unicode strings, and should be written in natural language.

Description

Descriptions (description) provide a human-readable explanation of a class, its purpose, or its

contents. Typically at least a phrase, and possibly several sentences or paragraphs. Descriptions

must be valid Unicode strings.

Properties

Unordered set of properties.

4.3.4. Property

Overview

Properties describe the type and structure of values that may be associated with entities of a class.

Entities may omit values for a property, unless the property is required. Entities must not contain

values other than those defined by the properties of their class.
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NOTE

Example

The following example shows the basics of how classes describe the types of

metadata. A building class describes the heights of various buildings in a dataset.

Likewise, the tree class describes trees that have a height, species, and leaf color.

building

property type componentType

height SCALAR FLOAT32

tree

property type componentType

enumType height SCALAR

FLOAT32 species

ENUM species

leafColor STRING

ID

IDs (id) are unique identifiers for a property within a class.

Name

Names (name) provide a human-readable label for a property, and must be unique to a property

within a class. Names must be valid Unicode strings, and should be written in natural language.

Property names do not have inherent meaning; to provide such a meaning, a property must also

define a semantic.

NOTE

Example

A typical ID / Name pair, in English, would be localTemperature and "Local

Temperature". In Japanese, the name might be represented as "きおん". Because IDs

are restricted to identifiers, use of helpful property names is essential for clarity in

many languages.

Description

Descriptions (description) provide a human-readable explanation of a property, its purpose, or its

contents. Typically at least a phrase, and possibly several sentences or paragraphs. Descriptions

must be valid Unicode strings. To provide a machine-readable semantic meaning, a property must

also define a semantic.

Semantic

Property IDs, names, and descriptions do not have an inherent meaning. To provide a machine-

readable meaning, properties may be assigned a semantic identifier string (semantic), indicating

111



how the property’s content should be interpreted. Semantic identifiers may be defined by the 3D

Metadata Semantic Reference or by external semantic references, and may be application-specific.

Identifiers should be uppercase, with underscores as word separators.

NOTE

Example

Semantic definitions might include temperature in degrees Celsius (e.g.

TEMPERATURE_DEGREES_CELSIUS), time in milliseconds (e.g. TIME_MILLISECONDS), or mean

squared error (e.g. MEAN_SQUARED_ERROR). These examples are only illustrative.

Type

A property’s type (type) describes the structure of the value given for each entity.

name type

SCALAR Single numeric component

VEC2 Fixed-length vector with two (2) numeric components

VEC3 Fixed-length vector with three (3) numeric components

VEC4 Fixed-length vector with four (4) numeric components

MAT2 2x2 matrix with numeric components

MAT3 3x3 matrix with numeric components

MAT4 4x4 matrix with numeric components

STRING A sequence of characters

BOOLEAN True or false

ENUM An enumerated type

Component Type

Scalar, vector, and matrix types comprise of numeric components. Each component is an instance

of the property’s component type (componentType), with the following component types supported:

name componentType

INT8 Signed integer in the range [-128, 127]

UINT8 Unsigned integer in the range [0, 255]

INT16 Signed integer in the range [-32768, 32767]

UINT16 Unsigned integer in the range [0, 65535]

INT32 Signed integer in the range [-2147483648, 2147483647]

UINT32 Unsigned integer in the range [0, 4294967295]

INT64 Signed integer in the range [-9223372036854775808, 9223372036854775807]

UINT64 Unsigned integer in the range [0, 18446744073709551615]

FLOAT32 A number that can be represented as a 32-bit IEEE floating point number
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name componentType

FLOAT64 A number that can be represented as a 64-bit IEEE floating point number

Floating-point properties (FLOAT32 and FLOAT64) must not include values NaN, +Infinity, or -Infinity.

NOTE

Implementation Note

Developers of authoring tools should be aware that many JSON implementations

support only numeric values that can be represented as IEEE-754 double precision

floating point numbers. Floating point numbers should be representable as double

precision IEEE-754 floats when encoded in JSON. When those numbers represent

property values (such as noData, min, or max) having lower precision (e.g. single-

precision float, 8-bit integer, or 16-bit integer), the values should be rounded to the

same precision in JSON to avoid any potential mismatches. Numeric property

values encoded in binary storage are unaffected by these limitations of JSON

implementations.

Enum Type

Enum properties are denoted by ENUM. An enum property must additionally provide the ID of the

specific enum it uses, referred to as its enum type (enumType).

Arrays

A property can be declared to be a fixed- and variable-length array, consisting of elements of the

given type. For fixed-length arrays, a count (count) denotes the number of elements in each array,

and must be greater than or equal to 2. Variable-length arrays do not define a count and may have

any length, including zero.

Normalized Values

Normalized properties (normalized) provide a compact alternative to larger floating-point types.

Normalized values are stored as integers, but when accessed are transformed to floating-point

according to the following equations:

component

Type

int to float float to int

INT8 f = max(i / 127.0, -1.0) i = round(f * 127.0)

UINT8 f = i / 255.0 i = round(f * 255.0)

INT16 f = max(i / 32767.0, -1.0) i = round(f * 32767.0)

UINT16 f = i / 65535.0 i = round(f * 65535.0)

INT32 f = max(i / 2147483647.0, -1.0) i = round(f * 2147483647.0)

UINT32 f = i / 4294967295.0 i = round(f * 4294967295.0)

INT64 f = max(i / 9223372036854775807.0,
-1.0)

i = round(f * 9223372036854775807.0)

UINT64 f = i / 18446744073709551615.0 i = round(f * 18446744073709551615.0)
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normalized is only applicable to scalar, vector, and matrix types with integer component types.

NOTE

Implementation Note

Depending on the implementation and the chosen integer type, there may be some

loss of precision in values after denormalization. For example, if the

implementation uses 32-bit floating point variables to represent the value of a

normalized 32-bit integer, there are only 23 bits in the mantissa of the float, and

lower bits will be truncated by denormalization. Client implementations should use

higher precision floats when appropriate for correctly representing the result.

Offset and Scale

A property may declare an offset (offset) and scale (scale) to apply to property values. This is

useful when mapping property values to a different range.

The offset and scale can be defined for types that either have a floating-point componentType, or

when normalized is set to true. This applies to SCALAR, VECN, and MATN types, and to fixed-length arrays

of these types. The structure of offset and scale is explained in the Property Values Structure

section.

The following equation is used to transform the original property value into the actual value that is

used by the client:

transformedValue = offset + scale * normalize(value)

These operations are applied component-wise, both for array elements and for vector and matrix

components.

The transformation that is described here allows arbitrary source value ranges to be mapped to

arbitrary target value ranges, by first computing the float value for the original normalized value,

and then mapping that floating point range to the desired target range.

NOTE

Implementation Note

The result of transforming a normalized integer value into a floating point value may

be lossy, as described in the section about Normalized Values. Depending on the

range of property values, the values of offset and scale, and the floating point

precision that is used in the client implementation, the computation may cause low-

significance bits to be truncated from the final result. Client implementations

should retain as much precision as reasonably possible.

When the offset for a property is not given, then is is assumed to be 0 for each component of the

respective type. When the scale value of a property is not given, then it is assumed to be 1 for each

component of the respective type. Instances of the class that defines the respective property can

override the offset- and scale factors, to account for the actual range of property values that are

provided by the instance.

Minimum and Maximum Values

Properties may specify a minimum (min) and maximum (max) value. Minimum and maximum
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values represent component-wise bounds of the valid range of values for a property. Both values

are inclusive, meaning that they denote the smallest and largest allowed value, respectively.

The min and max value can be defined for SCALAR, VECN, and MATN types with numeric component

types, and for fixed-length arrays of these types. The structure of min and max is explained in the

Property Values Structure section.

For properties that are normalized, the component type of min and max is a floating point type. Their

values represent the bounds of the final, transformed property values. This includes the

normalization and offset- or scale computations, as well as other transforms or constraints that

are not part of the class definition itself: A normalized unsigned value is in the range [0.0, 1.0] after

the normalization has been applied, but [min, max] may specify a different value range.

For all other properties, the component type of min and max matches the componentType of the

property, and the values are the bounds of the original property values.

NOTE

Example

A property storing GPS coordinates might define a range of [-180, 180] degrees for

longitude values and [-90, 90] degrees for latitude values.

Property values outside the [minimum, maximum] range are not allowed, with the exception of noData

values.

Required Properties, No Data Values, and Default Values

When associated property values must exist for all entities of a class, a property is considered

required (required).

Individual elements in an array or individual components in a vector or matrix cannot be marked

as required; only the property itself can be marked as required.

Properties may optionally specify a No Data value (noData, or "sentinel value") to be used when

property values do not exist. A noData value may be provided for any type except BOOLEAN. For ENUM

types, a noData value should contain the name of the enum value as a string, rather than its integer

value. The structure of the noData value is explained in the Property Values Structure section.

A noData value is especially useful when only some entities in a property table are missing property

values (see Binary Table Format). Otherwise if all entities are missing property values the column

may be omitted from the table and a noData value need not be provided. Entities encoded in the

JSON Format may omit the property instead of providing a noData value. noData values and omitted

properties are functionally equivalent.

A default value (default) may be provided for missing property values. For ENUM types, a default

value should contain the name of the enum value as a string, rather than its integer value. For all

other cases, the structure of the default value is explained in the Property Values Structure section.

If a default value is not provided, the behavior when encountering missing property values is

implementation-defined.
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NOTE

Example

In the example below, a "tree" class is defined with noData indicating a specific

enum value to be interpreted as missing data.

property componentType required noData

height FLOAT32 Yes

species ENUM "Unknown"

leafColor STRING Yes

Property Values Structure

Property values that appear as part of the class definition are the offset, scale, minimum,

maximum, default values and no-data values. The structure of these values inside the class

definition depends on the type of the property. For SCALAR (non-array) types, they are single values.

For all other cases, they are arrays:

• For SCALAR array types with fixed length count, they are arrays with length count.

• For VECN types, they are arrays, with length N.

