
Machine Learning, Advanced Course
Project Work

VAE with a VampPrior

Kenza Bouzid
Tobias Höppe

Arthur Tondereau
Felix Köhler

Abstract

Modern deep-generative models combine artificial neural networks with probabilistic aspects to allow for
rich generation or reconstruction of various kinds of data. The Variational Auto-Encoder (VAE) is one such
deep-generative model which is widely discussed since the seminal paper of [3]. The used prior for the latent
space is responsible for regularizing the extent of this hidden representation. Depending on the dataset a simple
Gaussian prior, as used in the original paper, might lead to over-regularization or over-fitting. Recent advances
in this field therefore fostered the idea of using different prior distributions. In [5] a flexible prior called the
VampPrior (Variational Mixture of Posteriors prior) was introduced which can also be used in the hierarchical
fashion with multiple stochastic latent layers. In a re-implementation of their work we try to confirm on the
reported improved results for multiple artificial datasets. We were able to reproduce similar improvements in the
marginal log likelihood for the VampPrior over the standard Gaussian prior. The visual results matched the ones
reported in the original paper and we can also report similarly shaped trained pseudo-inputs. However, we cannot
report a substantial improvement with using the hierarchical prior as we observed an opposite performance on
the marginal log likelihood evaluation.

1

I. INTRODUCTION

Most Machine Learning techniques can be unified
under a probabilistic point of view. For instance, least
squares regression results from the Maximum Likeli-
hood Estimate (MLE) of noise modelled by a normal
distribution. Often, the probabilistic point of view has
the advantage of higher explainability and additional
uncertainty quantification.

Research in Machine Learning recently fostered the
combination of procedural artificial neural networks
with variational Bayesian approaches giving rise to
so-called deep-generative models as an unsupervised
learning task. These models can learn structure in the
data to then later produce (i.e. generate) new unseen
data. One way of training generative models consists of
framing the problem as a supervised learning problem
where the labels are the training data point themselves.
Generative Adversarial Networks (GANs) [4] are an
approach to generative modeling that trains two sub-
models (the generator and the discriminator) against
each other as if they were playing a zero-sum game
until the discriminator model is fooled about the ve-
racity of the images generated by the generator. In case
of faces, for instance, deep generative models would be
able to create new faces or morph existing ones. This
has many, also ethical, implications which are right
now discussed under the term of ‘deep fakes’.

Another deep-generative model is the Variational
Auto-Encoder (VAE) [3]. This model extends the pro-
cedural form of an Auto-Encoder consisting of an
encoding and decoding network with mirrored archi-
tecture. It does so by making the input space X as well
as the latent space Z probabilistic and by putting a
prior on the latent space. By this we can regularize the
extent of the latent space and improve the generative
performance of the model.

Recently, an extension to this framework was pro-
posed by an augmented prior called the VampPrior that
can also be used in a hierarchical fashion [5]. The
authors reported an improved performance in almost all
scenarios with popular artificial datasets. In this work,
we attempt to re-implement the essential parts of their
work and try to confirm on their results.

We structure this article as follows. In section two an
introduction and explanation to the main concepts of
the original VAE work [3] and its VampPrior extension
[5] is given. We follow with a description of the
network architecture and hints on the implementation
which we chose to conduct using Tensorflow and
Tensorflow Probability. Section 4 explains the subset
of experiments we selected to validate and will present
the results. We finish the article with a discussion on
our findings and evaluate the original work on the VAE
and its VampPrior extension.

II. BACKGROUND

When talking about generative models, we are gen-
erally interested in finding representations of the latent

variables Z of given data such that we can maximize

p(X) =

∫
Z
p(Z)p(X|Z)dZ. (1)

But to solve this we have to define the latent space Z
from which Z is drawn and we have to deal with the
integral, which is often intractable. Variational Auto-
encoders [3] cope with both of these problems.

