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Abstract

Most simulations in engineering encompass the use of discretizations to solve partial differential

equations such as the Population Balance Equation that is in use in particle technology. A possible

application of this equation is the prediction of cell proliferation. Due to its complexity, it requires

the use of numerical methods. To improve the precision of the underlying solution scheme, an

adaptive grid could be used that redistributes the mesh nodes over the process of the simulation.

The choice of the monitor function that analyzes the current solution is crucial to the performance

of such a scheme. In this work, we present an overview of the monitors used in the literature and

derive a new one that is based on the idea of artificial diffusivity in TVD schemes found in finite

volume flux approximation. The monitors are used within the framework of a novel explicit adap-

tive grid introduced by Sewerin and Rigopoulos (2017) for solving the population balance equation.

Test cases of pure growth, pure coagulation and pure breakage as well as the simulation of cell dy-

namics are used to compare the monitors’ performance. Therefore, a scheme for discretizing the

contribution of breakage in the finite volume context is presented. Conclusions are drawn based on

convergence properties and timing. In the end, one monitor was found to be superior in all tested

scenarios.



Kurzzusammenfassung

Viele Simulationen in den Ingenieurswissenschaften erfordern die Lösung partieller Differential-

gleichungen, wie z.B. auch die Population Balance Equation, welche sich zum Modellieren von Par-

tikelverteilungen eignet. Sie findet unter anderem Anwendung in der Berechnung von Zellwach-

stum und Zellteilung. Da die zugrundeliegenden Mechanismen meist komplex sind, bedarf es

der Anwendung von numerischen Methoden. Die dafür eingesetzten Werkzeuge basieren zum

größten Teil auf der Diskretisierung des zugrundeliegenden Gebietes. Dieser Schritt könnte durch

den Einsatz eines adaptiven Gitters optimiert werden, welches die Knotenpunkte über den Prozess

der Simulation hinweg neu verteilt. Die Wahl der dabei genutzten Monitorfunktion, welche die

aktuelle Lösung analysiert, hat einen großen Einfluss auf die Güte des eingesetzten Schemas. In

dieser Bachelorarbeit wird ein Überblick an den in der Literatur zu findenden Monitorfunktionen

gegeben. Darüber hinaus wird ein neuer Monitor hergeleitet, welcher auf der Idee der künstlichen

Diffusivität basiert, die man in TVD-Schemata bei der Finite Volumen Fluss Approximation findet.

Die Monitorfunktionen werden im Rahmen eines neuartigen explizit-adaptiven Gitters für die

Lösung der Population Balance Equation verwendet, welches von Sewerin and Rigopoulos (2017)

vorgeschlagen wurde. Im Rahmen der Lösung der Population Balance Equation werden Testfälle

von reinem Wachstum, reiner Koagulation, reinem Zerbrechen sowie die Simulation von Zelldy-

namiken genutzt um die Fähigkeit der einzelnen Monitorfunktionen zu vergleichen. Dafür wurde

ein Diskretisierungsschema für das Phänomen des Zerbrechens im Rahmen von Finite Volumen

eingeführt. Ein Fazit wird dann basierend auf den Konvergenzeigenschaften und der Rechenzeit

gezogen. Dabei erwies sich eine Monitorfunktion als überlegen in allen getesteten Fällen.
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1 Introduction

Over the last decades, the main challenges of engineering have been shifting. Systems increase

in complexity and it becomes more and more the objective to not invent but further optimize

structures and processes. This often requires intensive calculations to quantitatively decide be-

tween given designs. The invention of computers with their ever-improving performance and the

progress in numerical mathematics hand a powerful tool to engineers. By them, they are capable of

performing extensive simulations aiding in the process of research, design, maintenance and many

more.

The actual numerical solution schemes play an important role in these aspects. They decide

whether a simulation is worthwhile or if the costs do not outweigh the outcomes. Therefore, it is

crucial to have techniques that are as efficient as possible while still yielding highly accurate results.

The topic of Population Balance Equations (PBE) presents such a case in which simulations are

necessary. This equation allows for the modeling of particle evolution that is important, e.g., in cal-

culating the proliferation of cell cultures. Predicting the state of cell cultures could help in modeling

constitutive relations of biological tissue or improving in-vitro synthesization. This knowledge can

then be used in medical engineering for creating prosthesis or artificial cultivation of stem cells to

replacements organs for the human body that are then re-transplanted. In order to satisfy the global

demand for meat products, in-vitro products might also be of interest which can help to reduce the

livestock.

Aside from the potential biological applications of the PBE, this equation represents a versatile

tool which is also found in other disciplines of science and engineering, e.g., the design of chemical

reactors, atmospheric weather prediction or even astrophysics and many more (see Ramkrishna and

Singh (2014) for a general review). Another optimization task is the development of clean combus-

tion engines. Therefore, the PBE yields a powerful tool in predicting the formation and the state of

soot or other pollutants in turbulent combustion processes.

Generally speaking, the task of developing tools to solve the population balance equations for the

given cases is of interest for a wide range of applications. Most of the tools that are applicable in

the biological context can then also be transferred to, e.g., reactor design.

Similar to other partial differential equations employed in engineering, solution methods more

or less depend on discretizing the computational domains. Almost every time such a discretiza-

tion is used it creates errors to the solution which can be reduced by refining the underlying grid.

However, the task of mesh refinement is difficult and often requires manual intervention. Not to

mention that it can also increase the computation time. Therefore, it might be helpful to adap-

tively improve the grid whenever and wherever it is necessary. That shows to be beneficial since, in

the best case, the adaptive numerical solution scheme has higher accuracy while using less time to

compute compared to a conventional scheme.

However, there is a downside. There are quite a few proposals of adaptive schemes but, naturally,

all of them require some sort of measure to automatically analyze the current solution. We call this
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relevant module a monitor. Until now, the choice of the monitor is problem dependent, explaining

why adaptive grids are less in use than they could actually be. But the potential of their wider

application might be immense allowing for more detailed simulations at reasonable costs.

This bachelor thesis is dedicated to the comparison of different monitor functions in the context

of the population balance equation for cell proliferation. Hereby, we rely on a novel explicit adaptive

grid scheme that was proposed by Sewerin and Rigopoulos (2017). Our scientific contribution is

fourfold:

Review of monitor functions used in the literature

Derivations of a novel monitor

Development of a finite volume scheme to cover the contribution of breakage within the PBE

Presentation and comparison of the monitors in test cases and the real world example of cell

proliferation

The necessary simulations are performed by the help of the fluid flow solver BOFFIN (BOunded

Flow Fitted INtegrator) (Jones 2002) that has been modified to work with the explicit-adaptive grid

in the context of the population balance equation. All routines are implemented within the Fortran

programming language and compiled by the help of the open source gfortran compiler.

The thesis is structured as follows. The first chapter will define the population balance equation

mathematically. Therefore all important phenomena are introduced. Next, the second chapter is

dedicated to the explicit adaptive grid which is rederived after a short literature review of solution

methods to the PBE. We then present the novel monitor function alongside with an overview of

those found in the literature. The chapter closes with a comparison in two test cases. The last

third of this work is on to the modeling of cell proliferation. The mathematical treatment is fully

shown followed by the validation on a third test case. Then, the kinetics behind cell proliferation

are presented. Finally, the results are shown and a conclusion is drawn based upon the possibly

improved accuracy with the help of the monitors and their influence on computational cost.



2 Population Balance Equation

The description of the evolution of particles is important for many aspects of engineering. It can

be found in droplet creation in atmospheric clouds, soot formation in combustion processes, crys-

tallization within chemical reactors or growth and proliferation of biological entities. These topics

share the common idea to not only predict the spatial location x of a certain particle at a given time

t but also its respective properties. Some of them might be the characteristic length of a crystal, the

volume of the particle, the mass or maturity of cells in biological organisms.

One possibility to address this was first done by Hulburt and Katz (1964). They introduced the so-

called internal coordinates v to describe different properties. To predict the evolution of a certain

particle one now has to find a probability density function n(t, x, v) which states how likely it is

that the particle is at the spatial location x at a given time t while having properties according to v.

For a macroscopic population consisting of multiple individual particles, this unknown function

becomes a number density which has the unit of Number of Particles per Volume, i.e., [1/m3].

Population Balance equations now come into perspective at counting and balancing for the evolu-

tion of particles. Many different phenomena can be occurring simultaneously. Fig. 2.1 summarizes

them.

In this chapter, the population balance equation is derived based on the idea of local conservation

law, i.e., the continuity equation. Additionally, the second section captures those phenomena that

are not conservative and hence are accounted for by a source term.

change in particles

and their propeerties

Growth
Shrinkage

Coagulation/

Aggregation

Breakage

Nucleation/

Creation

Convection

Diffusion

keeps total

number of particles

increases / decreases

total number of particles

Figure 2.1: Potential phenomena occurring that the population balance equation can take care of. Convection

and Diffusion refer to a movement in spatial location x whereas the other phenomena account for

a change in internal properties v.
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2.1 Conservation Principles on Particle Property Spaces
With the phenomena in mind, it is now the task to model all the different aspects. To this end,

we introduce two domains that are subsets of the external physical space and the internal particle

property space. The physical space is, generally speaking, three-dimensional whereas the dimension

of the internal space d depends on the number of properties considered.

Ωx ⊂ R3
and Ωv ⊂ Rd

(2.1)

The total spatial dimension is therefor 3 + d, rendering general problems difficult to visualize.

The accounting for a change in number density can now be done by a local conservation law with

an added source term ṡ. We decide to view this equation in Eulerian perspective for later numerical

derivations.

∂n
∂t

+∇x · jx +∇v · jv = ṡ x ∈ Ωx, v ∈ Ωv, t > 0 (2.2)

Here, we introduce the flux j that is a (3 + d)-dimensional vector field incorporating the conserva-

tive change in particles and their properties meaning that it will be unable to increase or decrease

the total amount of particles. Hence it can only be used for accounting of the phenomena in the top

left of Fig. 2.1. A general flux consists of a convective/advective part and a diffusive part. Whereas

both occur in the real physical space, only advection will be considered in the particle property

space. In this case, it is just an analogy of particles moving along the internal axis that, e.g., causes

an increase in their characteristic length, hence it refers to growth.

In most applications it is feasible to reduce the dimensions of the particle property space to d = 1.

Therefore the flux component in particle property space will only consist of one entry, consequen-

tially the divergence reduces to a simple partial derivative. If we further restrict the convection in

physical space to simple advection alongside a fluid flow with the velocity field u(x, t) we find the

general population balance equation

∂n(v, x, t)
∂t

+
3

∑
j

∂(uj(x, t)n(v, x, t))
∂xj

+
∂(G(v, y(x, t))n(v, x, t))

∂v
=

3

∑
j

∂

∂xj

(
Dij(v, x, t)

∂n(v, x, t)
∂xi

)
+ ṡ(v, y(x, t), n(v, t))

. (2.3)

The first term on the left-hand side is the accumulation term that accounts for a change in time of

the particle density function keeping spatial location and internal coordinates fixed. The next part

is the physical divergence describing the physical advection of particles by the velocity field u(t, x)
that is created by the fluid flow the particles are immersed in. In the context of solving the PBE, the

velocity field is assumed to be known. Separate computational fluid dynamics may be necessary. The

next term is dedicated to the advection in particle property space. If the single internal coordinate

is a characteristic length of the particle v = L then G(x, v) becomes the growth rate in [m/s]. Using

different internal coordinates will obviously change the units of the growth term. The first term on

the right-hand side accounts for the diffusion in physical space with respective diffusivity D(t, x, v).
The constitutive parameters generally differ depending on the directions of diffusion hence the

coefficient D becomes a matrix. Finally, ṡ(t, x, v) is the source or reaction term. It accounts for
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all the events that are not conservative, i.e., increase or decrease the total particle count. They are

summarized in the bottom right of Fig. 2.1 and are introduced mathematically in the next section.

For real modeling, we have to additionally consider values that affect the kinetic coefficients in

particle property space, i.e., the growth rate G and the kernel functions within the source term

ṡ. They might include a concentration of nutrients that are crucial for growth, e.g., proteins for

cell growth or supersaturation of the bulk solution responsible for bringing fresh atoms to crystal

growth. One could also save the temperature or pressure in here, depending on the case stud-

ied. These values are stored in the fluid flow composition vector y. Naturally, the components can

change over time t and external coordinate x, hence its dependencies. In general, every quantity

inside y is governed by its own convection-diffusion-reaction equation depending on the concrete

modeling.

In conclusion, to yield a full initial boundary value problem (IBVP) one has to add an initial

distribution of particles and boundary conditions for the real external physical domain Ωx as well

as for the internal particle property domain Ωv. Since the internal domain is one-dimensional it

simply becomes an interval that is generally spanned from zero to an upper threshold value that

the particles will not exceed V.

v := v ∈ Ωv = [0, V] (2.4)

The internal value on the left side can then be set to a homogeneous Dirichlet boundary condition

due to the fact that no particle of zero length/mass exists. For the external coordinates, the choice

of boundary conditions generally depends on the ones used to calculate the flow field.

However, for many applications, we can omit the dependency on external coordinates x if the

case is assumed to be spatially homogeneous in physical space. To a good approximation, this

can be found in reactors that are in use for biological and chemical process engineering which are

assumed to be perfectly stirred. But there are also other modeling cases that strongly depend on

physical coordinate x such as turbulent combustion like in Sewerin and Rigopoulos (2018).