• For MATN types, they are arrays, with length N * N.

• For VECN array types with fixed length count, they are arrays with length count, where each array

element is itself an array of length N

• For MATN array types with fixed length count, they are arrays with length count, where each array

element is itself an array of length N * N.

For noData values and numeric values that are not normalized, the type of the innermost elements of

these arrays corresponds to the componentType. For numeric values that are normalized, the

innermost elements are floating-point values.

4.4. Storage Formats

4.4.1. Overview

Schemas provide templates for entities, but creating an entity requires specific property values and

storage. This section covers two storage formats for entity metadata:

• Binary Table Format - property values are stored in parallel 1D arrays, encoded as binary data

• JSON Format - property values are stored in key/value dictionaries, encoded as JSON objects

Both formats are suitable for general purpose metadata storage. Binary formats may be preferable

for larger quantities of metadata.

Additional serialization methods may be defined outside of this specification. For example,

property values could be stored in texture channels or retrieved from a REST API as XML data.
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NOTE

Implementation Note

Any specification that references 3D Metadata must state explicitly which storage

formats are supported, or define its own serialization. For example, the

EXT_structural_metadata glTF extension implements the binary table format

described below, and defines an additional image-based format for per-texel

metadata.

4.4.2. Binary Table Format

Overview

The binary table format is similar to a database table where entities are rows and properties are

columns. Each column represents one of the properties of the class. Each row represents a single

entity conforming to the class.

Figure 58. Illustration of metadata that can be stored in a table

The rows of a table are addressed by an integer index called an entity ID. Entity IDs are always

numbered 0, 1, ..., N - 1 where N is the number of rows in the table.

Property values are stored in parallel arrays called property arrays, one per column. Each

property array stores values for a single property. The i-th value of each property array is the value

of that property for the entity with an entity ID of i.

Binary encoding is efficient for runtime use, and scalable to large quantities of metadata. Because

property arrays contain elements of a single type, bitstreams may be tightly packed or may use

compression methods appropriate for a particular data type.

Property values are binary-encoded according to their data type, in little-endian format. Values are

tightly packed: there is no padding between values.

Scalars

A scalar value is encoded based on the componentType. Multiple values are packed tightly in the same

buffer. The following data types are supported:
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Name Description

INT8 8-bit two’s complement signed integer

UINT8 8-bit unsigned integer

INT16 16-bit two’s complement signed integer

UINT16 16-bit unsigned integer

INT32 32-bit two’s complement signed integer

UINT32 32-bit unsigned integer

INT64 64-bit two’s complement signed integer

UINT64 64-bit unsigned integer

FLOAT32 32-bit IEEE floating point number

FLOAT64 64-bit IEEE floating point number

Vectors

Vector components are tightly packed and encoded based on the componentType.

Matrices

Matrix components are tightly packed in column-major order and encoded based on the

componentType.

Booleans

A boolean value is encoded as a single bit, either 0 (false) or 1 (true). Multiple boolean values are

packed tightly in the same buffer. These buffers of tightly-packed bits are sometimes referred to as

bitstreams.

For a table with N rows, the buffer that stores these boolean values will consist of ceil(N / 8) bytes.

When N is not divisible by 8, then the unused bits of the last byte of this buffer must be set to 0.

NOTE

Implementation Note

Example accessing a boolean value for entity ID i.

byteIndex = floor(i / 8)

bitIndex = i % 8

bitValue = (buffer[byteIndex] >> bitIndex) & 1

value = bitValue == 1

Strings

A string value is a UTF-8 encoded byte sequence. Multiple strings are packed tightly in the same

buffer.

Because string lengths may vary, a string offset buffer is used to identify strings in the buffer. If
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there are N strings in the property array, the string offset buffer has N + 1 elements. The first N of

these point to the first byte of each string, while the last points to the byte immediately after the last

string. The number of bytes in the i-th string is given by stringOffset[i + 1] - stringOffset[i].

UTF-8 encodes each character as 1-4 bytes, so string offsets do not necessarily represent the number

of characters in the string.

The data type used for offsets is defined by a string offset type, which may be UINT8, UINT16, UINT32,

or UINT64.

NOTE

Example

Three UTF-8 strings, binary-encoded in a buffer.

Figure 59. Data layout for the buffers storing string metadata

Enums

Enums are encoded as integer values according to the enum value type (see Enums). Any integer

data type supported for Scalars may be used for enum values.

Fixed-Length Arrays

A fixed-length array value is encoded as a tightly packed array of count elements, where each

element is encoded according to the type.

Variable-Length Arrays

Variable-length arrays use an additional array offset buffer. The i-th value in the array offset

buffer is an element index — not a byte offset — identifying the beginning of the i-th array. String

values within an array may have inconsistent lengths, requiring both array offset and string offset

buffers (see: Strings).

The data type used for offsets is defined by an array offset type, which may be UINT8, UINT16,

UINT32, or UINT64.

If there are N arrays in the property array, the array offset buffer has N + 1 elements. The first N of

these point to the first element of an array within the property array, or within a string offset buffer

for string component types. The last value points to a (non-existent) element immediately following

the last array element.

For each case below, the offset of an array element i within its binary storage is expressed in terms

of entity ID id and element index i.
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Type Offset type Offset

STRING byte offset stringOffset[arrayOffset[id] + i]

All other types array index arrayOffset[id] + i

Each expression in the table above defines an index into the underlying property array. For a

property array of SCALAR elements with FLOAT32 component type, index 3 corresponds to byte offset 3

* sizeof(FLOAT32). For a property array of VEC4 elements with FLOAT32 component type, index 3

corresponds to byte offset 3 * 4 * sizeof(FLOAT32) = 48. For an array of BOOLEAN elements, offset 3

would correspond to bit offset 3.

NOTE

Example

Five variable-length arrays of UINT8 components, binary-encoded in a buffer. The

associated property definition would be type = "SCALAR", componentType = "UINT8",

and array = true.

Figure 60. Data layout for the buffers storing string variable-length arrays

NOTE

Example

Two variable-length arrays of strings, binary-encoded in a buffer. The associated

property definition would be type = "STRING" and array = true (variable-length).

Observe that the last element of the array offset buffer points to the last element of

the string offset buffer. This is because the last valid string offset is the next-to-last

element of the string offset buffer.

Figure 61. Data layout for the buffers storing string variable-length arrays of strings
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4.4.3. JSON Format

Overview

JSON encoding is useful for storing a small number of entities in human readable form.

Each entity is represented as a JSON object with its class identified by a string ID. Property values

are defined in a key/value properties dictionary, having property IDs as its keys. Property values

are encoded as corresponding JSON types: numeric types are represented as number, booleans as

boolean, strings as string, enums as string, vectors and matrices as array of number, and arrays as

array of the containing type.

NOTE

Example

The following example demonstrates usage for both fixed- and variable-length

arrays:

An enum, "basicEnum", composed of three (name: value) pairs:

name value

"Enum A" 0

"Enum B" 1

"Enum C" 2

A class, "basicClass", composed of ten properties. stringArrayProperty count is

undefined and therefore variable-length.

id type compone

ntType

array count enumTyp

e

required

floatProperty SCALAR FLOAT64 false Yes

integerProperty SCALAR INT32 false Yes

vectorProperty VEC2 FLOAT32 false Yes

floatArrayProperty SCALAR FLOAT32 true 3 Yes

vectorArrayProperty VEC2 FLOAT32 true 2 Yes

booleanProperty BOOLEAN false Yes

stringProperty STRING false Yes

enumProperty ENUM false basicEnum Yes

stringArrayProperty STRING true Yes

optionalProperty STRING false

A single entity encoded in JSON. Note that the optional property is omitted in this

example.

121



{

  "entity": {

    "class": "basicClass",

    "properties": {

      "floatProperty": 1.5,

      "integerProperty": -90,

      "vectorProperty": [0.0, 1.0],

      "floatArrayProperty": [1.0, 0.5, -0.5],

      "vectorArrayProperty": [[0.0, 1.0], [1.0, 2.0]],

      "booleanProperty": true,

      "stringProperty": "x123",

      "enumProperty": "Enum B",

      "stringArrayProperty": ["abc", "12345", "おはようございます"]

    }

  }

}

Scalars

All component types (INT8, UINT8, INT16, UINT16, INT32, UINT32, INT64, UINT64, FLOAT32, and FLOAT64) are

encoded as JSON numbers. Floating point values must be representable as IEEE floating point

numbers.

NOTE

Implementation Note

For numeric types the size in bits is made explicit. Even though JSON only has a

single number type for all integers and floating point numbers, the application that

consumes the JSON may make a distinction. For example, C and C++ have several

different integer types such as uint8_t, uint32_t. The application is responsible for

interpreting the metadata using the type specified in the property definition.

Vectors

Vectors are encoded as a JSON array of numbers.

Matrices

Matrices are encoded as a JSON array of numbers in column-major order.

Booleans

Booleans are encoded as a JSON boolean, either true or false.

Strings

Strings are encoded as JSON strings.
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Enums

Enums are encoded as JSON strings using the name of the enum value rather than the integer

value. Therefore the enum value type, if specified, is ignored for the JSON encoding.

Arrays

Arrays are encoded as JSON arrays, where each element is encoded according to the type. When a

count is specified, the length of the JSON array must match the count. Otherwise, for variable-

length arrays, the JSON array may be any length, including zero-length.

5. Styling

5.1. Overview

3D Tiles styles provide concise declarative styling of tileset features. A style defines expressions to

evaluate the display of a feature, for example color (RGB and translucency) and show properties,

often based on the feature’s properties stored in the tile’s Batch Table.

A style may be applied to a tile that doesn’t contain features, in which case the tile is treated as an

implicit single feature without properties.

While a style may be created for and reference properties of a tileset, a style is independent of a

tileset, such that any style can be applied to any tileset.

Styles are defined with JSON and expressions written in a small subset of JavaScript augmented for

styling. Additionally, the styling language provides a set of built-in functions to support common

math operations.

