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Abstract 

The optimization process of the LEOPARD|topo suite relies on a binary material model in combination with bionic growth 

rules and additional heuristic procedures. Its common problems are weight or compliance minimizations under stress 

constraints. Therefore, the local von Mises stress is considered to be the indicator for material removal or addition. 

However, this procedure has proven to be insufficient when stress hotspots occur in notches at design space boundaries 

where no material can be added. Stress sensitivities which are crucial for density-based method optimizations can be used 

as a guidance to relax these situations. In this work, the von Mises stress values are augmented by the sensitivities of the 

von Mises stress norm. A new approach for the combination is proposed by a multiplication with a prior limitation of the 

order of magnitude for both quantities together with other manipulations. The influence of the sensitivities is penalized 

in higher iterations for a proper convergence. Two examples with several load situations are discussed where we also 

incorporate manufacturing restrictions and non-linear material behavior. The new augmented indicator offers the potential 

to reach superior local optima and a weight reduction of up to 45 % against the standard variant. 
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1. Introduction 

Over the recent years topology optimization has become an important tool in part design aiding in the fulfillment of ever 

increasing lightweight ambitions. Due to this topic being at the link between the mathematical theory of optimization and 

the practical application in engineering, many different approaches exist. Their common aim is to determine an optimal 

material distribution with respect to application-specific objectives and constraints. 

A common approach for continua optimization discretizes the given design space by Finite Elements (FE) that describe 

the part’s geometry by their existence or non-existence. This is then taken to be the design variables of the optimization 

problem. On the one hand, there are approaches considering these variables to be continuous like the density method often 

combining the SIMP (Solid Isotropic Material with Penalization) approach [1,2,3], sensitivity analysis and gradient-based 

optimization algorithms like the MMA (Method of Moving Asymptotes) [4]. On the other hand, heuristic approaches with 

binary modelled design variables primarily use bionic growth rules [5] or genetically motivated searching techniques. 

Typical examples for this approach are the Bi-directional Evolutionary Structural Optimization (BESO) [6] and the Soft 

Kill Option (SKO) [7]. Other approaches make use of the Level Set method [8]. 

The topology optimization suite LEOPARD|topo [9] developed at Volkswagen uses a binary material model with a hard 

kill strategy in combination with a step size controller. This allows for the consideration of plasticity, contact and other 

nonlinearities in the FE Analysis as well as strict manufacturing restrictions with integrated manufacturing simulations 

[10]. The local von Mises stress is used as an indicator for material removal or addition. However, by this the relaxation 

of stress hotspots in notches is hard. It requires additional information for the indicator that can be acquired by the help 

of sensitivities. The development of stress sensitivities in order to solve stress constraint problems using the density 

method with SIMP is well described [11, 12]. In comparison to that the use of stress sensitivities in heuristic motivated 

topology optimization method is fairly new. There have been approaches to extend the BESO strategy [13, 14]. 

In this paper, a combination of LEOPARD|topo with stress sensitivities is presented. The focus lies on the development 

of a new way to combine values from the sensitivity analysis with the von Mises stress values in order to provide a stable 

optimization process and maintain the possibility of a combination with additional heuristic procedures. The positive 

impact is validated by two- and three-dimensional examples incorporating multiple load cases and plasticity.  



2. Heuristic Based Topology Optimization in LEOPARD|topo 

First introduced by [9], the topology optimization approach with LEOPARD|topo has become an important tool in the 

early development stages at Volkswagen and other brands belonging to the cooperation. Based on the idea of creating a 

fully stressed design, the local von Mises stress is the indicator of material removal or addition. This reduces weight in 

low strained regions and adds material around highly stressed elements. The main steps of every optimization iteration 

are schematically depicted in Fig. 1 (the step of calculating the sensitivities is new and forms the basis for the research 

presented here). 

 
Figure 1. LEOPARD|topo optimization process 

After every Finite Element Analysis the regular hexahedral elements of the design space are sorted according to their 

respective von Mises stress. Then, by the help of heuristic growth rules the status of the elements are updated. A step size 

controller examines the number of elements that are removed or added based on the current constraint violation. 

