
© 2022 by Cesium GS, Inc. Made available under a
Creative Commons Attribution 4.0 License (International):
https://creativecommons.org/licenses/by/4.0/

1. A Quick Introduction to 3D Tiles 1.0

3D Tiles 1.0 is an open specification for storing, streaming and visualizing heterogeneous 3D geospatial
content. A tileset is stored as a JSON file that contains a hierarchical structure of tiles. Each tile can
refer to renderable tile content, which is stored in binary files.
Each tile and tile content can have a bounding volume. This describes the spatial extent in geographic
coordinates, using a bounding region, or in cartesian coordinates, using a bounding box. Together, the
bounding volumes form a spatially coherent hierarchy.
Different types of content are supported via
different tile formats, such as:

Each tile content can consist of multiple features.
A single feature may be one part of a model in
B3DM content, a point or a group of points in
PNTS content, or an instance in I3DM content.
The tile content can also contain a Feature Table and a Batch Table. These tables store additional data
for each feature of the tile content: The Feature Table stores information for rendering the features. The
Batch Table stores metadata for each feature.

This is a quick summary of core concepts of the 3D Tiles 1.0 standard. If you are already familiar with 3D Tiles 1.0, you can skip
this section. An overview of 3D Tiles 1.0 and the full specification are available at https://github.com/CesiumGS/3d-tiles

Tileset

children[]

content content content

children[] children[]

children[]

root

Tiles

content ...

... ...

b3dm Tile Content:
Terrain at different
levels of detail.

b3dm Tile
Content of
a building

pnts Tile
Content with
a point cloud

i3dm Tile Content,
instantiating a
model many times

...

• Batched 3D Model (b3dm): Heterogeneous
 models like textured terrain or 3D buildings
• Instanced 3D Model (i3dm): Multiple
 instances of the same 3D model
• Point Clouds (pnts): A massive number
 of points, for example, photogrammetry data

1.1

 • Simpler definition of tile content: glTF assets can now be stored directly as the tile content. This
 improves the interoperability with 3D content creation tools, and allows a unified view on a large
 variety of 3D content, like heterogeneous 3D models, point clouds, or instanced models.
 • More flexibility for organizing tile content: Each tile can include multiple contents. This allows
 the same content to be stored and delivered in different formats, and makes it possible to define
 groups of content across multiple tiles.
 • Implicit tiling: Tilesets consisting of quadtrees or octrees can be represented in a compact binary
 form. The implicit tiling scheme enables random access to tiles in the implicit hierarchy, and allows
 new, more efficient traversal algorithms.
 • Metadata for tilesets, tiles and groups of content: 3D Tiles 1.1 includes a generic specification
 for 3D metadata. This metadata can be associated with the core elements of a tileset, on all levels of
 granularity. The versatile structure and compact storage formats that are enabled with the 3D Metadata
 Specification make it possible to capture semantically rich data and make it accessible for the end-users
 of geospatial applications.

0. What's New in 3D Tiles 1.1

3D Tiles is an OGC Community Standard that as become a vital part of the 3D geospatial ecosystem.
3D Tiles 1.1 is a revision of the original 3D Tiles standard that is fully backward compatible, and adds
new functionalities that addresses the needs of the the next generation of geospatial applications.

3D Tiles 1.1 improves the interoperability between 3D Tiles and the glTF ecosystem: glTF assets can now
directly be used as the content of any tile.

glTF is becoming the main tile content format for 3D Tiles 1.1. The ubiquitous support for glTF and its
robust ecosystem make it possible to deliver tile content to a large variety of clients in a unified way.

The functionalities that are not directly supported by glTF can be emulated with the appropriate glTF
extensions. The following list shows how certain features of the original tile formats can be represented
in glTF, and which glTF extensions they require:

Additional glTF extensions can be used in order to deliver further optimized tile content. For example, the
KHR_draco_mesh_compression extension can be used to provide glTF assets in an even more compact
form, by employing the Draco geometry compression methods. Texture compression is supported via the
KHR_texture_basisu extension, which reduces the transmission size and GPU memory footprint of
textures using KTXv2 images with Basis Universal supercompression.

2.1. Direct Support for glTF as Tile Content

Migration of Tile Formats to glTF

2. The New Features of 3D Tiles 1.1

Tileset

Tiles

"content": "terrain.json"

"content": "house.glb"

The model shown in this image is "Abandoned and Overgrown Farm House - Virginia"
(https://skfb.ly/o6FGW) by Azad Balabanian, licensed under Creative Commons
Attribution (http://creativecommons.org/licenses/by/4.0/).