The following example assigns a color based on building height.

{

    "show" : "${Area} > 0",

    "color" : {

        "conditions" : [

            ["${Height} < 60", "color('#13293D')"],

            ["${Height} < 120", "color('#1B98E0')"],

            ["true", "color('#E8F1F2', 0.5)"]

        ]

    }

}
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Figure 62. Rendering of buildings with different colors, based on the height of the buildings

5.2. Concepts

5.2.1. Styling features

Visual properties available for styling features are the show property, the assigned expression of

which will evaluate to a boolean that determines if the feature is visible, and the color property, the

assigned expression of which will evaluate to a Color object (RGB and translucency) which

determines the displayed color of a feature.

The following style assigns the default show and color properties to each feature:

{

    "show" : "true",

    "color" : "color('#ffffff')"

}

Instead of showing all features, show can be an expression dependent on a feature’s properties, for

example, the following expression will show only features in the 19341 zip code:

{

    "show" : "${ZipCode} === '19341'"

}

show can also be used for more complex queries; for example, here a compound condition and
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regular expression are used to show only features whose county starts with 'Chest' and whose year

built is greater than or equal to 1970:

{

    "show" : "(regExp('^Chest').test(${County})) && (${YearBuilt} >= 1970)"

}

Colors can also be defined by expressions dependent on a feature’s properties. For example, the

following expression colors features with a temperature above 90 as red and the others as white:

{

    "color" : "(${Temperature} > 90) ? color('red') : color('white')"

}

The color’s alpha component defines the feature’s opacity. For example, the following sets the

feature’s RGB color components from the feature’s properties and makes features with volume

greater than 100 transparent:

{

   "color" : "rgba(${red}, ${green}, ${blue}, (${volume} > 100 ? 0.5 : 1.0))"

}

5.2.2. Conditions

In addition to a string containing an expression, color and show can be an array defining a series of

conditions (similar to if...else statements). Conditions can, for example, be used to make color

maps and color ramps with any type of inclusive/exclusive intervals.

For example, the following expression maps an ID property to colors. Conditions are evaluated in

order, so if ${id} is not '1' or '2', the "true" condition returns white. If no conditions are met, the

color of the feature will be undefined:

{

    "color" : {

        "conditions" : [

            ["${id} === '1'", "color('#FF0000')"],

            ["${id} === '2'", "color('#00FF00')"],

            ["true", "color('#FFFFFF')"]

        ]

    }

}

The next example shows how to use conditions to create a color ramp using intervals with an

inclusive lower bound and exclusive upper bound:
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"color" : {

    "conditions" : [

        ["(${Height} >= 1.0)  && (${Height} < 10.0)", "color('#FF00FF')"],

        ["(${Height} >= 10.0) && (${Height} < 30.0)", "color('#FF0000')"],

        ["(${Height} >= 30.0) && (${Height} < 50.0)", "color('#FFFF00')"],

        ["(${Height} >= 50.0) && (${Height} < 70.0)", "color('#00FF00')"],

        ["(${Height} >= 70.0) && (${Height} < 100.0)", "color('#00FFFF')"],

        ["(${Height} >= 100.0)", "color('#0000FF')"]

    ]

}

Since conditions are evaluated in order, the above can be written more concisely as the following:

"color" : {

    "conditions" : [

        ["(${Height} >= 100.0)", "color('#0000FF')"],

        ["(${Height} >= 70.0)", "color('#00FFFF')"],

        ["(${Height} >= 50.0)", "color('#00FF00')"],

        ["(${Height} >= 30.0)", "color('#FFFF00')"],

        ["(${Height} >= 10.0)", "color('#FF0000')"],

        ["(${Height} >= 1.0)", "color('#FF00FF')"]

    ]

}

5.2.3. Defining variables

Commonly used expressions may be stored in a defines object with a variable name as a key. If a

variable references the name of a defined expression, it is replaced with the result of the

referenced evaluated expression:

{

    "defines" : {

        "NewHeight" : "clamp((${Height} - 0.5) / 2.0, 1.0, 255.0)",

        "HeightColor" : "rgb(${Height}, ${Height}, ${Height})"

    },

    "color" : {

        "conditions" : [

            ["(${NewHeight} >= 100.0)", "color('#0000FF') * ${HeightColor}"],

            ["(${NewHeight} >= 50.0)", "color('#00FF00') * ${HeightColor}"],

            ["(${NewHeight} >= 1.0)", "color('#FF0000') * ${HeightColor}"]

        ]

    },

    "show" : "${NewHeight} < 200.0"

}

A define expression may not reference other defines; however, it may reference feature properties

with the same name. In the style below a feature of height 150 gets the color red:
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{

    "defines" : {

        "Height" : "${Height}/2.0}",

    },

    "color" : {

        "conditions" : [

            ["(${Height} >= 100.0)", "color('#0000FF')"],

            ["(${Height} >= 1.0)", "color('#FF0000')"]

        ]

    }

}

5.2.4. Meta property

Non-visual properties of a feature can be defined using the meta property. For example, the

following sets a description meta property to a string containing the feature name:

{

    "meta" : {

        "description" : "'Hello, ${featureName}.'"

    }

}

A meta property expression can evaluate to any type. For example:

{

    "meta" : {

        "featureColor" : "rgb(${red}, ${green}, ${blue})",

        "featureVolume" : "${height} * ${width} * ${depth}"

    }

}

5.3. Expressions

The language for expressions is a small subset of JavaScript (EMCAScript 5), plus native vector and

regular expression types and access to tileset feature properties in the form of readonly variables.

NOTE

Implementation Note

CesiumJS uses the jsep JavaScript expression parser library to parse style

expressions into an abstract syntax tree (AST).

5.3.1. Semantics

Dot notation is used to access properties by name, e.g., building.name.
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Bracket notation ([]) is also used to access properties, e.g., building['name'], or arrays, e.g.,

temperatures[1].

Functions are called with parenthesis (()) and comma-separated arguments, e.g., (isNaN(0.0),

color('cyan', 0.5)).

5.3.2. Operators

The following operators are supported with the same semantics and precedence as JavaScript.

• Unary: +, -, !

◦ Not supported: ~

• Binary: ||, &&, ===, !==, <, >, <=, >=, +, -, *, /, %, =~, !~

◦ Not supported: |, ^, &, <<, >>, and >>>

• Ternary: ? :

( and ) are also supported for grouping expressions for clarity and precedence.

Logical || and && implement short-circuiting; true || expression does not evaluate the right

expression, and false && expression does not evaluate the right expression.

Similarly, true ? leftExpression : rightExpression only executes the left expression, and false ?

leftExpression : rightExpression only executes the right expression.

5.3.3. Types

The following types are supported:

• Boolean

• Null

• Undefined

• Number

• String

• Array

• vec2

• vec3

• vec4

• RegExp

All of the types except vec2, vec3, vec4, and RegExp have the same syntax and runtime behavior as

JavaScript. vec2, vec3, and vec4 are derived from GLSL vectors and behave similarly to JavaScript

Object (see the Vector section). Colors derive from CSS3 Colors and are implemented as vec4. RegExp

is derived from JavaScript and described in the RegExp section.

Example expressions for different types include the following:
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• true, false

• null

• undefined

• 1.0, NaN, Infinity

• 'Cesium', "Cesium"

• [0, 1, 2]

• vec2(1.0, 2.0)

• vec3(1.0, 2.0, 3.0)

• vec4(1.0, 2.0, 3.0, 4.0)

• color('#00FFFF')

• regExp('^Chest'))

Number

As in JavaScript, numbers can be NaN or Infinity. The following test functions are supported:

• isNaN(testValue : Number) : Boolean

• isFinite(testValue : Number) : Boolean

String

Strings are encoded in UTF-8.

Vector

The styling language includes 2, 3, and 4 component floating-point vector types: vec2, vec3, and vec4.

Vector constructors share the same rules as GLSL:

vec2

• vec2(xy : Number) - initialize each component with the number

• vec2(x : Number, y : Number) - initialize with two numbers

• vec2(xy : vec2) - initialize with another vec2

• vec2(xyz : vec3) - drops the third component of a vec3

• vec2(xyzw : vec4) - drops the third and fourth component of a vec4

vec3

• vec3(xyz : Number) - initialize each component with the number

• vec3(x : Number, y : Number, z : Number) - initialize with three numbers

• vec3(xyz : vec3) - initialize with another vec3

• vec3(xyzw : vec4) - drops the fourth component of a vec4

• vec3(xy : vec2, z : Number) - initialize with a vec2 and number
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• vec3(x : Number, yz : vec2) - initialize with a vec2 and number

vec4

• vec4(xyzw : Number) - initialize each component with the number

• vec4(x : Number, y : Number, z : Number, w : Number) - initialize with four numbers

• vec4(xyzw : vec4) - initialize with another vec4

• vec4(xy : vec2, z : Number, w : Number) - initialize with a vec2 and two numbers

• vec4(x : Number, yz : vec2, w : Number) - initialize with a vec2 and two numbers

• vec4(x : Number, y : Number, zw : vec2) - initialize with a vec2 and two numbers

• vec4(xyz : vec3, w : Number) - initialize with a vec3 and number

• vec4(x : Number, yzw : vec3) - initialize with a vec3 and number

Vector usage

vec2 components may be accessed with

• .x, .y

• .r, .g

• [0], [1]

vec3 components may be accessed with

• .x, .y, .z

• .r, .g, .b

• [0], [1], [2]

vec4 components may be accessed with

• .x, .y, .z, .w

• .r, .g, .b, .a

• [0], [1], [2], [3]

Unlike GLSL, the styling language does not support swizzling. For example, vec3(1.0).xy is not

supported.

Vectors support the following unary operators: -, +.

Vectors support the following binary operators by performing component-wise operations: ===, !==,

+, -, *, /, and %. For example vec4(1.0) === vec4(1.0) is true since the x, y, z, and w components are

equal. Operators are essentially overloaded for vec2, vec3, and vec4.

vec2, vec3, and vec4 have a toString function for explicit (and implicit) conversion to strings in the

format '(x, y)', '(x, y, z)', and '(x, y, z, w)'.