If we now reduce the dependencies n(v, x, t) → n(v, t), the physical advection and diffusion of

the general PBE of (2.3) vanish. The equation becomes

∂n(v, t)
∂t

+
∂(G(v, y(t))n(v, t))

∂v
= ṡ(v, y(t), n(v, t)) v ∈ [0, V], t > 0. (2.5)

This work is focused on this equation that we will later refer to as PBE. As discussed above the

population balance equation is equipped with a (general) initial condition

n(v, 0) := n0(v) v ∈ [0, V] (2.6)

and, for example, a homogeneous Dirichlet boundary condition

n(0, t) = 0 t > 0. (2.7)

A common measure to compare the results of the population balance equation is the use of mo-

ments

Ψk(t) =
∫ ∞

0
vkn(v, t) dv. (2.8)

The zeroth is simply a summing up of all particles along the internal coordinate v. Hence it is

the total number of particles. The first moment weights the integrand with the current position
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on the internal coordinate. If we consider v = [m3] (the internal coordinate equals the particle

volume), then Ψ1(t) describes the total volume all the particles occupy. One can also find physical

interpretations for higher order moments. In general, the moment index does not have to be an

integer.

2.2 Reaction Terms of the PBE
Since growth is naturally incorporated in the advection term inside the PBE, it now follows to de-

scribe the phenomena appearing within the inhomogeneous source or reaction term. The right-

hand side (as informally considered in the bottom right of Fig. 2.1) will be responsible for a change in

total particle count, i.e. the zeroth moment of the number density distribution. Generally speaking

a change in total particle number is caused by addition or subtraction

ṡ(v, y, n(v, t)) = B(v, y, n(v, t)) +D(v, y, n(v, t)). (2.9)

These two aspects, namely Birth and Death of particles, are modeled differently for each of the three

phenomena depending on the concrete physical background. In the following, the most widely

used forms in the literature will be presented. Here we do not keep the restriction on the particle

property domain and let it go from zero to infinity.

Breakage: A particle splits into fractions of itself. Naturally, this will conserve the mass and

hence does not result in a change of the first moment. Based on the number of particles cre-

ated by breakage, one divides between the general and binary case. Parting into more than two

particles may appear in chemical processes while a famous example of binary breakage would

be cell fission. For this simpler case, the contribution to the source term reads (Ramkrishna

2000)

ṡbreakage(v, y, n(v, t)) = 2
∫ ∞

v
n(v′, t)γ(v′, y)p(v, v′) dv′︸ ︷︷ ︸

Bbreakage

− n(v, t)γ(v, y)︸ ︷︷ ︸
Dbreakage

. (2.10)

The first term accounts for the birth of two daughter particles. In order to model breakage,

a division rate γ(v′, y) is needed. Based on the current state of the composition y(t), this

component will express the likelihood of a mother particle of state v′ to split. For instance,

in the context of cell populations, older cells in more nutrient-rich environments are more

likely to commit fission. Consequentially, p(v, v′) describes the probability of the mother

particle to divide into a particle of coordinate v and hence into another particle of state (v′− v)
due to binary breakage. In the case of an equal distribution of mass p(v, v′) will become the

Dirac delta distribution δ(v− (v′/2)) centered at v′/2. Combined with the number density

of mother particles at state v′ and integrated over all possible states of the mother particle,

this yields the net source of particles.

Additionally, breakage reduces the particle count at higher coordinates because the mother

particles disappear. This idea is covered by the second term accounting for the net sink of

particles.

Coagulation: Particles combine to create a new one. Similar to breakage this will conserve

the mass and the first moment. Different varieties of coagulation exist depending on the
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Growth Shrink

(a) Advection

General Binary

(b) Breakage

General Binary

(c) Coagulation

Figure 2.2: Visualization of the phenomena in population balance modeling. Nucleation is not to be seen.

shape of the newly formed particle. The following equation is generally valid for coalescence

in which the basic shape of the resulting particle is similar to those of the combined, hence

the definition of a characteristic length will be kept the same. Restricting ourselves to binary

coalescence, the contribution to the source term would be (Ramkrishna 2000)

ṡcoalescence(v, y, n(v, t)) =
1
2

∫ v

0
n(v′, t)a(v′, v− v′)n(v− v′, t) dv′︸ ︷︷ ︸

Bcoalescence

−
∫ ∞

0
n(v′, t)a(v′, v)n(v, t) dv′︸ ︷︷ ︸

Dcoalescence

.
. (2.11)

Similar to breakage, there is a kernel function employed, namely the coalescence rate a(v, v′).
It will examine the probability of two particles of state v and v′ to merge. Hence, the second

term describes the contribution of death for a particle of a given state v when coagulation

with particles at all other possible states v′ ∈ (0, ∞). On the other hand, the Birth term will

account for the newly created particle of state v that comes into existence when v′merges with

(v− v′). By integrating over [0, v] this will incorporate all possible combinations with their

respective probability.

Nucleation: In the context of crystallization, particles may precipitate out of a supersaturated

solution. Initially, this leads to particles of internal coordinate close to zero (their size is small

or their maturity is zero). In general, there is a range of internal coordinate over which new

particles are created. If we assume that particles will always nucleate at a certain coordinate

v0, birth due to nucleation can be formulated as a point-wise realization of probability law by

the help of a Dirac Delta Distribution

ṡ(v, y, n(v, t)) = Bnucleation = B0(y)δ(v− v0). (2.12)

The mechanisms of nucleation can be further categorized. The one seen above is called pri-

mary nucleation because of the nucleation rate B0 highly depending on supersaturation (a

potential component of y(t)). Here particles immerse from themselves. Given external as-

sistance, there are obviously more ways (e.g., impellers, pollutants) to the creation of new

particles. Those phenomena fall under the category of secondary nucleation and are often

modeled differently. A broad overview is found in Omar and Rohani (2017). Naturally, nucle-

ation leads to an increase in the zeroth and the first moment which is caused by the addition

of particles and the introduction of new mass.
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If the domain is restricted to Ωv = [vo, V], then nucleation can also be modeled by an inflow

boundary condition.



3 Adaptive Mesh Discretization and Mon-
itor Functions

Since the first appearance of the Population Balance Equation in the work of Hulburt and Katz

(1964) many methods have been developed to solve this equation. Due to their integro-differential

nature analytical solutions only exist in simplified cases with basic kinetics. If the PBE becomes

homogeneous, i.e., the reaction terms are neglected, then solutions can be found via the method of

characteristics because the equation reduces to the case of simple advection.

However, as the problem size and complexity increases, numerical methods need to be used.

In the following, the most widely used ones are shortly introduced. They present the frame of

reference our method has to compete with. We will not consider Monte-Carlo-based methods since

they are fundamentally different from the scope of this work. For a more comprehensive review

of the different methods available, the reader is referred to Ramkrishna (2000), or more recently

Rigopoulos (2010).

Method of Moments: When solving for the PBE, one is looking for a solution that depends on

time t and internal coordinate v that represents a distribution of particles. However, there are

times when the only matter of interest is total particle count, total particle mass or any other

moment. Then it is unnecessary to compute a complete solution to the partial differential

equation. A transformation of the PBE would yield a set of Ordinary Differential Equations

(ODE) that account for the evolution of the different moments over time. This method was

first introduced by Hulburt and Katz (1964). Based on this idea, many advanced techniques

have been developed. A recent overview is found in Omar and Rohani (2017). On the upside,

the methods of moments are cheaper to compute since only a few ODEs have to be solved.

However, it is impossible to accurately resemble the underlying number density distribution

without any further information. Additionally, the resulting set of ODEs is often unclosed.

Discretized Population Balance/Pivot Technique/Cell Averaging Technique: In a series of

three articles Kumar and Ramkrishna (1996a,b, 1997) proposed a method that discretizes the

computational domain and selects a representative point for all of the created bins, called a

pivot point. The solution concept presented in these articles has also been extended by the

idea of a moving grid. According to Kumar et al. (2009), this technique shows high accuracy

at correctly predicting the moments but the reconstructed distribution is worse compared to

other methods.

Direct Discretization (FE, FV): As in many other disciplines that incorporate partial differen-

tial equations, direct discretization on fixed grids is a common way to solve the population

balance equation. Either by approximating derivatives on grid nodes (Finite Difference - FD),

approximating the solution with local shape functions (Finite Element - FE) or the averaging
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of the solution on discretized cells (Finite Volume - FV), these are backed with various research

background.

Finite Element: The article of Rigopoulos and Jones (2003) presents a good overview of

the applicability of Finite-Element schemes.

Finite Volume: Aside from the classical implementation as seen in Qamar et al. (2006), it

is possible to transform the PBE into a form of mass conservation (Filbet and Laurençot

2004). This brings the advantage of being able to naturally capture the source terms

of breakage and coagulation (Qamar et al. 2009). A comparison with the cell averaging

technique has been conducted by Kumar et al. (2009). The authors concluded that this

method is favorable when an accurately resembled distribution is needed and an only

moderate capturing of the moments is acceptable.

Any method that discretizes a computational domain inevitably introduces an error. If a given

approximation converges, the accuracy of the solution improves at finer grids. However, more grid

nodes increase the time it takes to compute the numerical solution. A compromise would be to

refine the grid only locally in regions where it is necessary. These regions might comprise high

solution gradients or sharp corners, i.e., near discontinuities that the solution procedure has to

capture.

This chapter is dedicated to those kinds of methods. Especially, we derive an explicit adaptive

grid scheme for the Finite Volume discretization and test its performance with the help of different

monitor functions.

3.1 Mesh Redistribution Techniques
Static or fixed uniform grid discretization schemes bring the disadvantage of having a mesh that is,

in the worst case, insufficiently fine in regions where the solution has steep gradients and unnec-

essarily dense in smooth regions. Using non-uniform grids, we are able to increase the accuracy of

the solution by keeping the total amount of grid nodes constant. This is a common procedure in

structural mechanics or fluid mechanics since there are certain regions of interest, e.g., the bound-

ary layer around a wing. Often this incorporates a (manual) process of refining the grid in advance

of the simulation. However, not all simulation cases allow for this. For the solution of the PBE,

there are generally no special regions of interest in the particle property space.

A next step would be the use of moving grid schemes. These techniques are based on the method

of characteristics and exploit the natural transport of information in hyperbolic conservation equa-

tion (like the PBE). Here, we can find the relation between space and time, the so-called characteris-

tic lines. Then the fine grid regions are simply moved alongside those lines. Kumar and Ramkrishna

(1996b) used this moving idea to further improve their pivot technique. In general, these methods

advance the idea of direct discretization. However, they show problems when it comes to sudden

changes in the solution. This makes them hard to apply to inhomogeneous cases (with the reaction

terms of the PBE active), since that will interfere with the movement of the characteristics through

space-time.

If the nodes are now redistributed based on the current solution, this is called an adaptive grid

since the mesh will be adapted. Adaptivity requires the introduction of a measure to detect the

regions where a finer grid is necessary. The choice of this so-called monitor is crucial for correctly
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fixed regular meshes

fixed irregular meshes

moving meshes

adaptive meshes (static and dynamic)

number of

nodes necessary

for same accuracy

Figure 3.1: Informal visualization of the logical transition to adaptive grid schemes.

analyzing the solution. In section 3.3 we give a summary of the monitors available.

Over the broad range of adaptive grid methods, a further differentiation is made. Static schemes

such as the two-step one of Tang and Tang (2003) evolve the solution to the partial differential

equation separately from the change that is made to the grid. After a given time the solution is then

interpolated onto the new grid.

By contrast, dynamic adaptive grids do not need those possibly very intensive interpolation pro-

cedures. Here, a change in the solution will immediately change the grid equation. The moving

mesh partial differential equation adapted to the context of the PBE by Lim et al. (2001) belongs to

this category.

Informally speaking, the process up to adaptive grid schemes presents a transition to what re-

duces the number of nodes necessary to achieve the same accuracy. Fig. 3.1 shows a visualization of

this idea. However, to further compare the usefulness the inevitable increase in computation time

has to be considered. The application and implementation of an adaptive grid is beneficial when

the accuracy increases or the simulation time decreases.

3.2 An Explicit Adaptive Grid
The previously presented adaptive grid methods rely on solving a separate equation alongside with

the actual PDE to describe the evolution of the nodes. In this section, we use the approach of an

explicit adaptive grid that directly describes the adaptive grid. Therefore a second virtual domain

is created that is always uniform and on which the solution is discretized.
1

The real domain is

then subject to change under the influence of the monitor function. For any further calculations

that rely on the real grid, this information can simply be substituted by the grid node distance of

the current adaptive grid. As a connection between the two domains, a coordinate transformation

is introduced, that maps from the virtual domain to the real domain.

The new domain is addressed by the coordinate τ. Hence the task of the following subsections

is to transform the population balance equation from its v-dependent form into an equation con-

sisting of derivatives with respect to τ.

Sewerin and Rigopoulos (2017) introduced this concept in the context of the population balance

equation. The following derivations are loosely based on this article. In the continuing simulation,

already implemented code in the solver BOFFIN (bounded flow fitted integrator) was used.

1
Since we omitted the dependency on any spatial location in (2.3), speaking of a domain always refers to the domain in

the particle property space. In the one-dimensional case this simply becomes an interval v ∈ Ωv = [0, V].
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3.2.1 The transformed PBE
In this subsection, the population balance equation will be transformed from the real v-space into

the virtual τ-space. Therefore we start off with the general PBE of the previous chapter

∂n
∂t

+
∂(G(v, y, t)n)

∂v
= ṡ(v, y, n(·)). (3.1)

Again, we restrict the domain to Ωv = [0, V] by choosing an upper limit V that no particle will

pass. However, the domain can be any interval of arbitrary position and length. Parallel to this

domain, another domain Ωτ is created that shares the same boundaries as Ωv. To map between

those instances, a C1
-continuous coordinate transformation is introduced

v̄ : τ → v = v̄(τ, t) with v̄ : [0, V]×<+
0 → [0, V]. (3.2)

In the following, we assume the transformation is known. Section 2.2.3 will be covering the details

on prescribing such a transformation.

Three constraints are set to assure the mapping is bijective. First, the Jacobian, a measure of

distortion, is set to be greater than zero. The second and third constraints force the boundary

points of the domain to be transformed onto each other. As a consequence the entire length of the

domain will be kept constant.

∂v̄(τ, t)
∂τ

: = w(τ, t) > 0 ∀t ≥ 0, (3.3)

v̄(0, t) = 0 ∀t ≥ 0, (3.4)

v̄(V, t) =
∫ V

0
w(τ, t) dτ = V ∀t ≥ 0 (3.5)

Since the mapping is bijective there is an inverse transformation τ̄ := v̄−1
mapping from the real

internal coordinate v to the virtual coordinate τ. Based on this, the point-wise identity holds.

τ̄(v̄(τ, t), t) = τ ∀τ ∈ [0, V], t ≥ 0 (3.6)

For the following derivations some relations are helpful that are mainly based on the identities

∂τ̄

∂v

∣∣∣∣
v̄
=

1
w

, (3.7)

∂τ̄

∂t

∣∣∣∣
v̄
=

dv̄
dt︸︷︷︸
=0

− ∂τ̄

∂v

∣∣∣∣
v̄︸︷︷︸

(3.7)

∂v̄
∂t

= − 1
w

∂v̄
∂t

, (3.8)

∂(1/w)

∂τ
= − 1

w2
∂w
∂τ

= − 1
w2

∂2v̄
∂τ2 , (3.9)

dG|v̄
dτ

=
∂G
∂v

∣∣∣∣
v̄

∂v̄
∂τ︸︷︷︸
(3.3)

= w
∂G
∂v

∣∣∣∣
v̄
. (3.10)

For convenience, one now introduces a transformed number density that is defined on the virtual

coordinate τ. The transformed PBE will then be a partial differential equation for this function

n(v, t) := f (τ̄(v, t), t). (3.11)



3.2 An Explicit Adaptive Grid 13

At this point all the information about the transformation has been collected. In a next step, the

terms of (3.1) will be evaluated at v = v̄(τ, t)which means the new equation is formulated depending

on τ, the coordinate of the transformed space. In the source term, one can simply change v for v̄
and n for f . For the accumulation and advection term we get

∂n
∂t

∣∣∣∣
v̄
=

d f
dt

=
∂ f
∂τ

∂τ̄

∂t

∣∣∣∣
v̄︸︷︷︸

(3.8)

+
∂ f
∂t

= − 1
w

∂ f
∂τ

∂v̄
∂t

+
∂ f
∂t

, (3.12)

∂(Gn)
∂v

∣∣∣∣
v̄
= f

∂G
∂v

∣∣∣∣
v̄
+ G|v̄

d f
dv

∣∣∣∣
v̄
= f

∂G
∂v

∣∣∣∣
v̄
+ G|v̄

(
∂ f
∂τ

∂τ̄

∂v

∣∣∣∣
v̄︸︷︷︸

(3.7)

)
= f

∂G
∂v

∣∣∣∣
v̄
+

G|v̄
w

∂ f
∂τ

. (3.13)

Reinserting these transformed differentials into the original PBE (3.1) and simplifying yields the

most basic form of the transformed PBE

∂ f
∂t

+
∂ f
∂τ

1
w

(
G|v̄ −

∂v̄
∂t

)
︸ ︷︷ ︸

(a)

− f
∂G
∂v

∣∣∣∣
v̄︸ ︷︷ ︸

(b)

= ṡ(v̄, y, f ). (3.14)

For any further analysis, it is helpful to get rid of the derivative of the growth rate with respect to

the old coordinate. Therefore a general function is evaluated as a derivative with respect to τ, with

the help of the product rule and the chain rule this is

∂

∂τ

{
f

1
w

(
G|τ̄ −

∂v̄
∂t

)}
=

∂ f
∂τ

1
w

(
G|τ̄ −

∂v̄
∂t

)
︸ ︷︷ ︸

(a)

+ f
∂(1/w)

∂τ︸ ︷︷ ︸
(3.9)

(
G|τ −

∂v̄
∂t

)
+ f

1
w

(
dG|v̄
dτ︸ ︷︷ ︸
(3.10)

− ∂2v̄
∂t∂τ

)
.

(3.15)

Rearranging for (a) and reinserting into (3.14) will yield the final transformed population balance

equation

∂ f
∂t

+
d

dτ

{
f
w

(
G|v̄ −

∂v̄
∂t

)}
= − f

w

{
1
w

∂2v̄
∂τ2

(
G|v̄ −

∂v̄
∂t

)
+

∂2v̄
∂τ∂t

}
+ ṡ(v̄, y, f ). (3.16)

In this equation (b) vanishes with the help of (3.10). This equation contains higher order derivatives

on the right-hand side. We therefore assume that the prescribed coordinate transformation varies

only linearly in τ and t hence its derivatives on the right hand side will vanish leaving

∂ f (τ, t)
∂t

+
d

dτ

{
f (τ, t)
w(τ, t)

(
G(v̄(τ, t), y)− ∂v̄(τ, t)

∂t

)}
= ṡ(v̄(τ, t), y, f ). (3.17)

In this equation, the growth rate is modified by the node speed. That is the cost for using a trans-

formed space. However, when solving for this solution it is unnecessary to map any number density

value f to its real counterpart n. The coordinate transformation takes care of any grid adjustments.

3.2.2 Semidiscrete form in transformed space
The transformed population balance equation describes the evolution of the number density f over

time t and transformed internal coordinate τ given the coordinate transformation v̄(τ, t). As men-

tioned earlier, the coordinate transformation will be based on the current solution. Continuously
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2
]

Figure 3.2: Discretization of the domain Ωv = [0, V] into n sub-domains with n + 1 grid points. For numer-

ical convenience a ghost cell τ0 is added left to the lower boundary.

speaking, the transformed equation and the equation governing the prescription of the transforma-

tion are creating a combined system. Every time the solution changes the coordinate transformation

changes too. In a numerical manner, this means that the two discrete equations have to be solved in

conjunction. At first, we have to solve the transformed equation. Therefore a finite volume scheme

will be applied to the virtual transformed τ-space.

The first step is to discretize the computational domain Ωτ into cells of finite volume. Since we

are in the transformed space a uniform grid is used. τi+ 1
2

will address a cell node, i.e., the right cell

face. τi will be a representative for the i-th cell and also the location of the cell center.

τi+ 1
2
= i · ∆τ, ∆τ =

V
n

, i = 0, 1, . . . , n (3.18)

There are n+ 1 grid points τi+ 1
2

and n+ 1 cells τi due to the usage of a ‘ghost cell’ at the left boundary,

i.e., the domain Ω is divided into n subdomains Ωi. Fig. 3.2 schematically depicts this.

The solution of the transformed number density f (τ, t) is averaged over these cells. This will

also be applied to the initial condition.

Fi(t) =
1

∆τ

∫ τ
i+ 1

2

τ
i− 1

2

f (τ, t) dτ i = 1, 2, ..., n (3.19)

If (3.17) is now integrated over one uniform cell [τi− 1
2
, τi+ 1

2
] and normalized by the cell width ∆τ the

semi-discrete formulation is found to

dFi

dt
+

1
∆vi

[
f
(

G(v̄, y)− ∂v̄
∂t

)]τ
i+ 1

2

τ
i− 1

2

=
1

∆τ

∫ τ
i+ 1

2

τ
i− 1

2

ṡ(v̄, y, f ) dτ. (3.20)

In the approximation of the advective term the normalization by ∆τ changes to the cell width in

physical space ∆vi. Since the coordinate transformation is piecewise linear the Jacobian becomes

exact by a finite difference expression w = ∆vi/∆τ. This can be factored out, changing the denom-

inator. The expression inside the square brackets is the flux function, responsible for the conser-

vative change of the cell averaged value

F (τ, t) = f (τ, t)
(

G(v̄(τ, t), y)− ∂v̄(τ)
∂t

)
︸ ︷︷ ︸

G̃( ¯v(τ,t),y)

. (3.21)
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Figure 3.3: The function that is created by the limiter Φ(r) always lies in or at boundary of Sweby’s mono-

tonicity domain (Sweby 1984). Negative values of the solution gradient r result in zero. The light

dotted line displays the case r = 1.

We can now identify the modified growth rate G̃(τ̄, y), as the flux shall also be dependent on the

movement speed of the nodes due to the invoking of an adaptive grid. By the idea of fluxes repre-

senting the values of the cells being transported in the wind direction, the node movement incor-

porates an additional wind speed. When a grid node is moving in the positive direction, it creates

additional wind from right. This can be seen by the minus sign in front of the term.

For a numerical evaluation of this flux at the cell faces τi+ 1
2

a high-resolution scheme can be used,

for instance, one that was suggested by Koren (1993) and introduced in the context of the PBE by

Qamar et al. (2006). This one is second order accurate and total variation diminishing (TVD). It

differentiates between wind from the left (G̃|v
i+ 1

2
≥ 0) and from the right (G̃|v

i+ 1
2
< 0).

F (τi+ 1
2
) := Fi+ 1

2
= G̃|v

i+ 1
2

Fi +
1
2 Φ(rle f t

i+ 1
2
) (Fi − Fi−1) G̃|v

i+ 1
2
≥ 0

Fi +
1
2 Φ(rright

i+ 1
2
) (Fi − Fi+1) G̃|v

i+ 1
2
< 0

(3.22)

Here, Φ(r) is a flux limiter to oppress the creation of wiggles. It is called on the ratio of consecutive

solution gradients that also differs between wind from the left and wind from the right.

ri+ 1
2

:=

rle f t
i+ 1

2
= Fi+1−Fi+ε

Fi−Fi−1+ε G̃|v
i+ 1

2
≥ 0

rright
i+ 1

2
= Fi−Fi+1+ε

Fi+1−Fi+2+ε G̃|v
i+ 1

2
< 0

(3.23)

A small value ε is chosen to avoid a division by zero in uniform flow regions. The flux limiter draws

a line that lies inside or at the boundary of an area of monotonicity (Sweby 1984) which is visualized

in Fig. 3.3.

Φ(r) = max
(

0, min
(

2r, min
(

1 + 2r
3

, 2
)))

(3.24)

Together with an approximation for the source integral of (3.20) we the right-hand side Ḣi be-

comes

Ḣi = −
1

∆vi

[
Fi+ 1

2
−Fi− 1

2

]
+

1
∆τ

∫ τ
i+ 1

2

τ
i− 1

2

ṡ(v̄, y, f ) dτ. (3.25)
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The minus in front of the fluxes arises because they have been moved to the right-hand side of

the equation. In total we now have a system of ordinary differential equations (ODE) for the cell

averaged values.

dFi

dt
= Ḣ(v̄(τ, t), y, f (τ, t)) i = 1, 2, . . . , n (3.26)

This can be fed into an ODE solver with adaptive time stepping, such as dopri5 or, in case it gets

stiff, radau5. The solver itself is called on the time horizon ∆tk that lies between the update of the

transformation. The solver will adjust its step sizes ∆tsolver ≤ ∆tk.

3.2.3 Calculating and updating the coordinate transformation
Once the time horizon tk + ∆tk is reached, the adaptive grid gets updated. Therefore, the current

solution is analyzed for steep gradients, near discontinuities, and other features. That is the task

of a so-called monitor function. After evaluation, the grid points will be relocated according to an

equidistribution principle alongside the monitor value. Additional steps have to be taken to assure

that the grid is not overly stretched. Finally, the coordinate transformation is updated in a way that

it is marching in time, i.e., the time-dependent transformation v̄(τ, t) over the next time horizon

t ∈ [tk+1, tk+2] will be calculated based on the old transformation at the endpoint of the last time

step v̄(τ, tk+1) and the update v̄∞(τ).

Equidistribution alongside a monitor value The inverse of the Jacobian of the coordinate transfor-

mation (3.3) measures the distortion appearing when mapping from the real particle property space

to the transformed one. Since the grid in τ-space is always uniform, a high distortion results in

densely located nodes in v-space at this given point. By introducing a functional on the number

density m(n)(v) that has high value in feature-rich regions this quantity should be set proportional

to the inverse Jacobian. We call this functional a monitor.

∂τ̄(v, t)
∂v

=
1

w(τ̄(v, t), t)
= c ·m(n)(v) (3.27)

In this equation c > 0 represents the normalization constant or simply the factor of proportionality.

We can fix the time t = tk+1 and hence omit any further time dependency in this subsection. Solv-

ing this ordinary differential equation for τ̄(v, t) by taking into account the boundary conditions

defined by the constraints in (3.4) and (3.5) yields the equidistribution principle

τ̄0(v) =
V∫ V

0 m(n)(v′) dv′

∫ v

0
m(n)(v′) dv′. (3.28)

The coefficient in front of the integral defines the normalization constant, assuring that the newly

placed nodes will not leave the domain. The equidistribution distorts the virtual τ-domain. Orig-

inally, one wants to renew the grid points in the real v-domain. Therefore, at first, the nodes are

mapped back by the old transformation and the grid in τ-space is reset to uniform.

v̄0(τ) := v̄(τ0) and τ̄(v) := τi+ 1
2

i = 0, 1, 2, . . . , n (3.29)

Based on this, the Jacobian of the new transformation can be calculated.
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Additional Adjustments to the node density Solely relying on the equidistribution of the nodes

alongside the monitor value might bring up two risks:

1. Nodes will only lie in feature rich-regions. Consequentially, the grid may become sluggish

and the node movement might not be capable of capturing sudden changes. A smooth grid

is preferable. Due to Dorfi and Drury (1987) a common measure is to restrict the local bound-

edness

1
α
≤

vi+ 1
2
− vi− 1

2

vi− 1
2
− vi− 3

2

≤ α i = 2, 3, . . . , n, (3.30)

where α > 0 defines the maximum admissible grid stretching in v-space.

2. A change of the solution in a different region than where features lie, e.g. caused by nucleation,

might be under-resolved. To address this, a minimum node density has to be prescribed on

v-space that the coordinate transformation has to respect.

ρ(v) ≥ ρmin(v) ∀v ∈ [0, V] (3.31)

Since it is unlikely that the found coordinate transformation v̄0(τ) is able to fulfill both condi-

tions, it has to be further adjusted to a transformation that we call v̄∞(τ). To do this, Sewerin and

Rigopoulos (2017) proposed an Initial Value Problem in terms of the inverse Jacobian that imple-

ments this adjustment with the help of the iterator variable s ∈ {1, 2, . . . , maxStep}
dτ̄s+ 1

2
(v)

dv
:=

dτ̄s(v)
dv

+ max

(
max(ρmin(v), P(ρ)(vj))

ρτ
− dτ̄s(v)

dv
, 0

)
dτ̄s+1(v)

dv
=

dτ̄s+ 1
2
(v)

dv

(
1
V

∫ V

0

dτ̄s+ 1
2
(v′)

dv′
dv′
)−1 . (3.32)

The first equation can be understood as removing points from high node density regions and rein-

serting them in locations that need more points either to respect the grid stretching α or the min-

imum node density ρmin. In the second equation the grid is renormalized. It is repeatedly applied

until the change of the coordinate transformation in one step is under a given tolerance

dτ̄s+1(v)
dv

− dτ̄s(v)
dv

< tolerance. (3.33)

In (3.32) P(ρ)(v) denotes a padding that is applied to the current node density ρ(v). The padding

can be seen as a functional used in smoothing sharp node density peaks. It is calculated with the

help of three linked equations
P(ρ)(v) := max

v′∈[0,V]

(
ρ0(v′)

1+λ|v−v′|ρ0(v′)

)
λ = ln α

d

d = 1
n

∫ V
0 P(ρ)(v) dv

. (3.34)

The maximum admissible grid stretching α is obeyed within the calculations of the constant λ.

With the help of the initial guess d ≈ ∆τ, this system is solved iteratively until the padding of the

node density P(ρ)(v) does not change anymore.
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Figure 3.4: The time dependent coordinate transformation v̄(τ, t) spans a v− t-mesh. At a given point in time

tk the previous transformation is known v̄(τ, tk). With the help of the newly calculated update

v̄∞(τ), we can extrapolate the transformation of the next time step tk+1. The one in-between can

be linearly interpolated.

Every iteration of the two-step scheme (3.32) takes a full calculation of (3.34) to obtain the padding

P(ρ)(v). In the transformed τ-space the nodes are uniformly distributed, resulting in a constant

node density ρτ = n/V. The current node density in the real particle property space that is needed

can be computed by the help of the distortion of the current inverse Jacobian

ρ0(v) =
dτ̄0(v)

dv
ρτ. (3.35)

When the two-step scheme (3.32) is converged, the adjusted Jacobian then yields the wanted coordi-

nate transformation v̄∞(τ).

Coordinate Transformation for the next time step Given the coordinate transformation at discrete

points in time v̄(τ, tk), we can estimate the new transformation at the next point in time by a smooth

transition between the old one (that was just an estimate made from the one at tk−1) and the current

update v̄∞(τ). By the use of exponentials, the next transformation is

v̄(τ, tk+1) =
(

1− e−
∆tk

κ

)
v̄∞(τ) + e−

∆tk
κ v̄(τ, tk) (3.36)

The exponential prefactors implement a first-order lag element with a constant of κ > 0. By this

scheme, the transformation marches in time meaning that the transformation at every next step

also depends on all old transformations. Now, for every discrete point in the time horizon there

is a new transformation. However, to solve the actual population balance equation in transformed

space information on the grid node locations is needed more frequently, i.e., at all the adapted

time steps the ODE solver chooses. We therefore use a linear interpolation between the current

transformation v̄(τ, tk) and the guess at the next time horizon v̄(τ, tk+1) to

v̄(τ, t) = v̄(τ, tk) +

(
v̄(τ, tk+1)− v̄(τ, tk)

)
t− tk

∆tk
for t ∈ [tk, tk+1]. (3.37)
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For the first point in time, no previous transformation is available meaning it will be set to the

‘update’ of the first time step.

v̄(τ, t0 = 0) = v̄∞(τ) (3.38)

Summary of the steps For future reference, we call the combination of all the procedures intro-

duced in this subsection the remap subroutine. It is called multiple times in advance of a simula-

tion to find a suitable initial grid by constantly reinterpolating the initial condition onto the grid.

As an aid to the reader, a flow scheme incorporating the entire simulation process is given in Fig.

3.5.

3.3 Monitor Functions used in the literature
Monitor functions deliver the information necessary to analyze the current solution, i.e., they iden-

tify regions that require higher node density. As to the equidistribution principle (3.28) the monitor

values are directly linked to the coordinate transformation.

In a more general framework Dorfi and Drury (1987) adapted the most frequently used monitor

of Arclength. It is based on the idea that in regions of near discontinuity the solution spans over

high values of n in small areas of v hence a long arclength can be seen. In the case of an one-

dimensional PBE, this becomes the contribution of an infinitesimal small length element of the

two-dimensional curve x = (v, n(v))T

ds =
√
(dx1)2 + (dx2)2. (3.39)

When transforming the differential from ds to dv, the Arclength functional m(n)(v) can be identified

ds =

√(
dx1

dv

)2

+

(
dx2

dv

)2

dv =

√
1 +

(
dn
dv

)2

︸ ︷︷ ︸
marclength(n)(v)

dv. (3.40)

Many adaptive grid schemes use this monitor. Ceniceros and Hou (2001) and Tang and Tang (2003)

even adapted it for multidimensional cases where it represents the surface the function spans over

an inifinitesimal small rectangle dv1 × dv2.

Based on the idea of Arclength, a similar monitor can be derived that equidistributes the grid

nodes alongside the Curvature dc of a function (Blom and Verwer 1989).

dc = 4

√
1 +

(
d2n
dv2

)2

︸ ︷︷ ︸
mcurvature(n)(v)

dv (3.41)

Both Arclength and Curvature directly depend on the shape of the solution and represent the most

basic ideas to measure this function. Going further, one can find descendants of these monitors.

Sewerin and Rigopoulos (2017) used a simpler version of the family of Arclength monitors by omit-

ting the square of the first derivative. We will refer to this as Arc-Simple. Since a near discontinuity

consists of a steep gradient resulting in a high arclength and sharp corners resulting in high curva-

ture, a logical consequence would be to combine both monitors. This was first introduced by Dorfi

and Drury (1987) and we will refer to this as Arc-Curv.
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Other combinations such as the one of Qamar et al. (2007) that adds the absolute value of the

function under the square root of an arclength monitor

m(n)(v) =

√
1 + |n|+

(
dn
dv

)2

, (3.42)

are not suitable for our cases. Here, higher values of the function will be additionally scored which

is not the intent of a monitor function.

At this point, we have defined the continuous counterparts of four monitors that are mainly

based on the shape of the current solution. To oppress any unwanted influences to the monitor,

the current solution is normalized by the total number of particles, i.e., the zeroth moment

n(v)← n(v)
Ψ0

with Ψ0 =
∫ V

0
n(v) dv. (3.43)

Now the monitor will only analyze the shape. Additionally, we introduce a regularization constant

β > 0 that magnifies the value of the derivatives against the additive one. The value has an influence

on how well the monitor function can analyze the solution. According to Sewerin and Rigopoulos

(2017) there is a threshold of β = 104
for the case of step advection above which the accuracy is the

best. Therefore, we adapt this value.

If the derivatives are now approximated by finite difference, we obtain the discrete forms as in

Tab. 3.1. Here vi denotes the position of the cell center that is midway between the cell faces vi =

(vi+ 1
2
− vi− 1

2
)/2. For the approximation of the second derivative, we use the formula of Blom and

Verwer (1989). Since this value of the second derivative is associated with the cell center vi, a cell

face averaging operator for non-uniform grids A is introduced.

The combined Arc-Curv monitor originally consists of two regularization constants since the

magnitude of curvature is different than Arclength. We instead used one value β and multiplied

by a constant. For the case of step advection, we found 80 to be a good value to deliver a smooth

blend of both contributions.

3.4 A Monitor Function based on Artificial Diffusivity
‘Monotone behavior of a numerical solution cannot be assured for linear finite-difference

methods with more than first-order accuracy.’ (Godunov 1959)

Godunov’s theorem states that there are no finite volume flux approximations that are free of

introducing wiggles with higher accuracy than first order. Wiggles occur when the discretization

scheme has to approximate steep gradients. It will therefore intuitively create oscillations around

it to achieve a better approximation of the steep slope of the cell averaged solution (Miller and

Miller 1981). These additional oscillations, however, disrupt the monotonicity of the solution, hence

Godunov’s theorem. This is visualized schematically in Fig. 3.6. Only low accuracy schemes, i.e.,

ones that are first-order accurate will not be affected since their underlying stencil is too small to

capture those gradients.

Additionally, some finite volume schemes will experience numerical diffusivity that smears out

its sharp corners. In general, this behavior is unwanted since it reduces the information of these

features. So-called total variation diminishing (TVD) schemes or high-resolution schemes now
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+

=

first order

after some time

higher order

after some time

Figure 3.6: Higher order schemes naturally introduce oscillations into the solution to better approximate

a steep gradient (Miller and Miller 1981). TVD-schemes (not to be seen here) try to oppress the

creation of such wiggles.

attempt to incorporate artificial diffusivity to oppress the creation of wiggles. Therefore, they try

to limit the flux where necessary to obtain a monotone solution, i.e., the flux is smeared a bit. In

the previous section, we introduced the scheme of Koren (1993) for approximating the cell face flux.

This scheme incorporated a flux limiter Φ(r) that was defined based on the help of a monotonicity

domain.

Given the background that the scheme inevitably introduces oscillations that it tries to oppress

at the same time, it naturally includes a measure of discontinuity. In other words, the way the flux

is limited tells about the features of the solution. That is what one could exploit and use in the

sense of a monitor function. Therefore, we compare the fluxes of the scheme of Koren (1993) with

the fluxes a second-order central difference scheme yields and with the fluxes an approximation of

a general diffusion equation uses. In the end, a different measure of the current solution is found

compared to the monitors of Tab. 3.1 since they all directly rely on the shape of the solution.

3.4.1 Numerical Diffusivity as a measure of discontinuity
In this subsection, an expression for the artificial diffusivity is derived based on a comparison of flux

approximations. Therefore, we consider a general diffusion equation on the uniform transformed

space with diffusivity Γ(v)
∂ f (τ, t)

∂t
=

∂

∂τ

(
Γ(τ)

∂ f (τ, t)
∂τ

)
. (3.44)

We apply the standard finite volume discretization of Fig. 3.2 by integrating over the cell Ωi =

[τi− 1
2
, τi+ 1

2
] and normalizing by the cell width ∆τ. Doing so and incorporating a finite difference

approximation of the inner derivative we get

dFi

dt
=

1
∆τ

[
Γ|τi+ 1

2

Fi+1 − Fi

τi+1 − τi︸ ︷︷ ︸
F di f f

i+ 1
2

− Γ|τ
i− 1

2

Fi − Fi−1

τi − τi−1︸ ︷︷ ︸
F di f f

i− 1
2

]
. (3.45)

Here F di f f
i± 1

2
denotes the diffusive flux at the left cell face and the right cell face, respectively.

Now, we recall the advective flux approximation on the right cell face in the case of wind from the

left of (3.22). Instead of the modified growth rate G̃ = (G− ∂v/∂t)/w, we neglect the node speed
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∂v/∂t since we are looking for a transformation that is fixed in time, hence the advective coefficient

becomes the original growth rate that is corrected by the Jacobian

F adv
i+ 1

2
= −

Gi+ 1
2

wi+ 1
2

(
Fi +

1
2

Φ(rup
i+ 1

2
)(Fi − Fi−1)

)
. (3.46)

The minus sign arises as we assume the advective term would have been moved to the right side

of the equation as similarly shown in (3.25). By adding an artificial zero to the expression in the

parenthesis (by adding and subtracting a weighted cell face number density value), one can identify

a central difference flux approximation F adv,central
i+ 1

2
. Additionally, we can multiply the second term

by an artificial one.

F adv
i+ 1

2
= ︸ ︷︷ ︸

F adv,central
i+ 1

2

−
Gi+ 1

2

wi+ 1
2

(
Ni +

added artificial 0︷ ︸︸ ︷
τi+ 1

2
− τi

τi+1 − τi
(Fi+1 − Fi)−

τi+ 1
2
− τi

τi+1 − τi
(Fi+1 − Fi) +

1
2

Φ(rup
i+ 1

2
)(Fi − Fi−1)

τi+1 − τi

τi+1 − τi

Fi+1 − Fi

Fi+1 − Fi︸ ︷︷ ︸
multiplied by 1

) (3.47)

Up one resorting the order of multiplication in the two lasting terms, we can factor out a finite

difference expression of the number density. Additionally, the inverse of the solution gradient can

be found as (Fi − Fi−1)/(Fi+1 − Fi) = (rle f t
i+ 1

2
)−1

. In a comparison with the diffusive flux of the right

cell face F di f f
i+ 1

2
, obtained in (3.45), we can define the rest of the expression as the artificial diffusivity

introduced by the TVD-scheme since a numerical flux by a central difference approximation does

not incorporate any additional diffusivity.

F adv
i+ 1

2
= F adv,central

i+ 1
2

+
Fi+1 − Fi

τi+1 − τi
·

Gi+ 1
2

wi+ 1
2

(
(τi+ 1

2
− τi)−

1
2rup

i+ 1
2

Φ(rup
i+ 1

2
)(τi+1 − τi)

)
︸ ︷︷ ︸

Artificial diffusivity at τ
i+ 1

2
:= Γart

i+ 1
2

(3.48)

Similar to the derivation made here, the expression in the case of wind from the right can be found

whereas the solution gradients ri+ 1
2

depending on the wind direction are defined in (3.23). The flux

limiter Φ(r) is given by (3.24).

Γart
i+ 1

2
=

Gi+ 1
2

wi+ 1
2


(τi+ 1

2
− τi)− 1

2rle f t

i+ 1
2

Φ(rle f t
i+ 1

2
)(τi+1 − τi) Gi+ 1

2
≥ 0

1
2rright

i+ 1
2

Φ(rright
i+ 1

2
)(τi+1 − τi)− (τi+1 − τi+ 1

2
) Gi+ 1

2
< 0

(3.49)

Since the grid in τ-space is uniform the node distance will always be τi+1 − τi = ∆τ = const.
Consequentially, the distance between the cell midpoint and the cell face is τi+ 1

2
− τi = ∆τ/2 =

const. By factoring out these constant values, we see that they only magnify the value of the artificial
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diffusivity at a given grid node but do not deliver any additional information on the shape of the

solutions. Hence we can neglect them yielding

Γart
i+ 1

2
=

Gi+ 1
2

wi+ 1
2


1−

Φ(rle f t

i+ 1
2
)

rle f t

i+ 1
2

Gi+ 1
2
≥ 0

Φ(rright

i+ 1
2
)

rright

i+ 1
2

− 1 Gi+ 1
2
< 0

. (3.50)

The expression left for the Artificial Diffusivity Γart
i+ 1

2
analyzes the solution in multiple ways. First,

the monitor value will be high for fast-growing particles, hence more nodes will be placed in regions

where high flow occurs. Secondly, the expression is inversely proportional to the Jacobian. Since it

measures the distortion when mapping between the τ-space and the v-space the monitor value will

be high in regions where the nodes are already densely packed meaning it will intensify the grid.

Lastly, it also depends on the solution itself. The flux limiter decides whether the flux should rather

be approximated by central difference or upwind. It is one in the regions of uniform solution where

the ratio of consecutive solution gradients ri+ 1
2

is also one. By subtracting it from one, we find the

deviation from uniform flow regions hence the regions of change that require higher node density.

3.4.2 Implementation in a numerical solution scheme
To conclude the definition of (3.50), we have to find an expression for the Jacobian value at the cell

face wi+ 1
2
. This can be approximately done by the help of the average of the Jacobian on both sides

of the cell face

wi+ 1
2
=

1
2
(wi + wi+1) =

1
2

(
∆vi

∆τ
+

∆vi+1

∆τ

)
∼ ∆vi + ∆vi+1 = vi+ 3

2
− vi− 1

2
. (3.51)

Now the set of equations to calculate the value of Artificial Diffusivity is complete.

This monitor offers a new way to describe the solution that is also based on the way the underly-

ing discretization scheme works, i.e., how the cell face flux is approximated. Therefore, it behaves

differently from the monitors presented in Tab. 3.1. According to the equidistribution principle, the

grid nodes in τ-space are distorted by the equidistribution alongside the monitor value. However,

this process incorporates a division by the monitor values and since Artificial Diffusivity will be zero

in regions where the solution will not change, one has to add a small value ε to avoid a division by

zero.

Mi+ 1
2
= ε +

∣∣∣Γart
i+ 1

2

∣∣∣η (3.52)

An issue of this monitor function is that its values will become very high compared to the other

monitors. This is mainly caused by the Jacobian in the denominator. In regions where the mesh

is already dense, one divides by a small value hence the grid will additionally increase in node

density at this point. The presented implementation of padding and minimum node density may

be incapable of smoothing the grid. This was observed by some early implementations in which

the application of this monitor did not respect the prescribed grid stretching α and the iteration of

the two-step scheme (3.32) did not converge.

A solution would be to additionally smooth the monitor values before they start distorting the τ-

grid by the equidistribution principle (3.28). As seen above, one could smooth the value by a general
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Table 3.2: Values for the root limiter η found to be best suited. They will depend on the chosen kind of

floating point number in the code implementation (here for double precision).

Number of Cells Grid stretching α 16 32 64 128 256 512

Limiter η (normal domains) 2.0 4.0 0.95 0.55 0.40

Limiter η (exponential domains) 1.5 2.0 0.6 0.5 0.3 0.15 0.1

root function with the limiter η. We also tried to use a low-pass filter as seen in Tang and Tang

(2003)

Mi+ 1
2
← 1

4

[
Mi− 1

2
· (vi+ 3

2
− vi+ 1

2
) + Mi+ 3

2
· (vi+ 1

2
− vi− 1

2
)

vi+ 3
2
− vi− 1

2

+ 2 ·Mi+ 1
2

]
. (3.53)

However, the results were not satisfying. Therefore, we stick to the original approach of (3.52). In

general, the value η is best set to be as high as possible for the given number of cells employed.

Setting it too low ignores the adaptive grid itself since the monitor value will then become ε almost

everywhere. Tab. 3.2 summarizes the values we found to be best. It differentiates between domains

spanning over one or two orders of magnitude and exponential domains that encompass multiple

orders.

3.5 Advection of a unit step profile
In this section, we test the various monitor functions on an example of a homogeneous PBE with a

constant growth rate, i.e., a simple advection equation

∂n(v, t)
∂t

+ g
∂n(v, t)

∂v
= 0 v ∈ Ω = [0, V], t > 0. (3.54)

Here, we set the right boundary to V = 4 and the growth rate/advection speed to g = 0.05 s−1
.

According to the methods of characteristics, the solution to this partial differential equation will be

the initial condition propagating to the right at a constant velocity n(v, t) = n0(v− gt). To measure

the capability of resolving steep gradients and sharp peaks, we introduce a unit step function with

a high slope and two sharp corners.

n(v, 0) := n0(v) =


0 v < 0.15
v−0.15

0.05 v ∈ (0.15, 0.2)

1 v > 0.2

(3.55)

The simulation went for 60 s with a major time horizon of ∆tk = 0.01 s = const, i.e., the grid was

recalculated every 1/100 s.

We differentiate between the time at the beginning of the simulation and time t = 45 s. Fig. 3.7

presents the shape of the numerical solution magnified from the entire domain Ωv = [0, V] to

v ∈ [0, 0.35] in the top row and v ∈ [2.25, 2.65] in the bottom row. The height of the solution was

captured well by all 5 investigated monitor function. The marks in the given plots represent, on

the one hand, the grid node locations and, on the other hand, the cell face values. These have been

linearly interpolated by the operatorA introduced at the bottom of Tab. 3.1. To compare the results
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t = 0s

t = 45s

(a) Arclength (b) Curvature (c) A2 (d) ArcCurv (e) Diffusion

Figure 3.7: The different shapes present how the various monitors capture the solution at the initial condition

and at time t = 45 s. The plots are magnified from the computational domain and are calculated

with 32 finite volume cells at a grid stretching of α = 2.0.

quantitatively, we use the L1-error measure

error(t) =
1
V

∫ V

0

∣∣∣nanalytical(v, t)− nnumerical(v, t)
∣∣∣ dv, (3.56)

and refer to it as average deviation from analytical solution or simply error.
If we now compare the different shapes, it is obvious to identify that the monitors Arc-Simple as

well as Arc-Curv are based on the Arclength one. The nodes are equidistributed alongside the contour

of the solution. Only the slightly modified Arc-Curv-monitor shows little superior capturing of the

sharp corners. A big disadvantage of all three variants is the high resolution on the long slope that

is technically unnecessary. However, the implementations are very robust, showing a consistently

good capturing even at later time steps.

The Curvature-monitor focuses more on sharp corners. However, the approximation of the second

derivative is error-prone when having a piece-wise linear function. When examining the plot at a

higher number of cells the nodes are placed in a way to induce additional ’ministeps‘ over the steep

gradient. We guess that a little error on parts of high slope can be additionally magnified since this

monitor just analyzes such features. Fig. 3.8 illustrates the performance of the different monitors.

Even though the Curvature-monitor works better than the reference finite volume implementation

on a fixed uniform grid it is still about one order of magnitude behind the best. Additionally, the

simulation at cell counts higher than 2048 was not possible since the two-step scheme of (3.32)

did not converge. Presumably, the influence of the monitor is too high, i.e., the monitor values

themselves span over many orders of magnitude. Then, the additional adjustments are unable to

smooth the grid and the simulation stops. We could also observe this behaviour with the Arc-Curv-

monitor.

As for the novel monitor based on Artificial Diffusivity the first results are poor. Even if the monitor

captures the initial condition (IC) superior compared to the other tested ones, it falls behind at later

points in time. In the case of 32 finite volume cells, as shown in Fig. 3.7, the top right corner of the
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Figure 3.8: Analysis on the error (average deviation from analytical solution) over the number of finite volume

cells at fixed grid stretching α = 2.0 and over the grid stretching at 64 cells, both at time t = 45s.

step profile is captured better than the lower parts. When zooming out of the magnified image, a

region of higher node density appears but it is not where it has to be. In reverse, this means that

those are the locations the scheme finds the highest artificial diffusivity.

The connection between the way the points of the IC are placed for Artificial Diffusivity and Curva-
ture is interesting and might show a connection between these two approaches. When it comes to

accuracy, the Artificial Diffusivity monitor is still better than the reference implementation but it is

very inconsistent. For higher cell counts than 128 we did not find any suitable values for the limiter

η in (3.52), as a consequence the simulation did not run. Here this monitor shares the same problem

as the one of Curvature because the two-step scheme does not converge.

In Fig. 3.8 we also plot the average deviation from the analytical solution at 64 finite volume

cells with varying grid stretchings α. For the Arclength monitor and its descendants, the error soon

converges. For the sole Curvature there are oscillations but they are mainly bounded. Based on this

data, it could be assumed that α can also be set to values higher than 2.0 but we advise against this

since this makes the adaptive grid sluggish. When it comes to the monitor on Artificial Diffusivity,

2.0 also seems to be a reasonable choice.

Tab. 3.3 compares the different orders of convergence where we chose an individual lower limit

for the linear regression. By the slightly higher rate of the reference FVM implementation it can

be seen that it will converge against or overtake the other monitors at very high cell counts. That

seems reasonable since the fixed grid will then also have a high resolution everywhere.

Additionally, in Tab. 3.3 we summarize the CPU time per step on an Intel i7 8550u CPU. The total

simulation spanned over 60 s, hence 6000 steps. As expected, the time for the reference implemen-

tation is less, to be exact just half of the rest since there is no Remap subroutine involved. The

remaining five monitors share a CPU time that is in the same order of magnitude. The slightly

faster time of Arc-Simple in combination with a superior performance in the convergence analysis

makes this monitor the best choice for this kind of scenario. It seems that the neglected square of

this monitor does influence the computing time because it might damp the overall monitor values

and as a consequence the subsequent iterations of the two-step scheme (3.32) may take fewer steps.
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Table 3.3: Additional information on the order of convergence for the different monitor functions with α =

2.0, n = 64 and at time t = 45s. The third column denotes the average CPU per step averaged over

the entire simulation.

Monitor Order of convergence CPU time per step in s

(a) Arclength O(n−0.84), n ≥ 64 2.05 × 10−5

(b) Curvature O(n−1.12)∗, n ≥ 256 1.83 × 10−5

(c) Arc-Simple O(n−0.98), n ≥ 64 1.16 × 10−5

(d) Arc-Curv O(n−1.07)∗, n ≥ 64 1.99 × 10−5

(e) Art-Diff O(n−1.93)∗, n ≥ 16 2.47 × 10−5

(ref ) FVM O(n−1.21), n ≥ 8 9.27 × 10−6

* = problems at higher cell counts

This could also explain the fact that the CPU time of the Arclength-monitor is worse than the one of

Curvature even if the calculation of the second derivative is more complex. Finally, the monitor of

Artificial Diffusivity takes the longest since it incorporates a more complex scheme.

3.6 Population balance of pure coagulation
In a next test, we compare the monitor functions on a case of pure coagulation. The corresponding

equation is given as the PBE without the growth term but with the source integral of (2.11). We

consider binary coagulation with a constant kernel of a(v′, v − v′) = 1. This concludes into the

equation

∂n(v, t)
∂t

=
1
2

∫ v

0
n(v′, t)n(v− v′, t) dv′ −

∫ ∞

0
n(v′, t)n(v, t) dv′. (3.57)

The finite volume discretization of this reaction term will yield a double integral that is generally

intensive to compute. In the solver BOFFIN this case is already implemented by Liu and Rigopoulos

(2018). We therefore use this code.

In the case of an exponential initial condition

n(v, 0) := n0(v) = e−x v ∈ Ωv = [10−3, 5 × 101] (3.58)

the analytical solution is then given according to Scott William T. (1968) as

n(v, t) =
4

(t + 2)2 exp
(
−2v
t + 2

)
. (3.59)

The domain spans over multiple orders of magnitude, thus we use the preset of the grid stretching

α = 1.5. In the previous section, the Arc-Simple monitor was seen to be the best in the category of

the Arclength descendants. Therefore, the class of this kind of monitors is from now on restricted

to it. We add the regular Arclength in the convergence analysis. The regularization constant was

kept at β = 104
. As a reference, a standard finite volume scheme as in the case of step advection is

employed. However, the fixed grid is set to be logarithmically uniform.

Theoretically, the monitor based on artificial diffusivity will not work because there is no growth

incorporated. However, we set the growth rate to an arbitrary number, for example, G = 0.05 s−1

due to the fact that the big measuring for the monitor on the artificial diffusivity takes place inside
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Figure 3.9: Displays how the numerical solution capture the solution at two different points time with grid

stretching α = 1.5 and 16 finite volume cells. There is also a reference FVM implementation on

a fixed exponential grid.

the ratio of consecutive solution gradients r that obviously still exists. Additionally, this could be

seen as the case that would occur when the solution at a given point in time would suddenly change

from pure coagulation to pure growth. Since the grid spans over multiple orders of magnitude the

limiter η was set to the values according to the second row of 3.2.

In Fig. 3.9 the numerical solution with 16 finite volume cells is shown for the initial condition

and the solution after t = 10 s. Once again, the marks indicate the location of the cell faces and the

respective solution values that have been linearly interpolated from the cell averaged solution. The

most left point (that can not be seen in the plots) is located at the left boundary 10−3
.

All the monitors present a good coverage of the initial condition even though they overshoot at

values of v > 5 × 101
. When it comes to the solution at later time steps, they differ. The Curvature

monitor fails to set grid nodes to small coordinate values. That might be caused by the fact that

the solution is convex over the domain, hence there is no big change in curvature. Mathematically,

this can be examined by taking the second derivative w.r.t. v of (3.59) that will strongly decrease at

later points in time because the denominator in the coefficient will be proportional to t3
. We can

further confirm this bad performance by looking at the convergence diagram of Fig. 3.10. Here we

calculate the average deviation from the analytical solution in accordance to (3.56). Given the case of

an exponential initial condition within pure coagulation, the Curvature monitor does not converge.

The Arc-Simple monitor works as expected.Additionally, it does shift its grid node locations slightly

to the right but given the short simulation time, it is well capable of analyzing the solution. By look-

ing at the convergence diagram, it performs the best. However, this should not be taken for granted
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Figure 3.10: Analysis on the error (average deviation from analytical solution) over the number of finite vol-

ume cells at fixed grid stretching α = 1.5 and over the grid stretching at 64 cells, both at time
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Figure 3.11: Capturing capabilities of monitors and the reference implementation for the first two moments

of the solution.

since longer simulations might decrease the magnitude of arclength in the left parts of the domain

and hence will make the points shift to the right like the Curvature monitor.

Most surprising is the performance of the monitor of Artificial Diffusivity. The capturing is com-

parable to the reference finite volume implementation and as seen in the convergence diagram it

overtakes this implementation at cell counts higher than≈ 90. As we set α = 1.5, we chose a smaller

one than in the previous section. Such a low value of α shifts the grid style more towards an uniform

grid that we see in the reference implementation. This trend continues and in the case of α = 1.1
it is close to a uniform grid. We think that this also explains the nearly similarly placed grid node

locations in Fig. 3.9.

For the Arc-Simple monitor we can again see a robust performance over the span of the tested

grid stretching, hence the choice of α = 1.5 is justified. We also analyzed the Curvature-monitor on

different values for α, however, the results of the error are again diverging, and since the accuracy

is in a different order of magnitude, we decided to leave it out of the plot.

In contrast to the previous section, pure Coagulation involves a change in the zeroth moment

while keeping the first moment fixed. By applying the appropriate integral, we can deduce the
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Table 3.4: Additional information on the order of convergence for the different monitor functions with α =

1.5, n = 64 and at time t = 45s. The third column denotes the average CPU per step over the entire

simulation.

Monitor Order of convergence CPU time per step in s

(a) Arclength n.c. 3.61 × 10−4

(b) Curvature n.c. 3.92 × 10−4

(c) Arc-Simple O(n−1.00), n ≥ 16 4.37 × 10−4

(e) Art-Diff O(n−1.33), n ≥ 32 4.12 × 10−4

(ref ) FVM O(n−0.77), n ≥ 8 4.24 × 10−4

n.c. = not converging

following analytical expressions

Ψ0(t) =
2

t + 2
and Ψ1(t) = 1 ∀t ≥ 0 (3.60)

In Fig. 3.11 we plot the capturing of these moments. All of the tested monitors, as well as the FVM-

implementation, yield a precise coverage of the total particle number. However, in the case of the

first moment, only Arc-Simple fully captures the results which underlines its good performance so

far. All the other monitors, as well as the FVM-implementation, have a slight overshoot but converge

after a given time. Since this could be caused by the given code of Liu and Rigopoulos (2018) the

relation to the monitor functions might not be safe.

Given the error at different number of cells, we can deduce the approximate order of conver-

gence as listed in Tab. 3.4. The overtaking of the monitor of Artificial Diffusivity against the FVM-

implementation is seen by its comparably higher convergence rate. By comparison with the order

achieved in the case of step advection, this reveals a really good performance of the Artificial Dif-
fusivity-monitor that, unfortunately, still heavily depends on the heuristically chosen values of the

limiter η. Interesting is also the fact that the Curvatue-monitor, as well as the additionally tested

Arclength-monitor, does not converge.

Moreover, in Tab. 3.4 we list the computation time necessary for the different monitors. Com-

pared to the case of pure growth the times per step increased by one order of magnitude for all

monitors we chose to analyze here. This is due to the evaluation of the double integral.

In general, the time contribution of evaluating the fractional step is higher than the time spent in

the Remap subroutine. In contrast to the last section, the FVM reference implementation performs

slightly worse than the best one which seems to be the Curvature monitor. This might also be

caused by the given implementation of Liu and Rigopoulos (2018).



4 Modeling and Simulation of Cell Growth
and Cell Fission

In this chapter, the adaptive mesh discretization scheme in combination with the different monitor

functions is used to analyze the population dynamics of mammalian stem cells. A finite volume

scheme for the contribution of breakage is derived. In a test case of simple breakage the scheme is

validated with the help of analytical solutions. Then, kinetics found in the literature are transfered

onto the previously analyzed numerical tool. Finally, the results of the simulation of combined

breakage and growth are presented and discussed.

4.1 Considering the contribution of breakage
Similar to the aggregation term, the discretization of the breakage source term introduces a double

integral. Depending on the precision chosen to compute the values, breakage can be very costly.

Additional time might be necessary if the kernel values, or the kinetics in general, are difficult to

evaluate.

Therefore, it is crucial that the numerical implementation of this source term is as efficient

as possible. In the context of the chosen finite volume discretization, we present a scheme that

is geometrically motivated. The domain of integration is analyzed and split up into basic two-

dimensional geometrical object over which the integral is approximated by a set of Newton-Cotes

formulae. We therefore fix the time, hence neglect any dependencies on it for the following deriva-

tions.

4.1.1 Numerical Implementation of the resulting source term
The contribution to the right-hand side of the system of ODEs of the breakage reaction term is given

by (3.25). This integral is defined in the transformed τ-space, however, it would be more convenient

to evaluate the integral in the real v-space since the kernel functions are given there. So we apply

an integral transformation

Ṡi :=
1

∆τ

∫ τ
i+ 1

2

τ
i− 1

2

ṡ(v̄(τ, t), y, f (·)) dτ =
1

∆τ

∫ v
i+ 1

2

v
i− 1

2

ṡ(v, y, n(·)) · w(τ̄(v, t), t) dv. (4.1)

Over the domain of integration [vi− 1
2
, vi+ 1

2
] the Jacobian determinant w(τ̄(v, t), t) is constant as

wi = ∆τ/∆vi. If we factor it out, the normalization changes from ∆τ to ∆vi. The discretized source

term now becomes

Ṡi =
1

∆vi

∫ v
i+ 1

2

v
i− 1

2

ṡ(v, y, n(·)) dv (4.2)

This one is generally valid for all kind of source phenomena. In the case of binary breakage we insert

the model of (2.10). It consists of the Birth and Death of particles meaning we have two separate
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Figure 4.1: Visualization of the domain of integration. The two axes v and v′ both represent the same dis-

cretized domain Ωv = [0, V]. The entire integration domain is divided up into n− 1 trapezoids,

each consisting of one triangle and n− (i + 1) rectangles.

integrals

Ṡi =
2

∆vi

∫ v
i+ 1

2

v
i− 1

2

∫ V

v
n(v′)γ(v′, y)p(v, v′) dv′dv︸ ︷︷ ︸

Bi

+
1

∆vi

∫ v
i+ 1

2

v
i− 1

2

n(v)γ(v, y) dv︸ ︷︷ ︸
Di

. (4.3)

Whereas the evaluation of the contribution of death D is a straightforward numerical integration

(e.g., by using the trapezoidal rule)

Di = Ni

γ(vi+ 1
2
, y) + γ(vi− 1

2
, y)

2
, (4.4)

the Birth term incorporates a double integral. Hereby the domain of integration is a trapezoid

that can be decomposed into one triangle and a big rectangle. This can be seen on the left-hand

side of Fig. 4.1. Mathematically, this results in a partitioning of the interval of the inner integral

v′ ∈ [v, V] into two adjacent sub-intervals v′ ∈ [v, vi+ 1
2
] (with v ∈ [vi− 1

2
, vi+ 1

2
]) and v′ ∈ [vi+ 1

2
, V].

Consequentially, the integral of the contribution of Birth is split up into two separate parts.

Bi = 2
{

1
∆vi

∫ v
i+ 1

2

v
i− 1

2

∫ v
i+ 1

2

v
n(v′)γ(v′, y)p(v, v′) dv′dv︸ ︷︷ ︸
Btriangle

i

+
1

∆vi

∫ v
i+ 1

2

v
i− 1

2

∫ V

v
i+ 1

2

n(v′)γ(v′, y)p(v, v′) dv′dv︸ ︷︷ ︸
Brectangle

i

}

(4.5)

Going further, the big interval of the inner integral can be naturally decomposed by the employed

FV-discretization. This means the big rectangular domain of integration Ωi × [vi+ 1
2
, V] is sliced
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into n− (i + 1) rectangular sub-domains Λj. Here we introduce a new index j that starts at i + 1
and goes up to n, whereas the locations of the so created grid points vj± 1

2
obviously coincides with

the ones down on the first discretization, simply shifted by one index point. This context can also

be seen on the right-hand side of Fig. 4.1. In general, the resulting sub-rectangles will not be squares

because of ∆vi 6= ∆vj.

Now the domain of integration has been analyzed and simplified. The next step is to solve the

remaining two integrals. Here, we start with the Birth on the rectangular sub-domains. The limits

of integration on a rectangle do not depend on each other. This allows for a change in the order

of integration. Additionally, in the integrand only the partitioning probability p(v, v′) depends on

v, the variable of the outer integral, leaving it solely exposed to it. Using the trapezoidal rule, the

outer integral can be evaluated independently.

Brectangle
i =

1
∆vi

∫ v
i+ 1

2

v
i− 1

2

n

∑
j=i+1

∫ v
j+ 1

2

v
j− 1

2

n(v′)γ(v′, y)p(v, v′) dv ′dv

=
n

∑
j=i+1

∫ v
j+ 1

2

v
j− 1

2

n(v′)γ(v′, y)
1

∆vi

∫ v
i+ 1

2

v
i− 1

2

p(v, v′) dv dv′

=
n

∑
j=i+1

∫ v
j+ 1

2

v
j− 1

2

n(v′)γ(v′, y)
p(vi+ 1

2
, v′) + p(vi− 1

2
, v′)

2
dv′

(4.6)

The normalization cancels with the distance employed by the trapezoidal rule.

In a last step, the former inner integral is solved by trapezoidal rule. Consider that n(v′) is con-

stant on the sub-domain of integration Ωj as Nj. The last real cell Ωi does not have a rectangle on

top, it only spans a triangle. So there is no contribution by it.

Brectangle
i =



n

∑
j=i+1

∆vj
Nj

4

[
γ(vj+ 1

2
, y)
(

p(vi+ 1
2
, vj+ 1

2
) + p(vi− 1

2
, vj+ 1

2
)
)
+

γ(vj− 1
2
, y)
(

p(vi+ 1
2
, vj− 1

2
) + p(vi− 1

2
, vj− 1

2
)
)] i < n

0 i = n

(4.7)

The triangle part is not as easy to integrate but following the basic idea of Newton-Cotes numeri-

cal integration schemes, we can define an approximation of the integrand over the triangle by linear

shape functions on all three vertices. This refers to a plain that is point-wise exact. The integral will

yield the volume under this construction.

To do this, we consider a mapping of the isosceles triangle into a parent space as seen in 4.2. Over

the domain of integration n(v′) will be constant Ni. The area of the triangle in transformed space

is 1/2. Due to the linear transformation into parent space the Jacobian determinant will simply

become

∣∣∣ ∂(v,v′)T

∂(ξ1,ξ2)T

∣∣∣ = 2A, with A the area of the real triangle.

Btriangle
i =

Ni

∆vi

∫ 1

0

∫ 1−ξ1

0
γ
(
v̄′(ξ1, ξ2), y

)
p
(
v̄(ξ1, ξ2), v̄′(ξ1, ξ2)

)
2A dξ2 dξ1 (4.8)

We can now approximate the integrand by a superposition of shape functions that have the value
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Figure 4.2: Transformation of the general isosceles triangle into parent space.

one at the designed node and will be zero at every other vertex of the triangle

Btriangle
i = 2A

Ni

∆vi

∫ 1
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(
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, y)p(vi− 1

2
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)
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(
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, vi+ 1

2
) · ξ2

)
+(

γ(v′i+ 1
2
, y)p(vi− 1

2
, vi+ 1

2
) · (1− ξ2 − ξ1)

)
dξ2 dξ2.

(4.9)

Integration with the area of an isosceles triangle being calculated as A = (∆vi)
2/2 yields

Btriangle
i = Ni

∆vi

6

[
γ(vi− 1

2
, y)p(vi− 1

2
, vi− 1

2
)︸ ︷︷ ︸

(I)

+ γ(vi+ 1
2
, y)p(vi+ 1

2
, vi+ 1

2
)︸ ︷︷ ︸

(I I)

+ γ(vi− 1
2
, y)p(vi− 1

2
, vi+ 1

2
)︸ ︷︷ ︸

(I I I)

]
.

(4.10)

In conclusion, the total contribution of the breakage reaction term on cell i is

1
∆vi

∫ v
i+ 1

2

v
i− 1

2

ṡ(v, y, n(·)) dv := Ṡi = Di + 2
(
Btriangle

i + Brectangle
i

)
. (4.11)

For a high efficiency, it is useful to fetch all necessary kernel values in advance of each fractional

step since, for example, the value at one vertex of the sub-rectangles is also used by up to three other

rectangles. This additionally comes in handy in the case of complex kinetics as presented in the

section on cell growth and cell fission.

4.1.2 Validation on pure breakage
In this section, we test our finite volume scheme for breakage with simple kinetics. Additionally,

we sum up the differences between the various monitors compared to the inverse phenomenon of

coagulation presented in the previous chapter.

Therefore, a case of pure breakage is considered for which analytical solutions are available. Start-

ing off with the source term of (2.10), the dependency of the division rate on any additional scalars

y(t) is neglected. By keeping the size-dependent kernel functions, the population balance equation

for pure breakage reads

∂n(v, t)
∂t

=
∫ V

v
n(v′, t)γ(v′)p(v, v′) dv′ + n(v, t)γ(v) v ∈ Ωv, t > 0. (4.12)
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Table 4.1: Analytical solutions of pure breakage for two different cases due to Ziff and McGrady (1985).

Case Domain Ωv Γ(v, y) p(v, v′) n0(v) n(v, t) Ψ0(t) Ψ1(t)

(1) Lin [10−6, 102] v 1/v′ e−v (1 + t)2e−v(1+t) t + 1 1
(2) Quad [10−4, 102] v2 1/v′ e−v [1 + 2t(1 + v)]e−v(tv+1)

* 1
* no closed form available

We imprint the exponential initial condition

n(v, 0) := n0(v) = exp(−v) v ∈ Ωv, (4.13)

that was already used in the case of pure coagulation.

In the context of depolymerization Ziff and McGrady (1985) derived an analytical solution. They

have been adapted and simplified by Qamar et al. (2009) which we will use here. Tab. 4.1 collects the

analytical solutions as well as the domains that differ between the Linear Case (1) and the Quadratic

Case (2). By (2.8) the moments due to the analytical solution can be deduced that are found in the

two right columns of the table.

Naturally, breakage forms the inverse operation to coagulation. It increases the total amount of

particles while keeping the total particle mass fixed. In Fig. 3.9, the initial profile was smeared to

the right as the coagulation created particles of greater volume. For pure breakage, we expect the

opposite. The initial profile will be compressed and shifted to the left. In the limit, only particles

of volume close to zero exist.

Since the initial condition is the same, we do not print the capturing by the different monitors

again. Fig. 4.3 just presents the solution at the end time for both test cases. In accordance to the

coagulation case, the Arc-Simple-monitor again showed the best performance. Its points reconstruct

the analytical solution the best. However, the monitor is incapable of capturing points below a

threshold of a certain number of cells. It improves when the number of cells increases as illustrated

in the convergence diagram of Fig. 4.4. The reference FVM-implementation on a fixed exponential

grid does obviously not experience this kind of lower threshold.

Due to the fixed halo cell at the very left, a significant mismatch of the Arc-Simple-monitor as well

as the monitor Curvature can be seen. By the same argumentation as in the section of coagulation,

this gap naturally increases stronger for the Curvature-monitor which can be retraced by taking the

second derivative w.r.t. v of the analytical solution.

Despite this gap, the accuracy of Arc-Simple is still better than the FVM-implementation. A reason

for this is the higher node density in the region the solution experiences its steep gradient. Points

left of this location fall under small scales in internal coordinate and count less when it comes to

the calculation of the average deviation.

Generally speaking, low cell counts are not well captured by the proposed breakage scheme. The

overshoot of the FVM-reference implementation is directly visible in the case of 32 finite volume

cells. This might explain the use of the conservation form that can be seen in Qamar et al. (2009).

However, for more cells, the scheme shows a good representation of the moments. The right side

of Fig. 4.3 presents the plot of the moments for the case of 64 finite volume cells.

The monitor of Curvature again shows an inconsistent performance. It is only applicable for a

certain number of finite volume cells. Above this upper limit, the iteration of the two-step scheme



4.1 Considering the contribution of breakage 38

10−610−510−410−310−210−1 100 101 102

0

50

100

150
t = 10 s

n = 32

Lin

internal coordinate v

n
u

m
b

e
r

d
e
n

s
i
t
y

n(
v,

t)

Arc-Simple
Curvature

FVM
analytical

0 2 4 6 8 10
0

5

10

k = 0

k = 1

n = 64

Lin

time t

m
o

m
e
n

t
s

Ψ
k(

t)

10−4 10−3 10−2 10−1 100 101 102

0

5

10
t = 5 s

n = 32

Quad

internal coordinate v

n
u

m
b

e
r

d
e
n

s
i
t
y

n(
v,

t)

0 1 2 3 4 5

1

2

3

4
k = 0

k = 1

n = 64

Quad

time t

m
o

m
e
n

t
s

Ψ
k(

t)

Figure 4.3: Capturing capability of the distribution and the first two moments of the tested monitors. The

top row presents the case (1) of a linear division rate and the bottom row the case (2) of a quadratic

division rate.
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Figure 4.5: Convergence diagrams for the average deviation from analytical solution over the grid stretching

α for both cases at 64 finite volume cells.

Table 4.2: Information on the order of convergence at a grid stretching of α = 1.5 and CPU time per step

with 64 finite volume cells averaged over all steps.

Order of convergence CPU time per step in s

Monitor (1) Lin (2) Quad (1) Lin (2) Quad

Arclength n.c. n.c. 1.07 × 10−4 9.13 × 10−4

Arc-Simple O(n−1.06), n ≥ 32 O(n−1.11), n ≥ 32 1.11 × 10−4 1.97 × 10−3

Curvature n.c. n.c. 1.04 × 10−4 1.63 × 10−3

FVM (ref ) O(n−1.08), n ≥ 64 O(n−1.13), n ≥ 32 1.23 × 10−4 1.97 × 10−3

n.c. = not converging

(3.32) exceeds its maximum steps. By the four points we were able to compute, the monitor seems

to be converged. However, the performance is comparably bad.

On top of that, we performed a test on the monitor of Artificial Diffusivity but in contrast to its

good results in the case of pure coagulation, it was not able to capture the pure breakage case. Even

if both examples share the same initial condition, their underlying mechanics are only similar in

theory. For the case of pure coagulation, we assumed the kernel function to be a constant. Here

however, both kernels are size-dependent. Together with the problem of heuristically fitting the

limiter η, the performance of the monitor of Artificial Diffusivity is inconsistent, given the artificial

test cases we used it in.

With Fig. 4.5 and the analyses made in the previous chapter, we conclude that there is a limit for

the grid stretching α above which the solution error converges for the Arc-Simple monitor. Again,

we recommend to not set it too high since it would make the grid sluggish.

In Tab. 4.2 we summarize the convergence order, if available. As already mentioned in the previ-

ous test cases, the slightly faster convergence of the FVM-implementation indicates a point of very

high number of cells at which both accuracies coincide.

4.2 Simulation of the proliferation of mammalian stem cells
Generally speaking, the application of the population balance equation to the simulation of cell

populations was an early transfer of the idea. With Hulburt and Katz (1964) introducing the concept

of the PBE and the layout of the various source terms in the field of crystallization, Fredrickson

et al. (1967) continued by changing the interpretation into a biological spectrum. Many of the com-

ponents can be defined there and, by design, share a similar stochastic background. In addition to



4.2 Simulation of the proliferation of mammalian stem cells 40

this first article, Fredrickson (2003) reviewed the first concepts about 35 years later. Here, he also

adapted the concept of a multistage PBE to account for the different life phases a cell passes. Ba-

sically, the idea is to solve multiple population balance equations in conjunction, all responsible

for the different stages in the life of a cell. The transition between two phases is modeled akin to

nucleation by a Birth and Death term at the source of each equation. Breakage then reduces the

number of cells in the last stage and increases it in the first one. Overall, multistage PBEs allow for

a more precise representation of complex population dynamics.

Here, we restrict ourselves to a single stage PBE and use deterministically modeled constitutive

parameters (growth rate, division rate, and partitioning probability) that are all size-dependent.

4.2.1 Kinetics of cell fission and growth in the context of the PBE
The task of the next two subsections is to test our explicit adaptive grid scheme and the various

monitor functions on an example with realistic kinetics. The simulation of the evolution of sheep

bone stem cells we are about to set up incorporates two phenomena simultaneously, growth and

breakage. The latter one is called cell fission in this biological context. For the underlying model,

the ideas of Mantzaris et al. (1999) are used and for the necessary parameters we refer to Mancuso

et al. (2009) and the references therein. The latter one has been chosen since many of the parameters

are tuned by real-world experimental data of sheep-bone stem cells evolving in a petri-dish.

In contrast to the literature cited in which the model was mass-based, the internal coordinate will

be cell volume v = [mm3]. However, since the mass density of the cells is assumed to be constant,

it is possible to easily switch between both representations. The unit of the number density is then

set to

n(v, t) =
[

number of cells
cell culture volume × internal coordinate

]
=

[
1

mm3 × mm3

]
=

[
1

mm6

]
. (4.14)

These biological phenomena span over a much broader period of time, hence the unit of time is

chosen to be hours t = [h]. In all plots, the axes are scaled to be in the measure of days [d].
To a good approximation, the cells can be seen as spheres. Therefore, we can deduce the rela-

tionship between the radius and the volume to

r =
(

3v
4π

) 1
3

. (4.15)

Three kinetic relations have to be determined, the two kernel functions and an expression for the

growth rate. We start off with the latter one. Growth in general is limited by the space a population

is allowed to develop in. In the case of mammalian stem cells growing in a petri-dish, this area is a

limiting factor. To incorporate the idea, the area currently occupied on this dish has to be examined.

We therefore assume that the cell culture only consists of one layer.

Mancuso et al. (2009) introduced a bi-dimensional projection that approximately resembles the

area a each spherical cell and its interstices occupy to

a =

(
4
π

)
r = 3

√
36
π

v
2
3 . (4.16)

To get the total area the entire population occupies, we integrate over the domain of all possible

cell volumes v ∈ Ωv with their respective number density n(v, t) and multiply by the total culture
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volume V. This yields a somehow modified 2/3-moment of the number density

φ(t) = V 3

√
36
π

∫
Ωv

v2/3n(v, t) dv ≈ V 3

√
36
π

n

∑
i=1

3Ni

5

[
v5/3

i+ 1
2
− v5/3

i− 1
2

]
. (4.17)

With the help of the occupied area, a geometrical limiting factor L(t) can be defined by using the

petri-dish area A

L(t) =
[

1− φ(t)
A

]ω

. (4.18)

This power-law equation is outfitted with the tuned exponent ω.

Another limiting aspect of the growth rate would be the dependencies on additional scalars y(t)
that could incorporate, e.g., nutrient concentrations. In the case of sheep bone stem cells, Mancuso

et al. (2009) set this variable to the concentration of oxygen CO2 . However, given the laboratory

conditions, it is assumed to be a constant value.

For the aspects of growth, two phenomena are considered. The anabolic part will describe the

transformation of nutrients into biomass, hence it adds to the growth rate. On the other side, there

is the catabolic part that defines the nutrient consumption, i.e., how much of its available resources

the cell uses to produce its necessary energy. Consequentially, this part reduces the growth rate. The

latter one is set proportional to the cell volume since heavier cells need to consume more nutrients.

Anabolism is set to be proportional to the cells surface o. This yields

G = C1 · o− C2 · v. (4.19)

By the relation between the surface of a sphere and its volume

o =
3
r

v = 3v
(

4π

3v

)
=

3
√

36π · v2/3, (4.20)

the growth rate is given as

G(v, CO2) =
3
√

36π · v2/3 · λmax︸ ︷︷ ︸
maximum volumetric growth rate

· CO2

Cm + CO2

L(t)︸ ︷︷ ︸
limiters

− gcatv︸︷︷︸
catabolic consumption

=

3
√

36π · λmax︸ ︷︷ ︸
anabolic rate λan

· CO2

Cm + CO2︸ ︷︷ ︸
oxygen limiter θO2

·L(t) · v2/3 − gcat · v.
(4.21)

Here, we introduce the anabolic rate λan. This naturally captures the effects of the logistical be-

haviour since given a high occupied area φ(t) the geometric limiter L(t) will be small and presum-

ably the catabolic part will be predominant, resulting in lower growth rates or even negative growth

rates, i.e., the cell shrinks.

Given the model for the growth rate, we now define the two kernel functions. The division rate

γ(v, CO2) describes the amount of cells that will commit fission in a given time γ = [1/h]. The

deterministic aspect of this phenomenon is related to the growth rate, making the division rate

proportional to it. Additionally, we have to incorporate a stochastic component. That can be done by

implementing a Gaussian normal distribution around a given cell volume µ that shows the highest
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Table 4.3: Kinetic parameters used in the simulation. They are based on Mancuso et al. (2009) and the refer-

ences therein. We translated them from a mass-dependent formulation to a volume-based one.

Name Parameter Value Unit

Concentration of oxygen CO2 2.03 × 10−7 mmol/mm3

CO2 at half maximal consumption Cm 6.0 × 10−9 mmol/mm3

Mass density of given cells ρc 1.14 × 106 ng/mm3

Partitioning parameter q 39 —

Total culture volume V 800 mm3

Power-Law exponent ω 10.8 —

Petri-dish area A 800 mm2

Initial number of cells N0 800 —

Mean of Gaussian µ 3.333 × 10−6 mm3

Standard deviation of Gaussian σ 9.8684 × 10−7 mm3

Maximum growth rate λmax 8.54386 × 10−5 mm3/(mm2h)

Beta-Function β(q + 1, q + 1) 4.650850914 × 10−25
—

Oxygen Limiter θO2 0.971291 —

anabolic rate λan 4.13179 × 10−4 mm3/(mm2h)
catabolic rate gcat 1.0 × 10−3 1/h

probability to commit fission. Since the integral over this distribution does not encompass (−∞, ∞)

the distribution has to be normalized. Given the Gaussian

N (v|µ, σ) =
1√

2πσ2
exp

(
−(v− µ)2

2σ2

)
, (4.22)

we set the division rate to be proportional to the growth rate and the normalized distribution

γ(v, CO2) = G(v, CO2) ·
N (v|µ, σ)

1−
∫ v

0 N (ṽ|µ, σ) dṽ
. (4.23)

Here, it is possible to approximate the integral over the Gaussian with the help of the error function∫ v

0
N (ṽ|µ, σ) dṽ =

1
2

(
er f (

v− µ√
2σ

)− er f (
−µ√

2σ
)

)
. (4.24)

The last part is to model the partitioning probability p(v′, v) = [−] that defines how the biomass

(or to say the volume) is divided between the two daughter cells arising in fission. Mancuso et al.

(2009) followed the idea of an unequal partitioning function, first proposed by Hatzis et al. (1995),

p(v, v′) =
1

β(q + 1, q + 1)
1
v′
( v

v′
)q (

1− v
v′
)q

. (4.25)

Here, q is a tuned parameter which they set to 39. β(ξ, ξ) is the Beta-function that is symmetrical

due to identical arguments. It is defined with the help of Gamma-Function as

β(ξ, ξ) =
Γ(ξ)2

Γ(2ξ)
with Γ(ξ) =

∫ ∞

0
sξ−1e−s ds. (4.26)
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Figure 4.6: Capturing of the zeroth moment (total number of cells) and 2/3-moment (area occupied on the

petri-dish) with 32 finite volume cells and grid stretching of α = 2.0 against a FVM1000 reference

solution.

The kinetic parameters used are summarized in Tab. 4.3.

For the domain, we follow Mancuso et al. (2009) and set the upper limit to m = 16ng which

can be translated into our context to approximately yield the domain with appropriate boundary

conditions to

v ∈ Ωv = [0, 1.5 × 10−5] with n(0, t) = 0 ∀t ≥ 0. (4.27)

As for the initial condition, a log-normal distribution

n(v, t = 0) := n0(v) =
N0

V
1√

2πσ0 · v
e
− 1

2

(
ln(ρcell v)−ln(µ0)

σ2
0

)2

(4.28)

was used in which we applied the following presets for the mean and standard deviation (not to

confuse with those used for calculating the division rate)

µ0 = 2ng and σ0 = 0.4ng. (4.29)

The mean µ0 is the averaged cell mass Mancuso et al. (2009) observed at the beginning of their

in-vitro experiments.

The numerical implementation of these kinetics is straightforward. We used the built-in erf -

function of the gfortran compiler. The initial condition was imprinted with the help of the trape-

zoidal rule.

4.2.2 Results and Interpretation
In the case of cell proliferation in a petri-dish, we expect a sigmoidal behaviour meaning that the

total cell mass (first moment) as well as the total cell count (zeroth moment) will converge against

an upper limit if the simulation takes long enough.

For our purpose, we want to test the explicit adaptive grid scheme with the different monitors

from the literature and the one proposed. Fortunately, the monitor on Artificial Diffusivity can be

used with size-dependent growth here.

As a reference solution, a fixed uniform grid FVM-implementation with 1000 finite volume cells

was used that we call FVM1000. For the simulation time, we followed Mancuso et al. (2009) and
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Figure 4.7: Capturing of the solution at beginning and end of cell proliferation, normalized by the current

total amount of cells with a grid stretching of α = 2.0.

set it to t = 15 d = 360 h. With the unchanged time horizon of tk = 1/100 h this results in 36000
computed time steps. Since the domain only spans over two orders of magnitude the grid stretching

is set to α = 2.0 for the time being. Similar to breakage, the monitors have been restricted to Arc-
Simple, Curvature, Art-Diff and a FVM32 standard implementation.

In Fig. 4.6 we present the coverage of the moments with the various monitor functions at 32 cells

against our reference solution. Compared to the analyzes made in Mancuso et al. (2009) our results

differ. To our best knowledge, we assume that the calculation of the occupied area φ(t) made within

their simulation comprises a mistake. This can be retraced by analytically solving for the limiter

L(t) with the help of the initial condition and comparing with their plotted findings. To this end,

we decide to omit an inclusion of their results and solely summarize the performance against the

FVM1000-solution.

Generally speaking, the classical implementation of FVM32 shows a reasonably good perfor-

mance for only using 32 fixed uniformly spaced finite volume cells. Arc-Simple and Curvature render

almost similar results and are, as expected, slightly better than FVM32. That is due to the improved

capturing of the one mode of the distribution. The monitor of Artificial Diffusivity overshoots both

moments. A reason for this is found in the plots of Fig. 4.7. The monitor sets its nodes only at the

top of the distribution hence being incapable of resolving the other regions precisely enough. All

the other representations capture the state of balanced growth well. As in Mancuso et al. (2009) this

point in time is reached when cell growth and cell fission form a state of equilibrium. The initial
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Table 4.4: Information on accuracy and timing for each tested monitor. Deviation was calculated with n = 32
and α = 2.0 against the FVM1000 reference solution. CPU time per step presents an average over

all 36000 steps undertaken.

Monitor Average deviation in mm−6
CPU time per step in s

Arclength 1.918168 × 106 3.98 × 10−4

Arc-Simple 1.646119 × 106 3.85 × 10−4

Curvature 2.029393 × 106 3.87 × 10−4

Art-Diff 1.175658 × 107 3.86 × 10−4

FVM32 5.475675 × 106 3.85 × 10−4

FVM1000 — 3.48 × 10−1

profile with its original feature at v ≈ 1.75× 10−6 mm3
is shifted only slightly to the right at the

end of the proliferation when normalizing by the current total number of cells.

Given the FVM reference solution at 1000 cells, we can calculate an average deviation from it for

all the monitors similar to the L1-error used in the previous examples

error(t) =
1

1.5 × 10−5

∫ 10−5

0

∣∣∣nnumerical(v, t)− nFVM1000(v, t)
∣∣∣ dv, (4.30)

where both solutions are constructed based on linear approximation between the discrete values.

In Tab. 4.4 the different accuracies are summarized in the case of 32 finite volume cells. It has to be

considered that the shapes presented in Fig. 4.7 may induce different orders of magnitude. However,

the solutions are not normalized by their zeroth moment before calculating this deviation. Recall

that the unit of the deviation is the unit of the number density distribution error = [mm−6]. To get

the deviation in, e.g., total cells a multiplication by 800 mm3 · 1.5× 10−5 mm3
would be necessary.

However, this data still matches the plots of Fig. 4.7 and once again favors the Arc-Simple-monitor.

We can conclude that, based on our tests, the Arc-Simple-monitor is applicable for all scenarios and

presented the best overall performances. By contrast, the monitor of Artificial Diffusivity is about

one order of magnitude worse. Maybe it has to be adapted for the case of multiple phenomena

occurring simultaneously.

Aside from the deviations, the CPU time per step is also denoted in Tab. 4.4. The durations

for every implementation are almost similar, leading to the conclusion that for more sophisticated

simulations in which the evaluation of the kinetics is more intensive the additional time the remap

subroutine takes is neglectable. However, the solution becomes more precise given a reasonable

choice of the monitor function. The accuracy improves by up to three times in this given scenario.

Fig. 4.8 shows that there are still some fluctuations over the grid stretching α for the Curvature-

monitor but, in general, they do not affect the overall performance that much. Together with the

convergence of the Arc-Simple-monitor, a general recommendation for α is still difficult. Too high

grid stretchings might make the grid become too sluggish for more sophisticated simulations while

setting the grid stretching too low results in a grid that has no adaptivity. But given the previous

examples, a good rule of thumb would be α = 2.0 for grids that only span over one or two orders of

magnitude, i.e., where one prefers a fixed uniform over a fixed exponential grid. If it is the opposite
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Figure 4.8: Convergence diagram of the different monitors against the FVM1000 solution over various values

of the grid stretching α at 32 finite volume cells.

case, and the domain spans over a wider range, α = 1.5 might help the grid nodes to adapt more

precisely.



5 Conclusion

This work presented a comparison of different monitor functions in the context of an explicit adap-

tive grid scheme for solving the population balance equation. Therefore, test cases of pure growth,

pure coagulation, and pure breakage have been considered. Finally, a real-world example of cell

proliferation was analyzed. Tab. 5.1 shows a comprehensive overview of the performance of each

monitor compared to the FVM reference implementation when it comes to average deviation from

the analytical or from a reference solution.

Given the results of the convergence analysis as well as the capturing of the distribution and

moments, the following conclusions can be drawn:

The novel monitor that is based on Artificial Diffusivity shows a similar node placement as the

Curvature-monitor. Artificial Diffusivity was able to capture coagulation well but was incapable

at breakage. Curvature showed a bad performance in both test cases.

There are cases in which a bad choice of monitor results in no convergence of the solution at

all.

The overall recommendation for the presented explicit adaptive grid scheme is the Arc-Simple-

monitor.

For Arc-Simple, the error over the grid stretching α converged already after 1.2 or 1.3 in every

tested case.

For more sophisticated simulations with more complex kinetics, the additional time it takes

to calculate the remapping is mostly neglectable.

The monitor of Artificial Diffusivity is also applicable to non-advection problems by using a

‘virtual’ growth rate. Unfortunately, its overall performance depends on a yet heuristic choice

Table 5.1: Summary of the improvements in accuracy for the different monitors over the tested cases at their

respective times, all at 64 elements and varying grid stretching α. A negative sign corresponds to

a decrease in deviation hence a better solution. Cases: (1) Step Advection, (2) Pure Coagulation, (3)

Pure Breakage (Lin), (4) Pure Breakage (Quad), (5) Cell Proliferation

Case (ref ) FVM (a) Arclength (b) Curvature (c) Arc-Simple (d) Arc-Curv (e) Art-Diff

(1) 1.885× 10−2 −99.6 % −98.9 %* −99.6 % −99.4 %* −97.5 %*

(2) 7.792× 10−5 +114.1 % n.c. +82.0 % n.c. −65.0 % n.t. +19.3 %
(3) 7.562× 10−3 +145.8 % n.c. +51.2 % n.c. −62.6 % n.t. n.t.

(4) 2.641× 10−3 +115.5 % n.c. +101.4 % n.c. −71.4 % n.t. n.t.

(5) 2.387× 106 −61.3 % −58.5 % −68.7 % n.t. +389.3 % n.c.

n.c. = not converging, n.t. = not tested, * = problems at higher cell counts

no convergence information for the case of cell proliferation, performed against FVM(1000 cells)
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of the limiter η.

The proposed FV-scheme for covering the contribution of breakage is geometrically moti-

vated and does a good job of representing the moments. When using with the Arc-Simple
monitor it shows comparable precision to the mass conservation form of Qamar et al. (2009).

If the given monitors converge, they do so at approximately the same order. By contrast, the

FVM-reference implementation converges only slightly faster meaning that it will reach the

superior accuracy of the monitors at high cell counts.

For future perspectives, we would find it interesting to compare the different monitors on a test

case that involves nucleation. Since this would complete the phenomena occurring in population

balance modeling a final decision on the choice of the monitor function can be made. However, it

should be kept in mind that the actual performance of the monitor is closely linked to the adaptive

scheme it works with. A more general comparison between this method and, e.g., the scheme of

Tang and Tang (2003) can reveal further connections.

Additionally, we think that there is still potential in the monitor of Artificial Diffusivity that we

were not able to find yet. Maybe the analytical behaviour can be further analyzed and the connection

between it and the monitor of Curvature can be resolved.
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