The versatility of glTF allows emulating many of the functionalties of the original 3D Tiles 1.0 tile formats
directly:

The RTC_CENTER can be added to the translation
component of the root node of the glTF asset

Relative-To-Center rendering (with RTC_CENTER)

3D Tiles 1.0 tile format feature glTF equivalent

Constant point colors be assigned with materials or
with equal per-point colors in vertex attributes

Constant colors for all points of a point cloud
(with CONSTANT_RGBA)

Feature table properties like POSITION, NORMAL,
or COLOR for point clouds

Properties for individual vertices (points) can be
stored as standard glTF vertex attributes

3D Tiles 1.0 tile format feature glTF equivalent

Batch IDs and Batch Tables The EXT_mesh_features extension can be used to
assign IDs to mesh features.
The EXT_structural_metadata extension can be
used to associate mesh features with metadata

The EXT_mesh_gpu_instancing extension allows
GPU instancing directly in glTF

GPU instancing in Instanced 3D Models

The KHR_mesh_quantization extension offers
simple quantization based compression.
The EXT_meshopt_compression extension allows
quantization- and entropy-based compression.

Compression for Point Clouds

When a tileset is represented as a uniform quadtree or octree, then it is not necessary to store the actual
tile structure as nested JSON elements. The regular pattern allows a more compact representation of the
structure. 3D Tiles 1.1 introduces support for implicit tilesets, including a compact binary format for
representing the tile hierarchy. This format offers random access to the available tiles and their content.
This enables new traversal algorithms, by allowing a direct lookup of the availability information, without
an explicit traversal of the tile hierarchy.

3D Tiles 1.1 supports different subdivision schemes for the
implicit tile hierarchy: The bounding volume of the root tile is
subdivided recursively into four or eight equal-sized parts,
forming a quadtree or octree.

Within this implicit hierarchy, individual tiles can be accessed
directly with their local tile coordinates: The coordinates of
a tile within a quadtree are given as (level, x, y). For an
octree, the coordinates are given as (level, x, y, z).

An example of tile- or content availability storage for a quadtree, with available elements indicated by
green cells. Due to the regular structure of the hierarchy, the tile coordinates can directly be converted
into an index that can be used for accessing the binary data:

For each tile of the hierarchy, the implicit tiling scheme stores
two pieces of information in a binary buffer: The tile availability
indicates which of the tiles are present, and the content
availability indicates which of the tiles have content. The tile
coordinates can be used to directly access this information.

With 3D Tiles 1.1, it is possible to assign multiple contents to a single tile. This allows more flexible tileset
structures: For example, a single tile can now contain multiple representations of the same geometry data,
once as a triangle mesh and once as a point cloud:

When combining this functionality with the
metadata support of 3D Tiles 1.1, the contents
can also be arranged in groups, and these
groups can be associated with metadata.
This allows applications to perform styling
or optimizatons based on the group that
the content belongs to.

2.2. Support for Multiple Contents

2.3. Support for Implicit Tiling Schemes

The hierarchy that is modeled with implicit tiles can be large. To enable efficient traversal of large
hierarchies, the implicit tiles are partitioned into subtrees: Each subtree stores information about the
structure and availability of content for a fixed-size section of the tileset.

Additionally, the subtree stores information about further
subtrees that may be available. This child subtree
availability is also stored in a binary buffer.

The entire tileset is described by this tree of subtrees.
Clients may use the child subtree availability to only
request subtrees that are relevant at runtime.

Child subtree availability:

2 30 1 4 65 7 8 9 10 11 12 1413 15

Tileset

Tiles

Triangle Mesh
Point Cloud

"contents" {
 { "uri" : "treeMesh.glb" }
 { "uri" : "treePoints.glb" }
}

Level

x

y

0

1

2

3
(3, 2, 4)

(2, 3, 2)

x

Level:

y
0

0

0

0

0 0

0

0

0

1

1 1 2 3

1

2

3
1

1
2 3

1

1

2 3

4 5

6 7

8 9

10 11
2

12 13

14 15 Level:
Index in level:
Index for
data access:

0

2 3
1

0 12 300 1 4 65 7 8 9 10 11
2

12 1413 15

0 2 31 4 65 7 8 9 10 11 12 1413 15 16 17 1918 20

The 3D Metadata Specification defines a standard metadata format for 3D data. The specification is
language- and format agnostic: It defines key concepts for structured metadata that can be associated
with 3D data. 3D Tiles 1.1 defines an implementation of these concepts in the context of 3D Tiles. This
allows associating metadata with 3D data on all levels of granularity within a tileset:

The specification can also be leveraged in other 3D formats. For example, the EXT_structural_metadata
extension is a proposed extension for glTF which allows associating 3D metadata with glTF tile content
on an even finer level of granularity:

3. 3D Metadata Introduction

Tileset

Tiles

Tile Content Groups

Tile Content

Name:
Country:
Population:

Class:
"New York City"
"United States"
8804190

"city"

Borough:
ZIP Code:
Population:

Class:
"Manhattan"
10024
52428

"block"

"Buildings"

"Trees"Color:
Priority:

Class:
[64, 255, 64]
2

"layer"

Vertices:
Primitives:

Class:
39534
2

"geometryData"

Features

Vertices Texels

0

0 0

0

0

1

1

1

1

Year Built:
Stories:

Class:
1986
2

"building"

Species:
Height:

Class:
"Oak"
12.8

"tree"

GPU instances

Type:
Material:

Class:
"Door"
"wood"

"component"

Material:
Insulation:

Class:
"stone"
0.4

"wall"

The 3D Metadata Specification defines a standard format for structured metadata. The core concept is the
definition of a schema for the data. This schema is language- and format agnostic: It does not impose a
particular format for the serialization of the schema itself, or for the storage of the actual data. Instead,
it can be combined with the storage format that is most suitable for the level of granularity on which the
metadata is applied.

• Binary Table Format: Property values are stored in parallel 1D arrays, encoded as binary data
• JSON Format: Property values are stored directly in JSON objects

4. The 3D Metadata Specification

The structure of metadata is defined with a schema. Each schema consists of a set of classes and
enums. A class consists of a set of properties, where each property has a certain type. The type can
be one of multiple primitive- or structured types, or an enum type, meaning that the actual value of
the property is one of multiple, enumerated, named values.

The properties that are defined in the schema do not have an inherent meaning. But properties may
have a semantic identifier that allows assigning an application-specific meaning to these properties.
This identifier can then be used to look up the semantics of a property in an external semantic reference.

The primitive types include numeric types - namely, integer- and floating-point types with different sizes -
as well boolean, enum types and strings. Fixed- and variable length array types are defined based on
these primitive types. The type system also includes dedicated types for 2D, 3D, and 4D vectors and
matrices with numeric components.

The schema itself only describes the structure of the metadata and the types of properties. But it does
not define how the property values are stored. This allows reusing the schema definition across different
assets and file formats, and combining it with different storage formats.

A class from the schema can be instantiated, to form a metadata entity. Such an entity can be created
from a set of property values that conform to the structure of the class. The following diagram shows the
case where the metadata values are stored in tables, one for each class, and the entities are created by
looking up the property values in these tables:

The ID of an object is
used to look up the
metadata values in the
corresponding row:

The columns and their
types are determined
by the schema:

4.1. Metadata Structure Definition

Two different ways of encoding metadata values in tabular form are defined in the specification:

The specification contains further details about the exact encoding and serialization formats.
Implementations of the 3D Metadata specification may define their own, custom serialization-
and storage formats.

4.3. Predefined Metadata Storage Formats

4.2. Storage of Metadata Entities

Schema

Classes Properties

"building"
"height"
"stories"
"color"

FLOAT64
UINT16
STRING

23.0
31.8
16.2

0
1
2

2
heightID stories

3
2

"green"
color

"blue"
"brown"

...3

Buildings

Trees

29.1
25.8
19.3

0
1
2

[133,233,72]
heightID leafColor

[25,124,54]

[37,163,72]
"Oak"
species

"Pine"
"Maple"

...3

"tree"
"height"
"leafColor"
"species"

FLOAT64
VEC3 of UINT8
ENUM: "speciesEnum"

Name and type:

Enums Values

"speciesEnum"

"Oak"
"Pine"
"Maple"
"Unknown"

 0
 1
 2
-1

Name and value:

Height:
Leaf Color:
Species:

Entity ID:
19.3

"Maple"

2

(Dark green)

Height:
Stories:
Color:

23.0
2
"green"

Entity ID: 0

0ID:

ID:

1 2

0 1 2

• Metadata information can be displayed
 for the end-user in a UI.
• Applications can use the metadata to
 show or hide certain tiles or groups of
 tiles
• The rendering can be styled based on
 color- or layer information from the
 metadata
• Metadata can be used to optimize request
 patterns, for example, by only requesting
 certain types of content, or content that
 has specific tags in its metadata.
• The per-tile metadata can be used to
 optimize traversal algorithms.