• toString() : String
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vec2, vec3, and vec4 do not expose any other functions or a prototype object.

Color

Colors are implemented as vec4 and are created with one of the following functions:

• color()

• color(keyword : String, [alpha : Number])

• color(6-digit-hex : String, [alpha : Number])

• color(3-digit-hex : String, [alpha : Number])

• rgb(red : Number, green : Number, blue : Number)

• rgba(red : Number, green : Number, blue : Number, alpha : Number)

• hsl(hue : Number, saturation : Number, lightness : Number)

• hsla(hue : Number, saturation : Number, lightness : Number, alpha : Number)

Calling color() with no arguments is the same as calling color('#FFFFFF').

Colors defined by a case-insensitive keyword (e.g., 'cyan') or hex rgb are passed as strings to the

color function. For example:

• color('cyan')

• color('#00FFFF')

• color('#0FF')

These color functions have an optional second argument that is an alpha component to define

opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

• color('cyan', 0.5)

Colors defined with decimal RGB or HSL are created with rgb and hsl functions, respectively, just as

in CSS (but with percentage ranges from 0.0 to 1.0 for 0% to 100%, respectively). For example:

• rgb(100, 255, 190)

• hsl(1.0, 0.6, 0.7)

The range for rgb components is 0 to 255, inclusive. For hsl, the range for hue, saturation, and

lightness is 0.0 to 1.0, inclusive.

Colors defined with rgba or hsla have a fourth argument that is an alpha component to define

opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

• rgba(100, 255, 190, 0.25)

• hsla(1.0, 0.6, 0.7, 0.75)

Colors are equivalent to the vec4 type and share the same functions, operators, and component

accessors. Color components are stored in the range 0.0 to 1.0.
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For example:

• color('red').x, color('red').r, and color('red')[0] all evaluate to 1.0.

• color('red').toString() evaluates to (1.0, 0.0, 0.0, 1.0)

• color('red') * vec4(0.5) is equivalent to vec4(0.5, 0.0, 0.0, 0.5)

RegExp

Regular expressions are created with the following functions, which behave like the JavaScript

RegExp constructor:

• regExp()

• regExp(pattern : String, [flags : String])

Calling regExp() with no arguments is the same as calling regExp('(?:)').

If specified, flags can have any combination of the following values:

• g - global match

• i - ignore case

• m - multiline

• u - unicode

• y- sticky

Regular expressions support these functions:

• test(string : String) : Boolean - Tests the specified string for a match.

• exec(string : String) : String - Executes a search for a match in the specified string. If the

search succeeds, it returns the first instance of a captured String. If the search fails, it returns

null.

For example:

{

    "Name" : "Building 1"

}

regExp('a').test('abc') === true

regExp('a(.)', 'i').exec('Abc') === 'b'

regExp('Building\s(\d)').exec(${Name}) === '1'

Regular expressions have a toString function for explicit (and implicit) conversion to strings in the

format 'pattern':

• toString() : String
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Regular expressions do not expose any other functions or a prototype object.

The operators =~ and !~ are overloaded for regular expressions. The =~ operator matches the

behavior of the test function, and tests the specified string for a match. It returns true if one is

found, and false if not found. The !~ operator is the inverse of the =~ operator. It returns true if no

matches are found, and false if a match is found. Both operators are commutative.

For example, the following expressions all evaluate to true:

regExp('a') =~ 'abc'

'abc' =~ regExp('a')

regExp('a') !~ 'bcd'

'bcd' !~ regExp('a')

5.3.4. Operator rules

• Unary operators + and - operate only on number and vector expressions.

• Unary operator ! operates only on boolean expressions.

• Binary operators <, <=, >, and >= operate only on number expressions.

• Binary operators || and && operate only on boolean expressions.

• Binary operator + operates on the following expressions:

◦ Number expressions

◦ Vector expressions of the same type

◦ If at least one expressions is a string, the other expression is converted to a string following

String Conversions, and the operation returns a concatenated string, e.g. "name" + 10

evaluates to "name10"

• Binary operator - operates on the following expressions:

◦ Number expressions

◦ Vector expressions of the same type

• Binary operator * operates on the following expressions:

◦ Number expressions

◦ Vector expressions of the same type

◦ Mix of number expression and vector expression, e.g. 3 * vec3(1.0) and vec2(1.0) * 3

• Binary operator / operates on the following expressions:

◦ Number expressions

◦ Vector expressions of the same type

◦ Vector expression followed by number expression, e.g.vec3(1.0) / 3

• Binary operator % operates on the following expressions:

◦ Number expressions
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◦ Vector expressions of the same type

• Binary equality operators === and !== operate on any expressions. The operation returns false if

the expression types do not match.

• Binary regExp operators =~ and !~ require one argument to be a string expression and the other

to be a RegExp expression.

• Ternary operator ? : conditional argument must be a boolean expression.

5.3.5. Type conversions

Explicit conversions between primitive types are handled with Boolean, Number, and String

functions.

• Boolean(value : Any) : Boolean

• Number(value : Any) : Number

• String(value : Any) : String

For example:

Boolean(1) === true

Number('1') === 1

String(1) === '1'

Boolean and Number follow JavaScript conventions. String follows String Conversions.

These are essentially casts, not constructor functions.

The styling language does not allow for implicit type conversions, unless stated above. Expressions

like vec3(1.0) === vec4(1.0) and "5" < 6 are not valid.

5.3.6. String conversions

vec2, vec3, vec4, and RegExp expressions are converted to strings using their toString methods. All

other types follow JavaScript conventions.

• true - "true"

• false - "false"

• null - "null"

• undefined - "undefined"

• 5.0 - "5"

• NaN - "NaN"

• Infinity - "Infinity"

• "name" - "name"

• [0, 1, 2] - "[0, 1, 2]"
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• vec2(1, 2) - "(1, 2)"

• vec3(1, 2, 3) - "(1, 2, 3)"

• vec4(1, 2, 3, 4) - "(1, 2, 3, 4)"

• RegExp('a') - "/a/"

5.3.7. Constants

The following constants are supported by the styling language:

• Math.PI

• Math.E

PI

The mathematical constant PI, which represents a circle’s circumference divided by its diameter,

approximately 3.14159.

{

    "show" : "cos(${Angle} + Math.PI) < 0"

}

E

Euler’s constant and the base of the natural logarithm, approximately 2.71828.

{

    "color" : "color() * pow(Math.E / 2.0, ${Temperature})"

}

5.3.8. Variables

Variables are used to retrieve the property values of individual features in a tileset. Variables are

identified using the ES 6 (ECMAScript 2015) template literal syntax, i.e., ${feature.identifier} or

${feature['identifier']}, where the identifier is the case-sensitive property name. Variable names

are encoded in UTF-8. feature is implicit and can be omitted in most cases. If the identifier contains

non-alphanumeric characters, such as :, -, #, or spaces, the ${feature['identifier']} form should

be used.

Variables can be used anywhere a valid expression is accepted, except inside other variable

identifiers. For example, the following is not allowed:

${foo[${bar}]}

If a feature does not have a property with the specified name, the variable evaluates to undefined.

Note that the property may also be null if null was explicitly stored for a property.
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Variables may be any of the supported native JavaScript types:

• Boolean

• Null

• Undefined

• Number

• String

• Array

For example:

{

    "enabled" : true,

    "description" : null,

    "order" : 1,

    "name" : "Feature name"

}

${enabled} === true

${description} === null

${order} === 1

${name} === 'Feature name'

Additionally, variables originating from vector properties stored in the Batch Table binary are

treated as vector types:

componentType variable type

"VEC2" vec2

"VEC3" vec3

"VEC4" vec4

Variables can be used to construct colors or vectors. For example:

rgba(${red}, ${green}, ${blue}, ${alpha})

vec4(${temperature})

Dot or bracket notation is used to access feature subproperties. For example:
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{

    "address" : {

        "street" : "Example street",

        "city" : "Example city"

    }

}

${address.street} === `Example street`

${address['street']} === `Example street`

${address.city} === `Example city`

${address['city']} === `Example city`

Bracket notation supports only string literals.

Top-level properties can be accessed with bracket notation by explicitly using the feature keyword.

For example:

{

    "address.street" : "Maple Street",

    "address" : {

        "street" : "Oak Street"

    }

}

${address.street} === `Oak Street`

${feature.address.street} === `Oak Street`

${feature['address'].street} === `Oak Street`

${feature['address.street']} === `Maple Street`

To access a feature named feature, use the variable ${feature}. This is equivalent to accessing
${feature.feature}

{

    "feature" : "building"

}

${feature} === `building`

${feature.feature} === `building`

Variables can also be substituted inside strings defined with backticks, for example:
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{

    "order" : 1,

    "name" : "Feature name"

}

`Name is ${name}, order is ${order}`

Bracket notation is used to access feature subproperties or arrays. For example:

{

    "temperatures" : {

        "scale" : "fahrenheit",

        "values" : [70, 80, 90]

    }

}

${temperatures['scale']} === 'fahrenheit'

${temperatures.values[0]} === 70

${temperatures['values'][0]} === 70 // Same as (temperatures[values])[0] and

temperatures.values[0]

5.3.9. Built-in functions

The following built-in functions are supported by the styling language:

• abs

• sqrt

• cos

• sin

• tan

• acos

• asin

• atan

• atan2

• radians

• degrees

• sign

• floor

• ceil
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• round

• exp

• log

• exp2

• log2

• fract

• pow

• min

• max

• clamp

• mix

• length

• distance

• normalize

• dot

• cross

Many of the built-in functions take either scalars or vectors as arguments. For vector arguments the

function is applied component-wise and the resulting vector is returned.

abs

abs(x : Number) : Number

abs(x : vec2) : vec2

abs(x : vec3) : vec3

abs(x : vec4) : vec4

Returns the absolute value of x.

{

    "show" : "abs(${temperature}) > 20.0"

}

sqrt

sqrt(x : Number) : Number

sqrt(x : vec2) : vec2

sqrt(x : vec3) : vec3

sqrt(x : vec4) : vec4
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Returns the square root of x when x >= 0. Returns NaN when x < 0.

{

    "color" : {

        "conditions" : [

            ["${temperature} >= 0.5", "color('#00FFFF')"],

            ["${temperature} >= 0.0", "color('#FF00FF')"]

        ]

    }

}

cos

cos(angle : Number) : Number

cos(angle : vec2) : vec2

cos(angle : vec3) : vec3

cos(angle : vec4) : vec4

Returns the cosine of angle in radians.

{

    "show" : "cos(${Angle}) > 0.0"

}

sin

sin(angle : Number) : Number

sin(angle : vec2) : vec2

sin(angle : vec3) : vec3

sin(angle : vec4) : vec4

Returns the sine of angle in radians.

{

    "show" : "sin(${Angle}) > 0.0"

}

tan

tan(angle : Number) : Number

tan(angle : vec2) : vec2

tan(angle : vec3) : vec3

tan(angle : vec4) : vec4
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Returns the tangent of angle in radians.

{

    "show" : "tan(${Angle}) > 0.0"

}

acos

acos(angle : Number) : Number

acos(angle : vec2) : vec2

acos(angle : vec3) : vec3

acos(angle : vec4) : vec4

Returns the arccosine of angle in radians.

{

    "show" : "acos(${Angle}) > 0.0"

}

asin

asin(angle : Number) : Number

asin(angle : vec2) : vec2

asin(angle : vec3) : vec3

asin(angle : vec4) : vec4

Returns the arcsine of angle in radians.

{

    "show" : "asin(${Angle}) > 0.0"

}

atan

atan(angle : Number) : Number

atan(angle : vec2) : vec2

atan(angle : vec3) : vec3

atan(angle : vec4) : vec4

Returns the arctangent of angle in radians.
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{

    "show" : "atan(${Angle}) > 0.0"

}

atan2

atan2(y : Number, x : Number) : Number

atan2(y : vec2, x : vec2) : vec2

atan2(y : vec3, x : vec3) : vec3

atan2(y : vec4, x : vec4) : vec4

Returns the arctangent of the quotient of y and x.

{

    "show" : "atan2(${GridY}, ${GridX}) > 0.0"

}

radians

radians(angle : Number) : Number

radians(angle : vec2) : vec2

radians(angle : vec3) : vec3

radians(angle : vec4) : vec4

Converts angle from degrees to radians.

{

    "show" : "radians(${Angle}) > 0.5"

}

degrees

degrees(angle : Number) : Number

degrees(angle : vec2) : vec2

degrees(angle : vec3) : vec3

degrees(angle : vec4) : vec4

Converts angle from radians to degrees.

{

    "show" : "degrees(${Angle}) > 45.0"

}
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sign

sign(x : Number) : Number

sign(x : vec2) : vec2

sign(x : vec3) : vec3

sign(x : vec4) : vec4

Returns 1.0 when x is positive, 0.0 when x is zero, and -1.0 when x is negative.

{

    "show" : "sign(${Temperature}) * sign(${Velocity}) === 1.0"

}

floor

floor(x : Number) : Number

floor(x : vec2) : vec2

floor(x : vec3) : vec3

floor(x : vec4) : vec4

Returns the nearest integer less than or equal to x.

{

    "show" : "floor(${Position}) === 0"

}

ceil

ceil(x : Number) : Number

ceil(x : vec2) : vec2

ceil(x : vec3) : vec3

ceil(x : vec4) : vec4

Returns the nearest integer greater than or equal to x.

{

    "show" : "ceil(${Position}) === 1"

}

round
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round(x : Number) : Number

round(x : vec2) : vec2

round(x : vec3) : vec3

round(x : vec4) : vec4

Returns the nearest integer to x. A number with a fraction of 0.5 will round in an implementation-

defined direction.

{

    "show" : "round(${Position}) === 1"

}

exp

exp(x : Number) : Number

exp(x : vec2) : vec2

exp(x : vec3) : vec3

exp(x : vec4) : vec4

Returns e to the power of x, where e is Euler’s constant, approximately 2.71828.

{

    "show" : "exp(${Density}) > 1.0"

}

log

log(x : Number) : Number

log(x : vec2) : vec2

log(x : vec3) : vec3

log(x : vec4) : vec4

Returns the natural logarithm (base e) of x.

{

    "show" : "log(${Density}) > 1.0"

}

exp2
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exp2(x : Number) : Number

exp2(x : vec2) : vec2

exp2(x : vec3) : vec3

exp2(x : vec4) : vec4

Returns 2 to the power of x.

{

    "show" : "exp2(${Density}) > 1.0"

}

log2

log2(x : Number) : Number

log2(x : vec2) : vec2

log2(x : vec3) : vec3

log2(x : vec4) : vec4

Returns the base 2 logarithm of x.

{

    "show" : "log2(${Density}) > 1.0"

}

fract

fract(x : Number) : Number

fract(x : vec2) : vec2

fract(x : vec3) : vec3

fract(x : vec4) : vec4

Returns the fractional part of x. Equivalent to x - floor(x).

{

    "color" : "color() * fract(${Density})"

}

pow
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pow(base : Number, exponent : Number) : Number

pow(base : vec2, exponent : vec2) : vec2

pow(base : vec3, exponent : vec3) : vec3

pow(base : vec4, exponent : vec4) : vec4

Returns base raised to the power of exponent.

{

    "show" : "pow(${Density}, ${Temperature}) > 1.0"

}

min

min(x : Number, y : Number) : Number

min(x : vec2, y : vec2) : vec2

min(x : vec3, y : vec3) : vec3

min(x : vec4, y : vec4) : vec4

min(x : Number, y : Number) : Number

min(x : vec2, y : Number) : vec2

min(x : vec3, y : Number) : vec3

min(x : vec4, y : Number) : vec4

Returns the smaller of x and y.

{

    "show" : "min(${Width}, ${Height}) > 10.0"

}

max

max(x : Number, y : Number) : Number

max(x : vec2, y : vec2) : vec2

max(x : vec3, y : vec3) : vec3

max(x : vec4, y : vec4) : vec4

max(x : Number, y : Number) : Number

max(x : vec2, y : Number) : vec2

max(x : vec3, y : Number) : vec3

max(x : vec4, y : Number) : vec4

Returns the larger of x and y.
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{

    "show" : "max(${Width}, ${Height}) > 10.0"

}

clamp

clamp(x : Number,  min : Number, max : Number) : Number

clamp(x : vec2,  min : vec2, max : vec2) : vec2

clamp(x : vec3,  min : vec3, max : vec3) : vec3

clamp(x : vec4,  min : vec4, max : vec4) : vec4

clamp(x : Number,  min : Number, max : Number) : Number

clamp(x : vec2,  min : Number, max : Number) : vec2

clamp(x : vec3,  min : Number, max : Number) : vec3

clamp(x : vec4,  min : Number, max : Number) : vec4

Constrains x to lie between min and max.

{

    "color" : "color() * clamp(${temperature}, 0.1, 0.2)"

}

mix

mix(x : Number,  y : Number, a : Number) : Number

mix(x : vec2,  y : vec2, a : vec2) : vec2

mix(x : vec3,  y : vec3, a : vec3) : vec3

mix(x : vec4,  y : vec4, a : vec4) : vec4

mix(x : Number,  y : Number, a : Number) : Number

mix(x : vec2,  y : vec2, a : Number) : vec2

mix(x : vec3,  y : vec3, a : Number) : vec3

mix(x : vec4,  y : vec4, a : Number) : vec4

Computes the linear interpolation of x and y.

{

    "show" : "mix(20.0, ${Angle}, 0.5) > 25.0"

}
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length

length(x : Number) : Number

length(x : vec2) : vec2

length(x : vec3) : vec3

length(x : vec4) : vec4

Computes the length of vector x, i.e., the square root of the sum of the squared components. If x is a

number, length returns x.

{

    "show" : "length(${Dimensions}) > 10.0"

}

distance

distance(x : Number, y : Number) : Number

distance(x : vec2, y : vec2) : vec2

distance(x : vec3, y : vec3) : vec3

distance(x : vec4, y : vec4) : vec4

Computes the distance between two points x and y, i.e., length(x - y).

{

    "show" : "distance(${BottomRight}, ${UpperLeft}) > 50.0"

}

normalize

normalize(x : Number) : Number

normalize(x : vec2) : vec2

normalize(x : vec3) : vec3

normalize(x : vec4) : vec4

Returns a vector with length 1.0 that is parallel to x. When x is a number, normalize returns 1.0.

{

    "show" : "normalize(${RightVector}, ${UpVector}) > 0.5"

}

dot
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dot(x : Number, y : Number) : Number

dot(x : vec2, y : vec2) : vec2

dot(x : vec3, y : vec3) : vec3

dot(x : vec4, y : vec4) : vec4

Computes the dot product of x and y.

{

    "show" : "dot(${RightVector}, ${UpVector}) > 0.5"

}

cross

cross(x : vec3, y : vec3) : vec3

Computes the cross product of x and y. This function only accepts vec3 arguments.

{

    "color" : "vec4(cross(${RightVector}, ${UpVector}), 1.0)"

}

5.3.10. Notes

Comments are not supported.

5.4. Point Cloud

A Point Cloud is a collection of points that may be styled like other features. In addition to

evaluating a point’s color and show properties, a Point Cloud style may evaluate pointSize, or the

size of each point in pixels. The default pointSize is 1.0.

{

    "color" : "color('red')",

    "pointSize" : "${Temperature} * 0.5"

}

Implementations may clamp the evaluated pointSize to the system’s supported point size range. For

example, WebGL renderers may query ALIASED_POINT_SIZE_RANGE to get the system limits when

rendering with POINTS. A pointSize of 1.0 must be supported.

Point Cloud styles may also reference semantics from the Feature Table including position, color,

and normal to allow for more flexible styling of the source data.

• ${POSITION} is a vec3 storing the xyz Cartesian coordinates of the point before the RTC_CENTER and
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tile transform are applied. When the positions are quantized, ${POSITION} refers to the position

after the QUANTIZED_VOLUME_SCALE is applied, but before QUANTIZED_VOLUME_OFFSET is applied.

• ${POSITION_ABSOLUTE} is a vec3 storing the xyz Cartesian coordinates of the point after the

RTC_CENTER and tile transform are applied. When the positions are quantized,

${POSITION_ABSOLUTE} refers to the position after the QUANTIZED_VOLUME_SCALE,

QUANTIZED_VOLUME_OFFSET, and tile transform are applied.

• ${COLOR} evaluates to a Color storing the rgba color of the point. When the Feature Table’s color

semantic is RGB or RGB565, ${COLOR}.alpha is 1.0. If no color semantic is defined, ${COLOR}

evaluates to the application-specific default color.

• ${NORMAL} is a vec3 storing the normal, in Cartesian coordinates, of the point before the tile

transform is applied. When normals are oct-encoded, ${NORMAL} refers to the decoded normal. If

no normal semantic is defined in the Feature Table, ${NORMAL} evaluates to undefined.

For example:

{

    "color" : "${COLOR} * color('red')'",

    "show" : "${POSITION}.x > 0.5",

    "pointSize" : "${NORMAL}.x > 0 ? 2 : 1"

}

NOTE

Implementation Note

Point cloud styling engines may often use a shader (GLSL) implementation,

however some features of the expression language are not possible in pure a GLSL

implementation. Some of these features include:

• Evaluation of isNaN and isFinite (GLSL 2.0+ supports isnan and isinf for these

functions respectively)

• The types null and undefined

• Strings, including accessing object properties (color()['r']) and batch table

values

• Regular expressions

• Arrays of lengths other than 2, 3, or 4

• Mismatched type comparisons (e.g. 1.0 === false)

• Array index out of bounds

5.5. File extension and MIME type

Tileset styles use the .json extension and the application/json mime type.
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Appendix A: Migration From Legacy Tile

Formats

This section describes how legacy tile formats can be converted into equivalent glTF content.

Batched 3D Model (b3dm)

Batched 3D Model is a wrapper around a binary glTF that includes additional information in its

Feature Table and Batch Table. Batched 3D Model content can be converted into glTF content with

the following changes:

• The RTC_CENTER can be added to the translation component of the root node of the glTF asset.

• Batch IDs and Batch Tables can be represented using EXT_mesh_features and

EXT_structural_metadata.

Figure 63. Batched 3D Models in 3D Tiles 1.0, and the corresponding representation in 3D Tiles 1.1

Instanced 3D Model (i3dm)

Instanced 3D Model instances a glTF asset (embedded or external) and provides per-instance

transforms and batch IDs.

• The RTC_CENTER can be added to the translation component of the root node of the glTF asset.

• glTF can leverage GPU instancing with the EXT_mesh_gpu_instancing extension.

• Batch IDs and Batch Tables can be represented using EXT_instance_features and

EXT_structural_metadata.

• EAST_NORTH_UP is not directly supported, but can be represented using per-instance rotations.

Figure 64. Instanced 3D Models in 3D Tiles 1.0, and the corresponding representation in 3D Tiles 1.1

Point Cloud (pnts)

Point Cloud can be represented as a glTF using the primitive mode 0 (POINTS).

• The RTC_CENTER can be added to the translation component of the root node of the glTF asset.
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• Feature table properties like POSITION, COLOR, and NORMAL may be stored as glTF attributes.

• EXT_meshopt_compression and KHR_mesh_quantization may be used for point cloud compression.

3DTILES_draco_point_compression is not directly supported in glTF because

KHR_draco_mesh_compression only supports triangle meshes.

• Batch IDs and Batch Tables can be represented using EXT_mesh_features and

EXT_structural_metadata.

• CONSTANT_RGBA is not directly supported in glTF, but can be achieved with materials or per-point

colors.

Figure 65. Point Clouds in 3D Tiles 1.0, and the corresponding representation in 3D Tiles 1.1

Composite (cmpt)

All inner contents of a Composite may be combined into the same glTF as separate nodes, meshes,

or primitives, at the tileset author’s discretion. Alternatively, a tile may have multiple contents.

Appendix B: Availability Indexing

Converting from Tile Coordinates to Morton Index

A Morton index is computed by interleaving the bits of the (x, y) or (x, y, z) coordinates of a tile.

Specifically:

quadtreeMortonIndex = interleaveBits(x, y)

octreeMortonIndex = interleaveBits(x, y, z)

For example:

// Quadtree

interleaveBits(0b11, 0b00) = 0b0101

interleaveBits(0b1010, 0b0011) = 0b01001110

interleaveBits(0b0110, 0b0101) = 0b00110110

// Octree

interleaveBits(0b001, 0b010, 0b100) = 0b100010001

interleaveBits(0b111, 0b000, 0b111) = 0b101101101
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Figure 66. An example for the computation of the Morton index based on the tile coordinates on three levels

of a quadtree

Availability Bitstream Lengths

Availability Type Length (bits) Description

Tile availability (N^subtreeLevels - 1)/(N - 1) Total number of nodes in the

subtree

Content availability (N^subtreeLevels - 1)/(N - 1) Since there is at most one

content per tile, this is the

same length as tile

availability

Child subtree availability N^subtreeLevels Number of nodes one level

deeper than the deepest

level of the subtree

Where N is 4 for quadtrees and 8 for octrees.

These lengths are in number of bits in a bitstream. To compute the length of the bitstream in bytes,

the following formula is used:

lengthBytes = ceil(lengthBits / 8)

Accessing Availability Bits

For tile availability and content availability, the Morton index only determines the ordering within

a single level of the subtree. Since the availability bitstream stores bits for every level of the

subtree, a level offset must be computed.
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Given the (level, mortonIndex) of a tile relative to the subtree root, the index of the corresponding

bit can be computed with the following formulas:

Quantity Formula Description

levelOffset (N^level - 1) / (N - 1) This is the number of nodes

at levels 1, 2, ... (level -
1)

tileAvailabilityIndex levelOffset + mortonIndex The index into the buffer

view is the offset for the

tile’s level plus the morton

index for the tile

Where N is 4 for quadtrees and 8 for octrees.

Since child subtree availability stores bits for a single level, no levelOffset is needed, i.e.

childSubtreeAvailabilityIndex = mortonIndex, where the mortonIndex is the Morton index of the

desired child subtree relative to the root of the current subtree.

Global and Local Tile Coordinates

When working with tile coordinates, it is important to consider which tile the coordinates are

relative to. There are two main types used in implicit tiling:

• global coordinates - coordinates relative to the implicit root tile.

• local coordinates - coordinates relative to the root of a specific subtree.

Global coordinates are used for locating any tile in the entire implicit tileset. For example, template

URIs use global coordinates to locate content files and subtrees. Meanwhile, local coordinates are

used for locating data within a single subtree file.

In binary, a tile’s global Morton index is the complete path from the implicit root tile to the tile. This

is the concatenation of the path from the implicit root tile to the subtree root tile, followed by the

path from the subtree root tile to the tile. This can be expressed with the following equation:

tile.globalMortonIndex = concatBits(subtreeRoot.globalMortonIndex,

tile.localMortonIndex)
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Figure 67. Illustration of how to compute the global Morton index of a tile, from the global Morton index of

the root of the containing subtree, and the local Morton index of the tile in this subtree

Similarly, the global level of a tile is the length of the path from the implicit root tile to the tile. This

is the sum of the subtree root tile’s global level and the tile’s local level relative to the subtree root

tile:

tile.globalLevel = subtreeRoot.globalLevel + tile.localLevel
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Figure 68. Illustration of how to compute the global level of a tile, from the glonal level of the root of the

containing subtree, and the local level of the tile in this subtree

(x, y, z) coordinates follow the same pattern as Morton indices. The only difference is that the

concatenation of bits happens component-wise. That is:

tile.globalX = concatBits(subtreeRoot.globalX, tile.localX)

tile.globalY = concatBits(subtreeRoot.globalY, tile.localY)

// Octrees only

tile.globalZ = concatBits(subtreeRoot.globalZ, tile.localZ)

Figure 69. Illustration of the computation of the global tile coordinates, from the global coordinates of the

containing subtree, and the local coordinates of the tile in this subtree.

Finding Parent and Child Tiles
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The coordinates of a parent or child tile can also be computed with bitwise operations on the

Morton index. The following formulas apply for both local and global coordinates.

childTile.level = parentTile.level + 1

childTile.mortonIndex = concatBits(parentTile.mortonIndex, childIndex)

childTile.x = concatBits(parentTile.x, childX)

childTile.y = concatBits(parentTile.y, childY)

// Octrees only

childTile.z = concatBits(parentTile.z, childZ)

Where:

• childIndex is an integer in the range [0, N) that is the index of the child tile relative to the

parent.

• childX, childY, and childZ are single bits that represent which half of the parent’s bounding

volume the child is in in each direction.

Figure 70. Illustration of the computation of the coordinates of parent- and child tiles

Appendix C: 3D Metadata Reference

Implementation

This document defines a reference implementation of the concepts defined in the 3D Metadata

Specification. The 3D Metadata Specification itself defines a standard format for structured

metadata in 3D content in a way that is language- and format agnostic. The reference

implementation described here is an implementation of these concepts:

• The Schema is a JSON-based representation of 3D Metadata Schemas that describe the structure

and types of metadata

• The PropertyTable is one form of a Binary Table Format. It is a JSON-based description of how
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large amounts of metadata can be stored compactly in a binary form.