A. Variational Auto-Encoders
We cannot compute the marginal likelihood (1) since

the encoding posterior

p(Z|X) =
p(X|Z)p(Z)

p(X)
(2)

is intractable. We therefore use a recognition model
qφ(Z|X) to approximate the posterior, which is then
tractable. When using Z ∼ qφ(Z|X) we can com-
pute EZ∼qφ(Z|X)[pθ(X|Z)], where pθ(X|Z) is the
parametrization of the generative model. In order to
use this to optimize (1), we use the relationship be-
tween EZ∼qφ(Z|X)[pθ(X|Z)] and pθ(X) by rewriting
the KL divergence between the true encoder p(Z|X)

and qφ(Z|X) using Bayes rule.

DKL[qφ(Z|X)||p(Z|X)] (3)

= EZ∼qφ(Z|X)[log qφ(Z|X)− log p(Z|X)] (4)

= EZ∼qφ(Z|X)[log qφ(Z|X)− log pθ(X|Z) (5)

− log pθ(Z)] + log pθ(X) (6)

which can be rewritten as

logpθ(X)−DKL[qφ(Z|X)||p(Z|X)] = (7)

= EZ∼qφ(Z|X)[log pθ(X|Z)] (8)

−DKL[qφ(Z|X)||pθ(Z)] (9)

We can further conclude

log pθ(X) ≥ EZ∼qφ(Z|X)[log pθ(X|Z)] (10)

−DKL[qφ(Z|X)||pθ(Z)] (11)

⇒ log pθ(X) ≥ L(θ, φ,X) (12)

where L(θ, φ,X) is the variational lower bound (or
ELBO for Evidence Lower BOund). This variational
lower bound consists of the reconstruction error
EZ∼qφ(Z|X)[log pθ(X|Z)] and the KL divergence of
the approximate posterior and the prior, which acts as
a regularizer. The encoder qφ(Z|X) and the decoder
pθ(X|Z) are parameterized as Neural Networks and as
already mentioned above, we are able to optimize the
parameters (θ, φ) jointly.

When optimizing, the KL-divergence is usually
tractable, but to compute Ez∼qφ(Z|X)[log pθ(X|Z)] we
need to sample zi ∼ qφ(Z|X) and approximate the loss
of a datapoint by

L̂(θ, φ, x) =
1

K

K∑
k=1

log pθ(x|zk) (13)

−DKL[qφ(Z|x)||pθ(Z)] (14)

2

However, doing so introduces a problem during back-
propagation, since stochastic gradient descent via back-
propagation cannot handle stochastic layers within the
Neural Network. To solve this issue, [3] introduced
the reparametrization trick in this context. We assume
that our prior has the form of a centered isotropic
Gaussian pθ(Z) = N (Z|0, I) (later we will introduce
other priors). Instead of sampling Z directly from
qφ(Z|X), the sampling is moved to an input layer.
Given the parameters µ(X,φ), σ(X,φ) and a sample

ε ∼ N (0, I) we can set Z ∼ µ(X,φ) + σ(X,φ)
1
2 ∗ ε.

Thanks to this, the gradient can pass through the entire
Network, and we are able to train the parameters for
the encoder and decoder jointly.

B. VampPrior

As discussed above, the prior does work as a reg-
ularizer and can therefore have a strong influence
on the performance of the model. For example, by
using a simple prior as pθ(Z) = N (Z|0, I) we tend to
over-regularize. In this section, we introduce a prior,
which can help finding a good balance between over-
regularizing and over-fitting.

To introduce an expression of the Variational lower
bound for the entire data set, we can rewrite L̂(θ, φ, x)

in the expectation of the empirical distribution p̂(x) =
1
N

∑N
i=1 δ(x− xi)

1. By doing this, we get

Ex∼p̂(x)[L(θ, φ, x)] (15)

= Ex∼p̂(x)[Ez∼qφ(z|x)[log pθ(x|z)]] (16)

− Ex∼p̂(x)[H[log qφ(z|x)] (17)

− Ez∼q(z)[− log pθ(z)] (18)

where q(z) = 1
N

∑N
i=1 qφ(Z|xi), which can be derived

from

Ex∼p̂(x)[Ez∼qφ(z|x)[log pθ(z)]] (19)

=

∫
Z

1

N

N∑
i=1

qφ(Z|xi) log pθ(Z)dZ (20)

= EZ∼q(Z)[log pθ(Z)] (21)

The equation above shows, that our loss consists of
three components. The reconstruction error of the input
(16), the entropy H of our estimated posterior (17)
(here we can see, that the loss pushes the posterior
to have a large variance) and the expectation of the
prior under the aggregated posterior (18). If we want

1The empirical distribution is a common way to represent our
given dataset D = {x[1], . . . x[N]}. Since we know that we
observed x[n] (which is just a sample of a e.g. 28×28 multivariate
space in case of MNIST), we can express this by a peak (concentrated
probability density mass) using a dirac delta distribution δ(x). Then
our full dataset is given as the mixture distribution of N dirac peaks
with each of them being equally likely.

to maximize this expression above according to our
prior we can use a Lagrange multiplier β and get

pθ(Z) = argmax
pθ(Z)

(
− EZ∼qθ(Z)[− log pθ(Z)] (22)

+ β

(∫
pθ(Z) dZ − 1

))
(23)

This can be solved analytically and we get the follow-
ing optimal prior

pθ(Z) =
1

N

N∑
i=1

qφ(Z|xi). (24)

However, when using this prior the model tends to
over-fit and is therefore not optimal in a practical sense.
To find a good trade-off between over-regularization
and over-fitting a mixture of variational posteriors with
pseudo-inputs is proposed in [5].

p(Z) =
1

K

K∑
k=1

qφ(Z|uk) (25)

The two main advantages of this prior are its multi-
modality, which prevents it from over-regularizing and
on the other hand the use of only K pseudo-inputs,
which avoids over-fitting. There are two ways for
initializing and possibly training pseudo-inputs. We can
initialize them randomly, meaning that at first they will
consist only of noise, and then train them as part of the
model (more on that in the next section). The pseudo-
inputs can also be chosen as K random data points
from the dataset, which will lead to a different, slightly
more regularized prior.

C. Hierarchical Prior

Another extension to the VAE are multiple stochastic
units. But when using these, the model often suffers
from the inactive stochastic latent variable problem.
The deeper stochastic layers might obtain less infor-
mation from the real data, since the generative process
and the variational process are opposite to each other.
This can lead to an over-regularized layer which will
have a noticeable number of inactive units.

To prevent this, a new two layered model (e.g two
latent variables z1, z2 is proposed in [5]). The joint
distribution of the encoder given x will be

qφ,ψ(Z1, Z2|X) = qψ(Z1|Z2, X)qφ(Z2|X). (26)

Whereas the decoder generates a picture according to
the following distribution

pθ(X|Z1, Z2)pλ(Z1|Z2)p(Z2) (27)

The distributions of Z1 and Z2 will be trained jointly.
The prior of Z2 can be any prior discussed in this
paper. For the distribution of Z1, which depends on Z2,
we chose a Gaussian normal with trainable parameters
µ(λ,Z2) and σ(λ,Z2)

pλ(Z1|Z2) = N (Z1|µ(λ,Z2), σ(λ,Z2)) (28)

3

The posteriors are then trained given x and x, z2,
respectively.

qφ(Z1|Z2, X) = N (Z1|µ(φ,X,Z2), σ(φ,X,Z2)) (29)

qψ(Z2|X) = N (Z2|µ(ψ,X), σ(ψ,X)) (30)

D. Test Marginal Log-Likelihood

A common Bayesian quantity for model comparison
is the marginal log likelihood of our observed data X.

log p(X) = log

∫
Z
p(X|Z)p(Z) dZ (31)

This equals the logarithm of the expectation over p(Z)

of p(X|Z). We can use Jensen’s inequality to move the
logarithm into the expectation.

log p(X) = logEp(X) [p(X|Z)] (32)

≥ Ep(X) [log p(X|Z)] (33)

The importance sampling trick applied to (31) results
in the expectation over the probabilistic encoder

log p(X) = log

∫
Z
p(X|Z)p(Z)

q(Z|X)

q(Z|X)
dZ (34)

≥ Eq(Z|X)

[
log

p(X|Z)p(Z)

q(Z|X)

]
(35)

We can approximate the expectation operator by sam-
pling from the probabilistic encoder. If we are then
given a data point x[n] (e.g. an image), the marginal
log likelihood becomes

log p(X = x[n]) ≥ 1

L

L∑
l=1

[
log p(X = x[n]|Z = z[l])+

log p(Z = z[l])− log q(Z = z[l]|X = x[n])

]
(36)

with z[l] ∝ q(Z|X = x[n]). Note that log p(Z) −
log p(Z|X = x[n]) is the negative Kullback-Leibler
divergence between the encoder and the prior which
in the case of a Gaussian prior can be computed
analytically. In this case, no sampling of Z is required.
Consequentially, log p(X =[n] |Z) is the reconstruction
error.