3D Tiles 1.1 includes an implementation of of the 3D Metadata specification that allows assigning
metadata to elements of a tileset. By assigning metadata to tilesets, tiles, groups of tiles, or the tile
content, different use-cases are supported:

The specification of the metadata implementation of 3D Tiles 1.1 includes a JSON Schema defintion that
describes a serialization format for the metadata. The metadata schema definitions can be shared within
a tileset and among different tilesets, and be augmented with application-specific semantic data models.

The metadata for a tileset can optionally contain statistics about all entities in a tileset, on a per-class
basis. The statistics for numeric values as well as arrays, vectors, or matrices containing numeric values
include common statistical measures, like the minimum- and maximum values, the mean or the
standard deviation. For discrete types (enums or fixed-length arrays of enums), the statistics include
the number of occurrences of each enum value.

The statistics can also be useful for maping the metadata values
that appear in one tileset to a certain color range:

In this example, the minimum and
maximum heights of all buildings are
used to map the building heights
to a color range, and render the
buildings with a color that depends
on their height.

The number of occurrences can be used to
visualize the distribution of different types
with a bar chart. Here, the bar chart shows
the different numbers of building types that
appear in one tileset.

Statistics can be useful vor various analytical tasks and data visualization, but also for rendering and
styling the rendered content based on the statistical information.

5.1. Metadata Statistics

5. Metadata Support in 3D Tiles 1.1

23.0
16.2

31.8

minimum: 16.2 maximum: 31.8

"statistics": {
 "classes": {
 "building": {
 "count": 130,
 "properties": {
 "buildingType": {
 "occurrences": {
 "Single": 40,
 "Apartment": 60,
 "Other": 30
 }
 },
 "height": {
 "minimum": 16.2,
 "maximum": 31.8
 }
 }
 }
 }
}

Single

25-

50-

Apartment

Building types:

Other

• By vertex: The feature IDs are stored as standard glTF vertex attributes
• By texture coordinates: The feature IDs are stored in the channels of a standard glTF texture
• By index: The feature ID is assigned implicitly to vertices, by using the vertex index as an ID

Feature:
Material:

"window"
"glass"

6. glTF Extensions for 3D Tiles 1.1

6.1. The EXT_mesh_features glTF Extension

6.2. The EXT_structural_metadata glTF Extension

6.3. Combining the glTF Extensions for 3D Tiles 1.1

• Property tables: The values for each property are stored in a standard glTF buffer view. This creates
 a compact tabular representation of the metadata values.
• Property Textures: The property values are stored in the channels of a standard glTF texture. This
 way, high-frequency data can be associated with less detailed geometry surfaces.

A feature could be a single building in a 3D model of a
city, or a part of a 3D model of a building. The feature
is then defined by a subset of vertices of the 3D model,
or a subset of points in a point cloud:

A feature can be certain region on
the surface of a textured model:

The EXT_mesh_features extension is an extension for glTF 2.0 that defines a means of assigning identifiers
to geometry and subcomponents of geometry within a glTF asset. These subcomponents are referred to
as features, and the identifiers for these features can be associated with a model in different ways:

The EXT_mesh_features and EXT_structural_metadata extension can be combined, and offer a
mechanism for identifying features within an asset, and associating these features with metadata.

The EXT_structural_metadata extension is an extension for glTF 2.0 that implements the 3D Metadata
Specification. The structure of metadata is defined with a schema. This schema contains information
about classes, their properties, and the types of these properties. An instance of such a metadata class
can be created from a set of values that conforms to the properties of the class.

In 3D Tiles 1.0, the Batch IDs and Batch Tables offered mechanisms to identify individual features within
the tile content, and to associate these features with metadata. With glTF becoming the primary tile
format for 3D Tiles 1.1, these functionalities are emulated with the following glTF extensions.

In addition to the JSON schema specification for defining the metadata structure, the extension defines
methods for storing large amounts of metadata within a glTF asset, in fine-grained but compact binary
form:

Feature:
Material:

"door"
"wood"

Feature:
Material:

"window"
"glass"

Component:
Material:

Window
Glass

Feature ID: 2

Feature ID: 1

Feature ID: 2

Feature ID: 3

Feature ID: 4

Feature ID: 0

Feature ID: 5 Walls
Door
Window

0
1
2

Vinyl Panels
ComponentFeature ID Material

Wood
Glass

Window3 Glass
Window4 Glass
Roof5 Shingles

The EXT_mesh_features extension
allows identifying features within
an asset. Here, this is a model of
a house where individual
components receive a feature ID:

The EXT_structural_metadata extension allows defining the
structure of metadata, and storing metadata values in a compact
form. Here, a property table stores the metadata values. Each
row stores the values for one feature. The columns correspond
to the properties of a metadata class. The values are then used
to create an instance of this metadata class:

