
Solving the Shallow Water Equations using Finite
Volume Method and Domain Decomposition in Julia

Felix Köhler
Technical University Munich

Chair of Scientific Computing in Computer Science
Munich, Germany
f.koehler@tum.de

Abstract—Research in computational science and engineering
mostly incorporates the usage of two programming languages,
a high-level dynamic language for prototyping and a low-level
language for the final implementation and its parallelization. The
Julia language aims to be a solution to this by offering close
to C performance with many high-level features in a Just-In-
Time compiled fashion. In this paper, we analyze this statement
in the context of Tsunami simulations modelled by the Shallow
Water Equations. The equations are solved using a Finite Volume
Scheme with an HLLE Riemann solver. The program’s imple-
mentation process is described. Performance comparisons against
a reference (highly-optimized) C++ implementation are drawn
for the sequential case and a parallelization case using domain
decomposition. The Julia code showed competitive performance
in both cases making it a viable option for certain tasks in
scientific computing.

Index Terms—High Performance Computing, Julia, Just-in-
Time Compilation, Tsunamis, Shallow Water Equations, Domain
Decomposition, Parallel Computing

I. INTRODUCTION

Traditional approaches in scientific computing are suffering
from the problem that two languages are used throughout
the process of creating an application or performing research.
Typically, a very high-level dynamic language like Python is
used for prototyping the algorithm and a low-level language
like C++ is then used for implementing the code efficiently
and scaling it for a High Performance Computing (HPC)
context.

The Julia language aims to be a remedy out of the double
nature of programming languages. It promises close to C
performance while keeping much of the conveniences of
modern scripting languages. Therefore, it inherits concepts
from languages as MATLAB, Python and Lisp. The built-in
matrix processing and strong Linear Algebra package make
it well suited for solving partial differential equations. Since
its debut in 2009, the Julia community has grown and many
scenarios did show its applicability and scalability [1].

This paper analyzes Julia’s capabilities in the context of
solving the Shallow Water Equations (SWE). This is done by
porting an existing suite of Shallow Water Equation solvers
written in C++ [2] to Julia.

The paper will briefly introduce the Shallow Water Equa-
tions. We then cover the difficulties and observations when
implementing a Finite Volume Method algorithm together with
an approximate Riemann solver in Julia. Afterwards, two

major comparisons are presented. First, we reason about the
sequential performance and the specialties of the new language
in relation to the C++ code. The second part comprises
the parallelization with domain decomposition and message
passing. Here we compare Julia’s native Distributed package
with the MPI-based implementation of the C++-code.

II. THE SHALLOW WATER EQUATIONS

The Shallow Water Equations are a set of coupled non-linear
partial differential equations (PDE). They form a hyperbolic
system in conservative form with a source term. h

hu
hv

t

+

 hu
hu2 + 1

2gh
2

huv

x

+

 hv
huv

hv2 + 1
2gh

2

y

=

 0
−ghbx
−ghby

(1)

Here, we use a vector of conserved quantities ~q = [h, hu, hv]T

(wave height, momentum in x, momentum in y). The source
term considers the influence of varying bathymetry b. The
spatial domain is two-dimensional, hence (·)x and (·)y denote
the partial derivative w.r.t. the first and the second axis,
respectively. g denotes the acceleration due to gravity.

In the context of solving these equations numerically, we
employ a Cartesian grid to discretize the domain into cells
of finite volume. The equations (and hence the conserved
quantities) are spatially averaged over these cells, ~q → ~Qi,j .
With an additional forward Euler discretization of the time
derivative (·)t we get the update routine for each cell.

~Q
[n+1]
i,j = ~Q

[n]
i,j −

∆t

∆x

(
F [n]

i− 1
2 ,j

+ F [n]

i+ 1
2 ,j

)
− ∆t

∆y

(
F [n]

i,j− 1
2

+ F [n]

i,j+ 1
2

) (2)

In this update over time-step ∆t and cell width ∆x and ∆y, F
denotes the numerical flux which we evaluate at the cell edges.
To achieve a high-accuracy in this Godunov-type scheme we
employ an approximate Riemann solver at each edge. More
details on the used HLLE-solver and the Finite Volume Method
can be found in [3]. The time-step is adaptively chosen based
on the maximum wave speed, the cell widths and a given
CFL-condition (set to 0.4 here).

For our numerical experiments and the comparison with the
reference implementation, we use the scenario of a radial dam
break with an outflow boundary condition. Initially, the water

is at rest, i.e. hu(t = 0, x, y) = hv(t = 0, x, y) = 0. Only
in the center of our two-dimensional domain Ω = [0, 1000]×
[0, 1000], there is a circular peak in water height.

h(t = 0, x, y) =

{
15

√
(x− 500)2 + (y − 500)2 < 100

10 else
(3)

The simulation spans over t ∈ [0, 15] with 20 checkpoints
along the way to save the fields for postprocessing.

III. SEQUENTIAL IMPLEMENTATION

A. Porting the SWE solver to Julia

As already mentioned in the introduction, Julia advertises
to be a solution of the two language problem. We can confirm
this statement during the process of porting the SWE solver.
The ability to quickly prototype language specialties in the
REPL1 aided in the process of learning the language. Addi-
tionally, Julia is a garbage-collected language making memory
management simpler than in C++.

Julia provides many convenience functions known from
MATLAB and Numpy when working with high-dimensional
data structures. Functions and operators can be broadcasted to
apply to all elements of a multi-dimensional array. The Just-
In-Time (JIT) compiler together with the LLVM backend then
transforms these operations into efficient SIMD instructions.

Another advantage making Julia a modern programming
language is its integrated package system. As of June 2020,
there are 3′000 registered Julia packages. This is less than
Python’s 240′000 but they cover many important fields. For
the process of porting, we used a package to write NetCDF
files. This package system is simpler to use than big build
systems for C++, e.g. CMake.

To make up for possibly missing package functionalities, Ju-
lia provides a no-overhead call of C and FORTRAN libraries.
This makes many classical numerical libraries available to
the user. Similar to NumPy and SciPy, Julia’s integrated
LinearAlgebra library provides highly-optimized BLAS and
LAPACK routines.

Over the course of translating the program, we experienced
performance difficulties that are probably caused by our first
exposure to the language. Julia’s documentation with the hints
on performance improvements was considered of great help.
We see these four points to be the biggest bottlenecks.

1) Julia’s builtin arrays always allocate on the heap. This
is costly, especially in numerical kernels (in our case
the Riemann solver) that are called frequently. With
the StaticArrays package, one can define stack-allocated
arrays improving the performance in our case by almost
one order of magnitude.

2) When coming from Python one might never explicitly
declare the type of a variable in Julia. However, in
certain cases this can be helpful for the compiler. In

1Read-Evaluate-Print-Loop, the interactive Julia mode

our example code, we were able to speed up the imple-
mentation by almost 50% by fixing the type of strategic
variables.

3) Julia’s builtin array operations can be convenient but in
the case of slice operations, Julia will allocate a new
array on the heap for the requested excerpt. This is
beneficial for long computations since Julia can make
sure that the memory is aligned. However, in simple
assignments this can have a negative impact on perfor-
mance. Applying the @views macro, Julia only uses a
reference to the elements in memory. Instead of

a r r a y 1 [2 , 2 : 1 0 1] = a r r a y 2 [1 , 2 : 1 0 1] ;

one would write

@inbounds @. @views a r r a y 1 [2 , 2 : 1 0 1] =
a r r a y 2 [1 , 2 : 1 0 1] ;

The @. macro defines the upcoming operations to be
broadcasted making them easier to vectorize for the JIT
compiler. In this scenario, we additionally deactivated
any bounds-check by the use of a macro. One can
declare an entire scope to be expended by a set of macros
to reduce the code footprint.

4) A common issue in the Julia community is the so-called
“time-to-plot” meaning the duration between starting a
Julia program and getting a result. Especially for short-
running computations, the impact of the JIT compiler,
which is called every start of the program, can be
noticeable. One can use the PackageCompiler library to
precompile frequently used libraries. This was not used
in this project and we will report the time influence of
compilation and startup.

B. Performance comparison against reference C++ code
Now, we will compare its performance with the implemen-

tation in C++ (which is highly optimized). The C++ variant
uses single precision floating point numbers and Julia double
precision. The machine is a 16 core Intel Xeon (Haswell)
processor with a 2.3GHz clock speed accompanied with
16GB of memory. The C++ code was compiled with GCC.
We deactivated vectorization for both programs2.

Table I shows the execution times of different scenarios.
Here we differentiate between:
• “J(ulia) wrap”: The naive execution time of the Julia

code. The whole program call was wrapped in a Unix
time command.

• “J(ulia) main”: Is the time for the program logic. This
excludes the startup time but still includes JIT compila-
tions occurring during the first time any code statement
is executed. We also exclude IO here.

• “J(ulia) main p(ure)”: Is the time for the program logic
excluding all overhead caused by startup and compilation.
We also exclude IO here.