If we have a (test) dataset D = {x[1], . . . , x[N(test)]},
the average marginal log-likelihood is given as

MLL =
1

N(test)

N(test)∑
n=1

log p(X = x[n]) (37)

Note that for the implementation the logsumexp oper-
ator can be used to avoid Jensen’s inequality. Assume
Y is a random variable we want to take the log-
expectation of

logE[f(Y)] = logE[exp(log(f(Y)))] (38)

= log

 1

L

L∑
l=1

exp
(

log
(
f(y[l])

)) (39)

Define ξ[l] := log f(y[l]), then

logE[f(Y)] = logsumexp({ξ[l]}Ll=1)− log(L) (40)

A marginal log likelihood calculated using this method
is not a lower bound (since Jensen’s inequality is not
used) but a true estimate.

III. METHOD

A. Gated Dense Layers

In the original papers [3], [5], the authors made use
of gated dense layers instead of regular dense fully
connected layers. Define a fully connected layer as

Φdense(y) = ρ(Wy + b) (41)

with a weight matrix W, a bias vector b and a non-
linear activation function ρ(·), which we selected to
be the sigmoid function. Then the gated dense layer
is described by two independent layers of the same
size with weight matrices W1 and W2 as well as
bias vectors b1 and b2. Its result is calculated as the
component wise multiplication (�) of the two layers’
results with only one of them being activated

Φgated dense(y) = (ρ(W1y + b1))� (W2y + b2) (42)

B. Integrating the pseudo-inputs

The pseudo-inputs are a key concept of the Vamp-
Prior VAE. They are of the same shape as the inputs of
the networks (say images of 28x28 pixels in the case
of the MNIST dataset). In order to include them in the
model we input them to the encoder, the VampPrior
then being the mixture of all the distributions it outputs.
In case of trained pseudo-inputs (as opposed to pseudo-
inputs taken from the data) they are created by training
a single layer, that outputs images which can then be
fed into the encoder.

Basically, it transforms a one-hot representation of
the pseudo-inputs into the actual images. Examples of
trained pseudo-inputs are shown in 8.

C. Network Architecture

The theory on Variational Auto-Encoders implies
certain design decisions:
• We want to be able to decompose the model

into an encoder and a decoder, so that we can
separate the decoder to generate new images once
the model is trained.

• The intermediate representation is in a latent
space, described by a probabilistic layer. Its size
is set to 40 for all datasets tested.

The output layer of the model produces not an image
as in a normal Auto Encoder, but a juxtaposition of
distributions. Since the input images of the chosen
datasets are binary for each pixel we output a Bernoulli
distribution. The output of the network can then be
evaluated by taking a sample, the mean, or the mode
of each distribution.

Below is an illustration of the model with the
described features.

4

Fig. 1: Architecture of the VAE with pseudo-inputs.
Purple denotes an input layer, yellow a dense non-
activated layer, red a dense activated layer and blue
a stochastic layer.

D. Hierarchical architecture

As stated in the previous section we implement a
hierarchical VAE. The variational part (encoder) of this
two-layered model returns two outputs corresponding
to the two latent variables Z1 and Z2. First, we
create the posterior qφ(Z2|x). After passing the input x
through two gated dense layers and passing Z2 through
one respectively, we concatenate these outputs in order
to join x to Z2 and create the conditional posterior
qψ(Z1|Z2, x). The two latent variables Z1 and Z2 are
then passed (after the reparameterization) trick into
the generative part (decoder) which creates the prior
pλ(Z1|Z2) by passing Z2 through two gated dense
layers. Finally the reconstructed images are produced
by joining Z1 and Z2. The process of generating new
images is described in section II-C.

The detailed architecture is presented below.

Fig. 2: Network architecture of the Hierarchical VAE
(2 levels) with pseudo-inputs (colors are explained in
Figure 2).

E. Implementation details

It is noteworthy to explain our choice of deep-
learning framework to implement the Variational Auto-
Encoder. We hereby used TensorFlow and TensorFlow
Probability. The latter allows for probabilistic layers in
a Keras sequential or functional model. This naturally
translates the idea of the probabilistic encoder and
decoder to be just networks that calculate the distri-
butions’ parameters.

TensorFlow Probability implements the reparameter-
ization trick and allows for efficient batched querying
and sampling from distributions.

IV. RESULTS

In this section we present our results based on the
subset of experiments we conducted.

A. Experiments conducted

As presented earlier, the very last layer of our neural
network is always related to the reconstruction of our
original data shape. When speaking in terms of images
with only one color channel (a gray-scale channel) this
can be either an Independent Bernoulli layer for black-
and-white images or an Independent Normal layer for
gray-scaled images. We followed the original paper and
implemented both approaches. However, for brevity,
we will resort to only use binary image datasets.
We hereby reduced the experiments to the standard
MNIST set of handwritten digits, the Caltech 101
Silhouettes set and the Omniglot set. For confirming
on the VampPrior’s claimed performance, we found it
sufficient to only investigate on the non-convolutional
architectures. This results in the selection of the vanilla
VAE and the hierarchical VAE, both with the standard
Gaussian prior, the VampPrior using training samples
(Vamp Data) and the VampPrior with trained pseudo-
inputs (Vamp Generated). The generated and recon-
structed images in this reports only show the mean
value outputs in the images which corresponds to the
theta parameter of the Bernoulli distribution in the case
of binary images. This is mainly to give a view as
unbiased as possible on the results, as opposed as the
use of samples.

B. Model Training and Hyper-Parameters

We follow the original paper’s choice of the used
Hyper-Parameters. Based on this, we select the Adam
optimizer [2] emphasized with gradient clipping in or-
der to avoid vanishing gradients. A slower learning rate
of 1.0× 10−4 has been used for the more complicated
datasets (Omniglot and Caltech 101 Silhouette) and
a faster learning rate of 5.0× 10−4 for the simpler
MNIST set. We trained with a batch-size of 100 for
up to 1000 epochs. An early-stopping with patience
of 50 epochs and minimum absolute change threshold
of 1.0× 10−3 was used to prevent over-fitting by
monitoring the validation loss on the test split. The

5

number of pseudo-inputs in case of the VampPrior was
1000 for the Omniglot set and 500 for every other set.
We used a default weight of 1.0 for the KL divergence
for all the training. All the weights of the layers have
been initialized according to He Normal (He-et-al)
initialisation [1] by drawing them from a distribution
with zero mean and a variance equals to:

V ar(wi) =
2

fan in
(43)

where fan in is the number of incoming neurons. This
helps breaking the symmetry among different units and
leads to better performance. Training was performed on
different Nvidia Tesla GPUs using Google Colab.

C. Quantitative Results

As mentioned in the previous section our metric
for Bayesian model comparison is the marginal log-
likelihood. With this quantity we can assess the perfor-
mance of image reconstruction and image generation.
The expectation approximation was performed with
a sample size of L = 5000 in all datasets but the
Omniglot set where we used only 2000 samples. We
report the evaluated metrics in Table I.

For the vanilla VAE model we obtain similar results
to the original paper in case of the MNIST and Caltech
dataset. Although those values differ by ≈ 2 a similar
picture can be drawn in that the VampPrior improves
our result significantly. Note, that we are comparing
log likelihood values in terms of the natural logarithm.
Hence, every four digits of difference corresponds to
one order of magnitude in the decimal system (making
it ten times more likely). We explain our slightly worse
results by a potentially different weight initialization
and by our choice of implementation using TensorFlow
Probability instead of PyTorch.

In contrast to the two smaller datasets, the method
performed substantially worse on theOmniglot than
in the original paper’s reporting with differences
of over 1100 in log-space. We can not explain this
particular results since its visual quality is not as bad
as this value might indicate (see next subsection).
The higher resolution of these images together with
a more diverse set of symbols increased the training
complexity, explaining why we had to reduce the
learning rate to achieve convergent behavior.

TABLE I: Marginal log likelihood per model and
dataset.

Architecture VAE HVAE

Prior Gaussian Vamp Data Vamp Generated Gaussian Vamp Data Vamp Generated

MNIST −89.59 −118.12 −87.42 −107.15 −116.49 −104.30

OMNIGLOT −1138.9 −1145.8 −1153.11 −1555.96 −2166.31 −1637.72

CALTECH 101 −119.31 −115.45 −116.98 −140.65 −184.63 −146.07

In case of the HVAE performance, we can not report
similar values to the original article. In case of the
MNIST and the Caltech dataset, our results are on
average 20 values in log-space worse. Consequently,
they are also worse than the results from the vanilla
VAE not favoring the use of hierarchical networks.

More insight on the distribution of the marginal log
likelihood values for the MNIST dataset is given with
the histograms of Figure 3 and 4. Although the mean
of this distribution (which we report in the mentioned
Table I) does not match the reported values of the
original article, the distributions’ shape do coincide.
By this we can report that all of our models can at
least explain the data.

Fig. 3: Histogram Kernel-Density Estimate for the
Marginal Log Likelihoods of the test split of the
MNIST dataset on the vanilla VAE.

Fig. 4: Histogram Kernel-Density Estimate for the
Marginal Log Likelihoods of the test split of the
MNIST dataset on the hierarchical VAE.

6

D. Qualitative Results
Reference images Model VAE SG VAE VampData VAE VampGen HVAE SG HVAE VampData HVAE VampGen

Reference
images

reconstructed

Generated
images

Fig. 5: Results for the MNIST dataset.

Reference images Model VAE SG VAE VampData VAE VampGen HVAE SG HVAE VampData HVAE VampGen

Reference
images

reconstructed

Generated
images

Fig. 6: Results for the OMNIGLOT dataset.

Reference images Model VAE SG VAE VampData VAE VampGen HVAE SG HVAE VampData HVAE VampGen

Reference
images

reconstructed

Generated
images

Fig. 7: Results for the CALTECH dataset.

Above we present various results from trained VAE
models. For each model and dataset we present re-
constructed images, as well as generated ones. Each
model is denoted by its architecture (Vanilla / HVAE),
and by the type of prior we use (Standard Gaussian,
Vamp Data, Vamp Generated). Vamp Data refers to
pseudo-inputs taken from the training samples and
Vamp Generated to trained pseudo-inputs.

In the generated images we can see, that the over-
regularizing effect of the single Gaussian prior does
effect mainly the more complex data-sets, whereas we
cannot see any significant difference on the MNIST
dataset. However, the reconstruction of images does
not seem to depend on the complexity of the dataset
nor the prior or architecture used which shows that the
training process is sufficient.

The MNIST dataset converges to results of high
quality for all architectures and priors. The images
are reconstructed with only little noise. The generated

ones are difficult to distinguish from the original or
reconstructed ones.

Observing the more complex Caltech dataset, we
can see that changing the prior does clearly improve
the quality of the generated images. The use of the
Vamprior does decrease the amount of noise in the
images. The use of the Hierachical architecture on the
other hand does not seem to have an influence on the
quality.

These observations do manifest when comparing the
results of the Omniglot dataset. The generated images
with a Network using the Standard Gaussian prior are
very noisy and the shapes are difficult to recognise.
The Vampriors on the other hand are able to generate
images with less noise where shapes can clearly be
identified. However, it seems that the images generated
with a single Gaussian do show more complex objects
whereas the Vampriors do generate more simple but
clearer shapes.

7

Furthermore, in this dataset we can for the first time
see a significant difference between the Vanilla and
Hierarchical architecture. Contrary to our expectations,
the Hierarchical Networks do seem to perform worse
than the Vanilla ones. We cannot explain what exactly
caused this. It is most likely related to an error in our
implementation.