These serialization formats are used as a common basis for different implementations of the 3D

Metadata Specification:

• 3D Tiles Metadata - Assigns metadata to tilesets, tiles, and contents in 3D Tiles 1.1

• 3DTILES_metadata - An extension for 3D Tiles 1.0 that assigns metadata to tilesets, tiles, and

contents

• EXT_structural_metadata (glTF 2.0) —  Assigns metadata to vertices, texels, and features in a glTF

asset

Property Table Implementation

The 3D Metadata Specification defines schemas as a description of the structure of metadata, and

different storage formats for the metadata. One form of storing metadata is that of a Binary Table

Format, where the data is stored in a binary representation of a table. Each column of such a table

represents one of the properties of a class. Each row represents a single entity conforming to the

class. The following is the description of such a binary table format, referred to as property table.

It is used as the basis for defining the metadata storage in the following implementations:

• 3D Tiles Metadata Implicit Tilesets - Assigns metadata to tilesets, tiles, groups, and contents in a

3D Tiles tileset. A property table is defined for subtrees of an implicit tile hierarchy, and stores

metadata that is associated with the nodes of such a subtree.

• EXT_structural_metadata — Assigns metadata to vertices, texels, and features in a glTF asset. A

property table is defined in the top-level extension object. The property values are stored in

standard glTF buffer views.

The full JSON schema definition for this implementation can be found in the PropertyTable

directory of the specification.

Property Tables

Defined in propertyTable.schema.json.

A property table must specify the following elements:

• Its class (class), which refers to a class ID in a Schema.

• A dictionary of properties (properties), where each entry describes the binary storage of the

data for the corresponding class property.

• A count (count) for the number of elements (rows) in the property table.

The property table may provide value arrays for only a subset of the properties of its class, but class

properties that are marked required: true in the schema must not be omitted.
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NOTE

Example

A tree_survey_2021-09-29 property table, implementing the tree class defined in the

Schema examples. The table contains observations for 10 trees. Details about the

class properties will be given in later examples.

"schema": { ... },

"propertyTables": [{

  "name": "tree_survey_2021-09-29",

  "class": "tree",

  "count": 10,

  "properties": {

    "species": { ... },

    "age": { ... },

    "height": { ... },

    // "diameter" is not required and has been omitted from this table.

  }

}]

Property Table Properties

Defined in propertyTable.property.schema.json.

Each property definition in a property table represents one column of the table. This column data is

stored in binary form, using the encoding defined in the Binary Table Format section of the 3D

Metadata Specification. The actual data is stored in a binary buffer, and the property refers to a

section of this buffer that is called a buffer view.

• In the 3D Tiles Metadata implementation, a buffer view is defined as part of subtrees in implicit

tilesets.

• In the 3DTILES_metadata extension for 3D Tiles 1.0, a buffer view is defined as part of subtrees

the 3DTILES_implicit_tiling extension.

• In the EXT_structural_metadata, a buffer view is a standard glTF buffer view.

The exact structure of each property entry depends on the property type:

• Every property definition must define the values that store the raw data of the actual values.

• Properties that have the STRING component type must define the stringOffsets, as defined in

Strings.

• Properties that are variable-length arrays must define the arrayOffsets, as defined in Arrays.

For variable-length arrays of strings, both the stringOffsets and the arrayOffsets are required.
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NOTE

Example

The property table from the previous example, with details about the binary storage

of the property values

{

  "propertyTables": [{

    "name": "tree_survey_2021-09-29",

    "class": "tree",

    "count": 10,

    "properties": {

      "species": {

        "values": 2,

        "stringOffsets": 3

      },

      "age": {

        "values": 1

      },

      "height": {

        "values": 0

      },

      // "diameter" is not required and has been omitted from this

table.

    }

  }]

}

Each buffer view byteOffset must be aligned to a multiple of the size of the componentType of the

respective property.

NOTE

Implementation Note

Authoring tools may choose to align all buffer views to 8-byte boundaries for

consistency, but client implementations should only depend on 8-byte alignment for

buffer views containing 64-bit component types.

For the arrayOffsets and stringOffsets buffer views, the property can also define the

arrayOffsetType and stringOffsetType, which describe the storage type for array- and string offsets,

respectively. Allowed types are UINT8, UINT16, UINT32, and UINT64. The default is UINT32.

A property may override the minimum and maximum values and the offset and scale from the property

definition in the class, to account for the actual range of values that is stored in the property table.

Schema Implementation

The 3D Metadata Specification defines schemas as a description of the structure of metadata,

consisting of classes with different properties, and enum types. The following is the description of a

JSON-based representation of such a schema and its elements. It is used as the basis for defining the

metadata structure in the following implementations:
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• 3D Tiles Metadata Implicit Tilesets - Assigns metadata to tilesets, tiles, groups, and contents in a

3D Tiles tileset. A property table is defined for subtrees of an implicit tile hierarchy, and stores

metadata that is associated with the nodes of such a subtree.

• EXT_structural_metadata — Assigns metadata to vertices, texels, and features in a glTF asset. A

property table is defined in the top-level extension object. The property values are stored in

standard glTF buffer views.

The full JSON schema definition for this implementation can be found in the Schema directory of

the specification.

Schema

Defined in schema.schema.json.

A schema defines a set of classes and enums. Classes serve as templates for entities. They provide a

list of properties and the type information for those properties. Enums define the allowable values

for enum properties.

NOTE

Example

Schema with a tree class, and a speciesEnum enum that defines different species of

trees. Later examples show how these structures in more detail.

{

  "schema": {

    "classes": {

      "tree": { ... },

    "enums": {

      "speciesEnum": { ... }

    }

  }

}

Class

Defined in class.schema.json.

A class is a template for metadata entities. Classes provide a list of property definitions. Every entity

must be associated with a class, and the entity’s properties must conform to the class’s property

definitions. Entities whose properties conform to a class are considered instances of that class.

Classes are defined as entries in the schema.classes dictionary, indexed by class ID. Class IDs must

be identifiers as defined in the 3D Metadata Specification.
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NOTE

Example

A "Tree" class, which might describe a table of tree measurements taken in a park.

Property definitions are abbreviated here, and introduced in the next section.

{

  "schema": {

    "classes": {

      "tree": {

        "name": "Tree",

        "description": "Woody, perennial plant.",

        "properties": {

          "species": { ... },

          "age": { ... },

          "height": { ... },

          "diameter": { ... }

        }

      }

    }

  }

}

Class Property

Defined in class.property.schema.json.

Class properties are defined abstractly in a class. The class is instantiated with specific values

conforming to these properties. Class properties support a rich variety of data types. Details about

the supported types can be found in the 3D Metadata Specification.

Class properties are defined as entries in the class.properties dictionary, indexed by property ID.

Property IDs must be identifiers as defined in the 3D Metadata Specification.
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NOTE

Example

A "Tree" class, which might describe a table of tree measurements taken in a park.

Properties include species, age, height, and diameter of each tree.

{

  "schema": {

    "classes": {

      "tree": {

        "name": "Tree",

        "description": "Woody, perennial plant.",

        "properties": {

          "species": {

            "description": "Type of tree.",

            "type": "ENUM",

            "enumType": "speciesEnum",

            "required": true

          },

          "age": {

            "description": "The age of the tree, in years",

            "type": "SCALAR",

            "componentType": "UINT8",

            "required": true

          },

          "height": {

            "description": "Height of tree measured from ground level,

in meters.",

            "type": "SCALAR",

            "componentType": "FLOAT32"

          },

          "diameter": {

            "description": "Diameter at trunk base, in meters.",

            "type": "SCALAR",

            "componentType": "FLOAT32"

          }

        }

      }

    }

  }

}

Enum

Defined in enum.schema.json.

A set of categorical types, defined as (name, value) pairs. Enum properties use an enum as their

type.

Enums are defined as entries in the schema.enums dictionary, indexed by an enum ID. Enum IDs

must be identifiers as defined in the 3D Metadata Specification.
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NOTE

Example

A "Species" enum defining types of trees. An "Unspecified" enum value is optional,

but when provided as the noData value for a property (see: 3D Metadata - No Data

Values) may be helpful to identify missing data.

{

  "schema": {

    "enums": {

      "speciesEnum": {

        "name": "Species",

        "description": "An example enum for tree species.",

        "values": [

          {"name": "Unspecified", "value": 0},

          {"name": "Oak", "value": 1},

          {"name": "Pine", "value": 2},

          {"name": "Maple", "value": 3}

        ]

      }

    }

  }

}

Enum Value

Defined in enum.value.schema.json.

Pairs of (name, value) entries representing possible values of an enum property.

Enum values are defined as entries in the enum.values array. Duplicate names or duplicate integer

values are not allowed.

Appendix D: 3D Metadata Semantic

Reference

Overview

This document provides common definitions of meaning ("semantics") used by metadata properties

in 3D Tiles and glTF. Tileset authors may define their own application- or domain-specific

semantics separately.

Semantics describe how properties should be interpreted. For example, an application that

encounters the ID or NAME semantics while parsing a dataset may use these values as unique

identifiers or human-readable labels, respectively.

Each semantic is defined in terms of its meaning, and the datatypes it may assume. Datatype

specifications include "type" as defined by the 3D Metadata Specification. When applicable they
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may also include "component type", "array", and "count".

For use of semantics, see:

• 3D Tiles Metadata - Assigns metadata to tilesets, tiles, and contents in 3D Tiles 1.1

• 3DTILES_metadata - An extension for 3D Tiles 1.0 that assigns metadata to tilesets, tiles, and

contents

• EXT_structural_metadata (glTF 2.0) —  Assigns metadata to vertices, texels, and features in a glTF

asset

General

Overview

Throughout this section, the term "entity" refers to any conceptual object with which a property

value (as defined in the 3D Metadata Specification) may be associated. Examples of entities include

tilesets, tiles, and tile contents in 3D Tiles, or groups of vertices and texels in glTF 2.0 assets.

Additional types of entities may be defined by other specifications or applications.

General Semantics

Semantic Type Description

ID • Type: STRING The unique identifier for the entity.

NAME • Type: STRING The name of the entity. Names should be

human-readable, and do not have to be unique.

DESCRIPTION • Type: STRING Description of the entity. Typically at least a

phrase, and possibly several sentences or

paragraphs.

ATTRIBUTION_IDS • Type: SCALAR

• Component type:

UINT8, UINT16,

UINT32, or UINT64

• Array: true

List of attribution IDs that index into a global list

of attribution strings. This semantic may be

assigned to metadata at any level of granularity

including tileset, group, subtree, tile, content,

feature, vertex, and texel granularity. The global

list of attribution strings is located in a tileset or

subtree with the property semantic

ATTRIBUTION_STRINGS. The following precedence

order is used to locate the attribution strings:

first the containing subtree (if applicable), then

the containing external tileset (if applicable),

and finally the root tileset.
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Semantic Type Description

ATTRIBUTION_STRINGS • Type: STRING

• Array: true

List of attribution strings. Each string contains

information about a data provider or copyright

text. Text may include embedded markup

languages such as HTML. This semantic may be

assigned to metadata at any granularity

(wherever STRING property values can be

encoded). When used in combination with

ATTRIBUTION_IDS it is assigned to subtrees and

tilesets.

3D Tiles

Overview

Semantics for 3D Tiles are assigned in relationship to a tileset, subtree, tile, or tile content, as

defined by the 3D Tiles specification. When associated with other types of entities, these semantics

may have invalid or undefined meanings.

Units for all linear distances are meters, and all angles are radians.

Tileset

Overview

TILESET_* semantics provide meaning for properties associated with a tileset.

Tileset Semantics

Semantic Type Description

TILESET_FEATURE_ID_LAB
ELS

• Type: STRING

• Array: true

The union of all the feature ID labels in glTF

content using the EXT_mesh_features and

EXT_instance_features extensions.
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Semantic Type Description

TILESET_CRS_GEOCENTRIC • Type: STRING The geocentric coordinate reference system

(CRS) of the tileset. Values include, but are not

limited to:

• "EPSG:4978" - WGS 84

• "EPSG:7656" - WGS 84 (G730)

• "EPSG:7658" - WGS 84 (G873)

• "EPSG:7660" - WGS 84 (G1150)

• "EPSG:7662" - WGS 84 (G1674)

• "EPSG:7664" - WGS 84 (G1762)

• "EPSG:9753" - WGS 84 (G2139)

• "UNKNOWN" - CRS is unknown

region bounding volumes are assumed to use

the same reference ellipsoid as the geocentric

coordinate reference system specified here.

For more details on coordinate reference

systems in 3D Tiles, see Coordinate Reference

System (CRS).

TILESET_CRS_COORDINATE
_EPOCH

• Type: STRING The coordinate epoch for coordinates that are

referenced to a dynamic CRS such as WGS 84.

Coordinates include glTF vertex positions after

transforms have been applied — see glTF

transforms. Expressed as a decimal year (e.g.

"2019.81"). See WKT representation of

coordinate epoch and coordinate metadata for

more details.

Tile

Overview

TILE_* semantics provide meaning for properties associated with a particular tile, and should take

precedence over equivalent metadata on parent objects, as well as over values derived from

subdivision schemes in Implicit Tiling.

If property values are missing, either because the property is omitted or the property table contains

noData values, the original tile properties are used, such as those explicitly defined in tileset JSON or

implicitly computed from subdivision schemes in Implicit Tiling.

In particular, TILE_BOUNDING_BOX, TILE_BOUNDING_REGION, and TILE_BOUNDING_SPHERE semantics each

define a more specific bounding volume for a tile than is implicitly calculated from Implicit Tiling.
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If more than one of these semantics are available for a tile, clients may select the most appropriate

option based on use case and performance requirements.

Tile Semantics

Semantic Type Description

TILE_BOUNDING_BOX • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

• Array: true

• Count: 12

The bounding volume of the tile, expressed as a

box. Equivalent to tile.boundingVolume.box.

TILE_BOUNDING_REGION • Type: SCALAR

• Component type:
FLOAT64

• Array: true

• Count: 6

The bounding volume of the tile, expressed as a

region. Equivalent to

tile.boundingVolume.region.

TILE_BOUNDING_SPHERE • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

• Array: true

• Count: 4

The bounding volume of the tile, expressed as a

sphere. Equivalent to

tile.boundingVolume.sphere.

TILE_BOUNDING_S2_CELL • Type: SCALAR

• Component type:
UINT64

The bounding volume of the tile, expressed as an

S2 Cell ID using the 64-bit representation instead

of the hexadecimal representation. Only

applicable to `3DTILES_bounding_volume_S2.

TILE_MINIMUM_HEIGHT • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

The minimum height of the tile above (or below)

the WGS84 ellipsoid. Equivalent to minimum

height component of TILE_BOUNDING_REGION and

tile.boundingVolume.region. Also equivalent to

minimum height component of

`3DTILES_bounding_volume_S2.

TILE_MAXIMUM_HEIGHT • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

The maximum height of the tile above (or below)

the WGS84 ellipsoid. Equivalent to maximum

height component of TILE_BOUNDING_REGION and

tile.boundingVolume.region. Also equivalent to

maximum height component of

`3DTILES_bounding_volume_S2.
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Semantic Type Description

TILE_HORIZON_OCCLUSION
_POINT

1
• Type: VEC3

• Component type:

FLOAT32 or FLOAT64

The horizon occlusion point of the tile expressed

in an ellipsoid-scaled fixed frame. If this point is

below the horizon, the entire tile is below the

horizon. See Horizon Culling for more

information.

TILE_GEOMETRIC_ERROR • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

The geometric error of the tile. Equivalent to

tile.geometricError.

TILE_REFINE • Type: SCALAR

• Component type:
UINT8

The tile refinement type. Valid values are 0

("ADD") and 1 ("REPLACE"). Equivalent to

tile.refine.

TILE_TRANSFORM • Type: MAT4

• Component type:

FLOAT32 or FLOAT64

The tile transform. Equivalent to tile.transform.

1
 TILE_HORIZON_OCCLUSION_POINT should account for all content in a tile and its descendants, whereas

CONTENT_HORIZON_OCCLUSION_POINT should only account for content in a tile. When the two values are

equivalent, only TILE_HORIZON_OCCLUSION_POINT should be specified.

Content

Overview

CONTENT_* semantics provide meaning for properties associated with the content of a tile, and may

be more specific to that content than properties of the containing tile.

CONTENT_BOUNDING_BOX, CONTENT_BOUNDING_REGION, and CONTENT_BOUNDING_SPHERE semantics each define

a more specific bounding volume for tile contents than the bounding volume of the tile. If more

than one of these semantics are available for the same content, clients may select the most

appropriate option based on use case and performance requirements.

Content Semantics

Semantic Type Description

CONTENT_BOUNDING_BOX • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

• Array: true

• Count: 12

The bounding volume of the content of a tile,

expressed as a box. Equivalent to

tile.content.boundingVolume.box.
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Semantic Type Description

CONTENT_BOUNDING_REGIO
N

• Type: SCALAR

• Component type:
FLOAT64

• Array: true

• Count: 6

The bounding volume of the content of a tile,

expressed as a region. Equivalent to

tile.content.boundingVolume.region.

CONTENT_BOUNDING_SPHER
E

• Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

• Array: true

• Count: 4

The bounding volume of the content of a tile,

expressed as a sphere. Equivalent to

tile.content.boundingVolume.sphere.

CONTENT_BOUNDING_S2_CE
LL

• Type: SCALAR

• Component type:
UINT64

The bounding volume of the content of a tile,

expressed as an S2 Cell ID using the 64-bit

representation instead of the hexadecimal

representation. Only applicable to

`3DTILES_bounding_volume_S2.

CONTENT_MINIMUM_HEIGHT • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

The minimum height of the content of a tile

above (or below) the WGS84 ellipsoid.

Equivalent to minimum height component of

CONTENT_BOUNDING_REGION and

tile.content.boundingVolume.region. Also

equivalent to minimum height component of

`3DTILES_bounding_volume_S2.

CONTENT_MAXIMUM_HEIGHT • Type: SCALAR

• Component type:

FLOAT32 or FLOAT64

The maximum height of the content of a tile

above (or below) the WGS84 ellipsoid.

Equivalent to maximum height component of

CONTENT_BOUNDING_REGION and

tile.content.boundingVolume.region. Also

equivalent to maximum height component of

`3DTILES_bounding_volume_S2.

CONTENT_HORIZON_OCCLUS
ION_POINT

1
• Type: VEC3

• Component type:

FLOAT32 or FLOAT64

The horizon occlusion point of the content of a

tile expressed in an ellipsoid-scaled fixed frame.

If this point is below the horizon, the entire

content is below the horizon. See Horizon

Culling for more information.

CONTENT_URI • Type: STRING The content uri. Overrides the implicit tile’s

generated content uri. Equivalent to

tile.content.uri.
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Semantic Type Description

CONTENT_GROUP_ID • Type: SCALAR

• Component type:

UINT8, UINT16,

UINT32, or UINT64

The content group ID. Equivalent to

tile.content.group.

1
TILE_HORIZON_OCCLUSION_POINT should account for all content in a tile and its descendants, whereas

CONTENT_HORIZON_OCCLUSION_POINT should only account for content in a tile. When the two values are

equivalent, only TILE_HORIZON_OCCLUSION_POINT should be specified.
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Appendix F: License

Copyright 2016 - 2022 Cesium GS, Inc.

This Specification is licensed under a Creative Commons Attribution 4.0 International License (CC

BY 4.0).

The companies listed above have granted the Open Geospatial Consortium (OGC) a nonexclusive,

royalty-free, paid up, worldwide license to copy and distribute this document and to modify this

document and distribute copies of the modified version under a Attribution 4.0 International (CC

BY 4.0) license.

Some parts of this Specification are purely informative and do not define requirements necessary

for compliance and so are outside the Scope of this Specification. These parts of the Specification

are marked as being non-normative, or identified as Implementation Notes.
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