Constraints can be of various kinds, most notably in use are local von Mises stress maxima or maximum displacements 

in misuse cases [9]. If we consider multiple, the maximum violation is relevant for the step size controller. 

The modification of the design variables is supported by additional heuristic functions that ensure connectivity or 

manufacturing restrictions. An integrated casting simulation [10] gives full insight into the manufacturability and allows 

for additional adjustments within the optimization process. 

Unfortunately, this method experiences issues when stress hotspots occur at the design space boundary which happens at 

hard notches. The optimizer is unable to add material to relax the situation. A possible solution is to remove material 

instead resulting in a wider radius. Therefore, the ranking of the elements would have to be changed by a new criterion.  

3. Stress Sensitivities for a binary material model 

Generally speaking, sensitivities offer a measure of how the output of a potentially complex model changes under 

variation of the input quantities; hence, in topology optimization, they are the partial derivative of a response function 

w.r.t. a design variable. Their calculations are crucial for gradient-based optimization schemes but they can also be derived 

for a binary material model. 

By the solution of the linear-elastic static state equation with the global stiffness matrix 𝑲 and the global load vector 𝑭 

 
𝑲𝒖 = 𝑭, (1) 

the global nodal displacement vector 𝒖 is computed. The von Mises stress of the ith element can then be deduced by 

 

𝜎𝑣𝑀,𝑖 = 𝑥𝑖√𝒖𝑖
𝑇(𝑬𝑩)𝑇𝑽(𝑬𝑩)𝒖𝑖  (2) 

with the local nodal displacement vector 𝒖𝑖, the elasticity matrix 𝑬, the strain-displacement matrix 𝑩 and the von Mises 

matrix 𝑽 [15]. The additional design variable 𝑥𝑖 is used to ignore elements that are void due to the hard kill strategy 

within LEOPARD|topo. The von Mises stress field is evaluated at the element’s center. 



The dimension of the vector containing the von Mises stress of every element is collapsed by the general p-Norm 

 

𝜎𝑘 = √∑ 𝜎𝑣𝑀,𝑖
𝑝

𝑁

𝑖=1

𝑝

 (3) 

to form a quantity representing the global stress state. Contrary to evaluating the stress constraint for the step size 

controller with the infinity norm (𝑝 → ∞), here 𝑝 = 6 is used. The sensitivity of the global stress norm can then be 

derived as (see [14] or [15] for detailed derivation) 

 
𝑑𝜎𝑘

𝑑𝑥𝑗
≔ 𝜇𝑗 = 𝜎𝑘

1−𝑝
[𝜎𝑣𝑀,𝑗

𝑝
− 𝜅𝑗

𝑇𝑲𝑗𝒖𝑗], (4) 

where 𝑲𝑗  is the local stiffness matrix, 𝒖𝑗  the local nodal displacement vector and 𝜅𝑗  the local pseudo nodal 

displacement vector. The latter one is calculated as the solution to the adjoint equation 

 

𝑲𝜿 = ∑ 𝑥𝑖𝜎𝑖
𝑝−2

𝑨𝑖
𝑇(𝑬𝑩)𝑇𝑽𝑬𝑩𝒖𝑖

𝑁
𝑖=1 . (5) 

The right-hand-side of this equation is called the pseudo force vector which is constructed by the help of the assembly 

matrix that is defined by 𝒖𝑖 = 𝑨𝑖𝒖 which denotes the relation between the global degrees of freedom and the local 

degrees of freedom of element i. For every loadcase considered, a new adjoint equation has to be solved. 

4. Combination of stresses and their sensitivities as a new optimization criterion 

Now, for every element the local von Mises stress and the local sensitivity of the global stress norm are available. Since 

both quantities are not in the same order of magnitude, it is useful to apply a limitation to them. 

Beforehand, both stresses (𝜎𝑣𝑀,𝑖 ← 𝜎𝑣𝑀,𝑖) and sensitivities (𝜇̅𝑖 ← 𝜇𝑖) are filtered by the well-known Sigmund-Filter [16]. 

To reduce the dimension for the results of multiple loadcases, the general p-norm similar to Eq. 3 is used. The maximum 

norm is applied to the stresses (𝑝 → ∞) while the sensitivities are averaged (𝑝 = 1). 

The following limiter is inspired by neural network activation functions [17]. Here, the hyperbolic tangent is used to 

smoothly map the stresses and sensitivities to the interval of (1, 1.8) and (0.2, 1.8), respectively. A negative sensitivity 

indicates that the element should be kept which in return means a higher ranking in the context of LEOPARD|topo; hence 

the sign of the sensitivities has to be flipped. 

 
𝜎̃𝑣𝑀,𝑖 = 1 + 0.8 ∗ 𝑡𝑎𝑛ℎ  (

𝑎𝑡𝑎𝑛ℎ(0.𝟖𝟕𝟓)

𝜂𝜎
∗ 𝜎𝑣𝑀,𝑖)  and  𝜇̃𝑖 = 1 + 0.8 ∗ 𝑡𝑎𝑛ℎ  (−

𝑎𝑡𝑎𝑛ℎ(0.875)

𝜂𝜇
∗ 𝜇̅𝑖) (6) 

The tanh is further adjusted by the parameter 𝜂. The idea is to capture the majority of the elements within the steep 

gradient of the function. Therefore, we propose the idea of a generalized sign-sensitive median 

 
𝜂𝜎 = 𝑡𝑜𝑝(𝜎𝑣𝑀)  and  𝜂𝜇 = 𝑚𝑎𝑥 (𝑡𝑜𝑝(|𝜇𝑛𝑒𝑔|),  𝑡𝑜𝑝(|𝜇𝑝𝑜𝑠|)). (7) 

The negative and the positive sensitivities are sorted, Then, `top´ selects the element that is at a position within the vector 

defined by 𝛽. By this, a maximum of, e.g., 10 % (𝛽 = 10) of the elements are allowed to be above the threshold of 1.72 

or below 0.28. This allows for a clear differentiation between regions that the sensitivities indicate to keep (value above 

1) and those that should be removed (value below 1). Due to the monotonicity of the tanh function, the ordering of the 

elements within the vector stays unchanged. 

Now, stresses and sensitivities share the same order of magnitude and can be combined. For the following, we use a 

multiplication of both with a penalization 𝛼 of the sensitivities 

 𝜆𝑖 = 𝜇̃𝑖
𝛼 ∗ 𝜎̃𝑣𝑀,𝑖. (8) 

The value of 𝛼  adapts the strength of the sensitivities against the stresses. The manipulations presented here are 

summarized in the flow chart of Fig. 2. The result of this manipulations, the indicator 𝜆𝑖, is then used to rank the Finite 

Elements.  



 
Figure 2. Flow chart of the sensitivity manipulation 

5. Effects on the L-Bracket in various load case scenarios 

The L-Bracket is a widely adopted example problem that consists of one 90 degrees hard notch (see, e.g., [12] and [14]). 

The geometry of the design space is displayed in Fig. 3. It is discretized by regular hexahedral elements with an edge 

length of 2 mm. The material is aluminum with a Young’s modulus of 70000 MPa, a Poisson’s ratio of 0.35 and a density 

of 2.65 t/m³. The stress constraint is set to be 250 MPa. Forces are applied within the right half-circular non-design areas 

by the help of a rigid body element connecting 8 nodes. The entire top of the bracket is clamped with an extending non-

design area. The filter radius is set to 1.4 times the element width. 

 
Figure 3. Design space and load situations of the L-Bracket 

5.1 Load Situation 1: Bending load with linear-elastic material behavior 

In this case, one bending load of 1250N is applied in the negative y direction. The initial value of the penalizing exponent 

𝛼 = 1 is linearly decreased to 0.01 over the first two iterations. The top percent was set to 𝛽 = 10. 

The new approach results in a wide radius that precisely uses the available space which allows for a more fully stressed 

design that is 44.3% lighter. The initial impact of the sensitivities guide the optimizer into converging against a different 

local optimum. The results also show to be slightly lighter (by 3.3 %) than those of a standard implementation of the 

density method with SIMP of [15]. 

5.2 Load Situation 2: Bending load and pressure load with linear-elastic material behavior 

The first load case of a bending load of 1000 N is augmented by a load of 1000 N in the negative x-direction. 𝛽 is set to 

3 and the initial 𝛼 of 2.0 is linearly reduced to 0.01 over the first three iterations. 

The influence of the additional force can be seen by the new struts of both L-Brackets (see Fig. 5). Due to the higher 

stress hotspot in the notch, the standard optimizer is incapable of decreasing the strut count and thickness. Here, the new 

approach presents a good way out resulting in a reduction of the weight by about 33.5 %. 

 



 

Figure 4. Optimization results of load situation 1 

5.3 Load Situation 3: Bending load with linear-elastic material behavior and tension load with plasticity 

Herein, the bending load of 1000 N, that is considered to be a regular use case, is extended by a misuse case of 1250 N at 

a different attack point incorporating a non-linear material behavior. In the first load case the constraint stays the maximum 

von Mises stress of 250 MPa while the residual plastic displacement at the attack point for the misuse case is limited to 

0.1 mm. 

By the initial influence of the sensitivities the optimizer is able to relax the stress notch even if there is no such wide 

radius like in the first load situation. The weight could be reduced by 39.9 %. 

 

Figure 5. Optimization results of load situation 2 and 3 

 

6. Automotive Steering Knuckle with Integrated Casting Simulation 

As a final example, we present the effects of the sensitivities acting in the example of a three-dimensional steering knuckle 

based on real parts. Here, six different loadcases with linear-elastic material behavior are relevant. The material is 

aluminum with a Young’s modulus of 70000 MPa, a Poisson’s ratio of 0.35 and a density of 2.65 t/m³. The stress constraint 

is set to 180 MPa. Additionally, we employ the casting restrictions of LEOPARD|topo [10] that ensures the 

manufacturability. The initial value of 𝛼 = 1.0 is linearly decreased to 0.01 over the first two iterations. 

The results can be seen in Fig. 6. The standard approach consists of multiple hard notches that the optimizer gets caught 

in whereas the most severe ones are marked by numbers. Notch 1 and 3 are partially relieved by the new approach and 

notch 2 is fully smeared. Due to the ongoing constraint violation the standard procedure is incapable of removing 

additional elements. In the end, the new approach reduces the weight of the part by about 18.7 %. Figure 7 shows the 

solidification behavior of the result with a directional solidification and no porosity occurring. 

 



 

Figure 6. Comparison of the results of the 3D steering knuckle 

 

Figure 7 Solidification simulation of the optimization result 

7. Conclusion and outlook 

In this paper an approach of combining stress sensitivities with local von Mises stresses for ranking elements has been 

presented. Therefore, the concept of activation functions from artificial neural networks has been transferred to limit the 

order of magnitude for both quantities. The actual combination was done by a multiplication whereas the influence of the 

sensitivities has been penalized for higher iterations. 

This new approach aided in relieving stress hotspots at design space boundaries by removing material instead of adding 

it. By this a weight reduction of up to 45% in the academic examples could be shown. Due to the validations presented, 

the new approach renders to be scalable to multiple loadcases even with some incorporating non-linear material behavior. 

Therefore, various load case scenarios for the well-known L-Bracket were optimized. Additionally, the new improvements 

have been further confirmed with the three-dimensional example of the steering knuckle where six loadcases have to be 

considered simultaneously. The integrated casting simulation of LEOPARD|topo was used to ensure the manufacturability. 

The influence of the sensitivities aided primarily in stress notch widening for small struts and structures. 

Future research will consider the application of the sensitivities with the recently proposed Volume-of-Solid method for 

a combined topology and shape optimization as well as the impact of other sensitivities like eigenfrequencies. 
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