Regarding Vampdata and Vampgen models, it
is hard to conclude on which is generating better
images. For instance OMNIGLOT shows that using
pseudo-inputs from training samples improved the
quality of the generated images greatly in comparison
to the trained pseudo-inputs. For this specific dataset,
one can argue that non-trained pseudo-inputs can
perform better as the dataset itself is hard to learn and
so are the trained pseudo-inputs. On the other hand,
it seems like the learned pseudo-inputs attempt to
create more complex shapes that approximate better
the original data.

Another interesting feature of the models that we can
observe are the trained pseudo-inputs. We extract a
subset of them for the MNIST dataset for both the
VAE and HVAE architectures and plot them after.

Trained pseudo-inputs
with VAE architecture

Trained pseudo-inputs
with HVAE architecture

Fig. 8: Trained pseudo-inputs on MNIST dataset.

When looking at the trained Pseudo-inputs of Figure
8 we can confirm the result of [3]. In our networks, too,
the pseudo-inputs seem to be trained as representatives
of the original data. To some extent this pushes further
the argument for using data points as pseudo-inputs,
since the pseudo-inputs seem to converge to the shape
of data points in that case. This reaches the limit
of the explainability of this model: perhaps the noise
superimposed to the digits is a side effect of the random
initialization, but it could also contain key information
for the resulting prior. Without that knowledge it is
not safe to assume that the process of training pseudo-
inputs converges to the shape of data points.

V. DISCUSSION

In this report we attempted to re-implement the most
important aspects of the article ‘VAE with a Vamp-
Prior’ [5]. The results we created show that a multi-
model prior which regularizes less and can improve
performance on more complex datasets. However, we

couldn’t report an advantage in performance when
using the Hierachical structure for the Neural network.
This might be due to errors in the implementation of
the model itself or in the computation of the marginal
log-likelihood. Since we were not able to solve this is-
sue, we cannot support nor reject their claims about the
Hierachical Variational Autoencoder. Furthermore, we
can see in the qualitative and quantitative results, that
the Networks do produce significantly poorer results
for the OMNIGLOT dataset compared to the others.
One explanation for this might be the low complexity
of the Network itself, since we did not change the
number of units per layer nor the number of layers. All
datasets are trained on the same architecture. There-
fore, in order to improve the results on the OMNIGLOT
dataset one can try to build a more complex model by
adding units and layers to the Neural Network.

On the other hand, even when not performing as
well on the OMNIGLOT as on the other data-sets,
the usage of the Vampriors does increase the perfor-
mance significantly compared to the single Gaussian
prior. Considering that the VampPrior as extension
to the VAE does make the model more complex in
implementing and training, we would conclude that the
usage of the VampPrior is only justified when modeling
complex data and the Gaussian as a prior leads to over-
regularization.

We would like to point out that most of the moti-
vations and quantitative justifications of these methods
are very well illustrated in the original paper which
considerably simplified the understanding. The only
negative note we can report is an unclear description of
the architecture of some Networks and their implemen-
tation which made it necessary to look at the original
code implementation in order to reproduce the results.

As mentioned, we could not reproduce all of them,
but for most of the datasets and models we were able
to get values and images which seem to support their
conclusions. As most of their claims are supported
sufficiently on a quantitative but also qualitative per-
spective the quality of their work does seem more than
acceptable.

REFERENCES

[1] Leonid Datta. A survey on activation functions and their relation
with xavier and he normal initialization, 2020.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[3] Diederik P Kingma and Max Welling. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

[4] Pegah Salehi, Abdolah Chalechale, and Maryam Taghizadeh.
Generative adversarial networks (gans): An overview of theoret-
ical model, evaluation metrics, and recent developments, 2020.

[5] Jakub Tomczak and Max Welling. Vae with a vampprior. In
International Conference on Artificial Intelligence and Statistics,
pages 1214–1223. PMLR, 2018.

	Introduction
	Background
	Variational Auto-Encoders
	VampPrior
	Hierarchical Prior
	Test Marginal Log-Likelihood

	Method
	Gated Dense Layers
	Integrating the pseudo-inputs
	Network Architecture
	Hierarchical architecture
	Implementation details

	Results
	Experiments conducted
	Model Training and Hyper-Parameters
	Quantitative Results
	Qualitative Results

	Discussion
	References