2The vectorization of both Julia and C++ was poor since the auto-
vectorization scenario was too difficult for LLVM and GCC, respectively. To
keep the comparison fair we did not use the Intel compiler which was able to
almost perfectly vectorize the C++ code reducing its runtime by about 70%.

• “S(WE) wrap”: The naive execution time of the refer-
ence implementation captured similarly with the time
command.

• “S(WE) core”: The main simulation task, excluding IO.
TABLE I: Time measurements in [s] for the sequential imple-
mentations with a varying number of cells per axis.

J wrap J main J main p S wrap S core

50 20.21 4.97 0.23 0.05 0.01
100 20.32 5.12 0.10 0.14 0.05
200 21.01 5.71 0.68 0.69 0.49
400 25.24 10.13 5.16 4.50 3.91
800 61.98 46.73 41.40 32.57 30.74
1600 364.42 349.32 336.82 410.19 239.70

50 100 200 400 800 1600
0

2

4

6

8

Num Cells per axis

M
io

C
el

l
U

pd
at

es
pe

r
s

Fig. 1: Cell Updates per second for the scenarios given in table
I over various numbers of cells per axis.

Looking at the three Julia scenarios, we can see the impact
of the two major overheads. Starting up the Julia compiler,
reading in all included files and compiling the used libraries
takes approx. 15s and is constant over the problem size. The
JIT compilation of the actual code takes approx. 5s and is also
problem size independent. As a comparison, the compilation
of the C++ binary took 7s. However, this is a one-time cost.
The presented overhead for the Julia code is present every
time it is started. On the other side, Julia can make sure that
the executed instructions are always optimal for the underlying
hardware. For bigger problem sizes and hence longer compute
time, the ratio of the Julia overhead becomes smaller.

Ignoring the overhead, we see an almost similar perfor-
mance. For the biggest problem size of 1600 × 1600 cells
the pure Julia code is only 29% slower than the core C++
code. For some scenarios in scientific computing the gained
flexibility of a highly-dynamic language could be worth this
price. Usually, performances of languages as Python are at
least one order of magnitude slower than C++ code.

We do also observe that the implementation of the IO
mechanisms is more efficient in Julia than in the C++ imple-
mentation. This explains why, for the biggest problem size,
the wrapped Julia code runs faster.

IV. PARALLEL IMPLEMENTATION

It is important to have a fast sequential implementation to
then create efficient parallel applications that scale well. In this
section we compare the performance when decomposing the
domain into patches and assigning them to individual worker
processors. In the C++ code, a parallelization using MPI was

Primary Worker 1

Worker 2 RemoteChannel
optional

sync

Fig. 2: One-sided communication with Julia’s builtin prim-
itives. One primary process controls many worker processes
(possibly also on network-connected nodes) by assigning tasks
to them. Halo cells between workers are exchanged with
RemoteChannels.

chosen. Julia uses an own primary/worker based distribution
model. We do not use any shared-memory parallelism (i.e.
multithreading e.g. by OpenMP). The exchange of halo layer
ghost cells is achieved through explicit message passing.
For the simplicity of our analysis we also did not consider
distributed computing over multiple network-connected nodes.

A. The Parallel Model in Julia

Decomposing the computational domain into subdomains
is a common parallelization pattern in discretization based
solutions to partial differential equations. One process owns
a certain subset of the collection of Finite Volume cells and
exchanges its boundary values with its adjacent domain.

Julia uses a primary/worker approach to parallel comput-
ing3. This means that one primary process spawns tasks on
worker processes. We instantiate the field arrays for each block
on a separate process and the primary process keeps remote
references to later spawn tasks that work directly on this data.
Remote references are implemented as futures in Julia.

Additionally, we have to set up so called remote channels
for each interior domain boundary that are used for communi-
cating the halo cells between the blocks. Every block writes its
own NetCDF file. Fig. 2 depicts the program flow. After each
solution step, there can be optional synchronization constructs
which is here not necessary because the RemoteChannel’s
implementation is blocking implementing a natural barrier in
each iteration loop.

When comparing the implementation to the C++, one has
to again note that the prototyping in Julia is convenient due to
expressive macros. This also improves the readability of the
code and most certainly also its maintainability.

B. Performance comparison against the reference MPI imple-
mentation

In the previous section on the sequential performance, we
saw that the C++ implementation of the NetCDF writer is
a bottleneck in comparison to the Julia code which is the
reason we decided to deactivate IO for the upcoming analysis.
We again deactivated auto-vectorization of both Julia and the
GCC compiler.

3Additionally, Julia offers shared memory parallelism similar to OpenMP
and coroutines similar to Go, JavaScript and modern C++.

We now compare the execution time and speedup for various
numbers of processors for a fixed problem size of a domain
with 2000 cells in each axis. The numbers of processors are
varied from 1 to 16. The test machine consists of two sockets
with 8 cores each resulting in 2 NUMA domains.

We only consider two scenarios:
• “J(ulia) main pure no IO”: Similar to the sequential

implementation we do not include startup (≈ 15s for
startup and compilation of libraries) and compilation
(≈ 8s to compile the code on each processor) overhead
since we were able to show that this is close to the
sequential analysis. Additionally, no IO is performed.

• “SWE wrap no IO”: The mpirun was wrapped inside a
time statement. IO was disabled in the code.

1 2 4 8 16
0

200

400

600

Number of processors

E
xe

cu
tio

n
tim

e
in

s

J main pure no IO
SWE wrap no IO

Fig. 3: Execution time in [s] over the number of processors.

1 2 4 8 16
0

5

10

15

Number of processors

Sp
ee

du
p

J main pure no IO
SWE wrap no IO

Ideal

Fig. 4: Speedup of the Julia implementation and the C++
implementation over various numbers of processors.

By looking at Fig. 3, we observe a similar result for the 1-
core-case as in the sequential scenario. Keep in mind, that the
parallel implementation with one core is slightly different from
the sequential implementation for both Julia and C++. Still,
the Julia code performs only 30% slower than its reference.

The Julia code’s absolute performance scales better than
the reference with MPI but only until 8 cores. The converged
time, also visible in the speedup graph of Fig. 4, can be caused
by the greater overhead of the primary/worker approach and
a potentially weaker implementation of message passing over
two NUMA domains than the more mature MPI implementa-
tion. Still, we achieve comparable scaling for the Julia code.
For an easier porting process, one could have also used the
Julia MPI bindings.

V. CONCLUSION & FUTURE WORK

In this paper we ported an existing suite of Shallow Water
Equations solvers from C++ to Julia for a comparison of

their performance in the sequential and parallel case. Over the
course of translating, we experienced Julia to be a beginner-
friendly language offering many of the known conveniences
from high-level interpreted languages. However, we have to
note that we spent almost as much time tuning the code as we
spent implementing. We think this is caused by writing the
first project in Julia. The documentation helped to improve on
the major bottlenecks.

With this Julia code we were able to show that the se-
quential execution time is only about 30% slower than the
C++ code which combining with the faster development time
and all the other benefits of the Julia language could be
worth it for some applications. The Just-In-Time compilation
of Julia results in an overhead of ≈ 20s each startup which
is noticeable for small problem sizes.

The parallel implementation was able to scale well until
block sizes went below 500 by 500 cells whereas the MPI
variant of the C++ code kept speeding up. We found Julia’s
builtin execution model to be expressive and easy to use.
However, for scenarios of domain decomposition for scientific
computing we would resort to the MPI bindings since this
more naturally fits the parallelization strategy.

Another way could be changing to an actor-based distribu-
tion model which reduces the spawning overhead and could
be implemented with Julia’s Distributed package that was also
used in this paper.

The Julia community is aware of the overhead in running
code. For the future, it is planned to create an ahead-of-time
compile option creating a binary out of a Julia script which
reduces the overhead time to almost zero similar to a compiled
C++ executable. Until then, a potential remedy is outsourcing
some functions and numerical kernels into own packages and
use Julia’s PackageCompiler library to precompile them. How-
ever, the JIT approach has the advantages that the generated
machine instructions are always optimal for the underlying
hardware and with each improvement in the LLVM backend,
the Julia code also improves in performance.

In conclusion, Julia holds up to its promise of solving
the two language problem. Especially in modern times when
computing becomes cheaper, a faster prototyping time and the
advantage to not maintain two code-bases might outweigh the
30% slowdown.

The code is available open source via Github:

github.com/Ceyron/Tsunamis.jl
github.com/TUM-I5/SWE

REFERENCES

[1] J. Bezanson and A. Edelman and S. Karpinski and V.B. Shar, “Julia:
A fresh approach to Numerical Computing”, SIAM Review 2017 59:1,
65-98

[2] A. Breuer and M. Bader, “Teaching Parallel Programming Models
on a Shallow-Water Code”, 2012 11th International Symposium on
Parallel and Distributed Computing, Munich, 2012, pp. 301-308, doi:
10.1109/ISPDC.2012.48.

[3] D.L. George, “Finite Volume Methods and adaptive refinement for
Tsunami propagation and inundation”, University of Washington, Diss.
Ph. D. Thesis, 2006

