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Abstract—There is an increasing interest in a fast-growing
machine learning technique called Federated Learning (FL),
in which the model training is distributed over mobile user
equipment (UEs), exploiting UEs’ local computation and training
data. Despite its advantages such as preserving data privacy,
FL still has challenges of heterogeneity across UEs’ data and
physical resources. To address these challenges, we first propose
FEDL, a FL algorithm which can handle heterogeneous UE data
without further assumptions except strongly convex and smooth
loss functions. We provide a convergence rate characterizing the
trade-off between local computation rounds of each UE to update
its local model and global communication rounds to update the
FL global model. We then employ FEDL in wireless networks
as a resource allocation optimization problem that captures the
trade-off between FEDL convergence wall clock time and energy
consumption of UEs with heterogeneous computing and power
resources. Even though the wireless resource allocation problem
of FEDL is non-convex, we exploit this problem’s structure
to decompose it into three sub-problems and analyze their
closed-form solutions as well as insights into problem design.
Finally, we illustrate the theoretical analysis for FEDL with
Tensorflow experiments and extensive numerical results for the
wireless resource allocation sub-problems. Experimental results
not only verify the theoretical convergence but also show that our
proposed algorithm outperforms the vanilla FedAvg algorithm in
terms of convergence rate and test accuracy.

Index Terms—Distributed Machine Learning, Federated
Learning, Optimization Decomposition.

I. INTRODUCTION

The significant increase in the number of cutting-edge
mobile and Internet of Things (IoT) devices results in the
phenomenal growth of the data volume generated at the edge
network. It has been predicted that in 2025 there will be
80 billion devices connected to the Internet and the global
data will achieve 180 trillion gigabytes [2]. However, most
of this data is privacy-sensitive in nature. It is not only risky
to store this data in data centers but also costly in terms of
communication. For example, location-based services such as
the app Waze [3], can help users avoid heavy-traffic roads and
thus reduce congestion. However, to use this application, users
have to share their own locations with the server and it cannot
guarantee that the location of drivers is kept safely. Besides,
in order to suggest the optimal route for drivers, Waze collects
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a large number of data including every road driven to transfer
to the data center. Transferring this amount of data requires
a high expense in communication and drivers’ devices to be
connected to the Internet continuously.

In order to maintain the privacy of consumer data and
reduce the communication cost, it is necessary to have an
emergence of a new class of machine learning techniques
that shifts computation to the edge network where the privacy
of data is maintained. One such popular technique is called
Federated Learning (FL) [4]. This technology allows users to
collaboratively build a shared learning model while preserving
all training data on their user equipment (UE). In particular,
a UE computes the updates to the current global model on
its local training data, which is then aggregated and fed-back
by a central server, so that all UEs have access to the same
global model to compute their new updates. This process
is repeated until an accuracy level of the learning model is
reached. In this way, the user data privacy is well protected
because local training data are not shared, which thus differs
FL from conventional approaches in data acquisition, storage,
and training.

There are several reasons why FL is attracting plenty of
interests. Firstly, modern smart UEs are now able to handle
heavy computing tasks of intelligent applications as they are
armed with high-performance central processing units (CPUs),
graphics processing units (GPUs) and integrated AI chips
called neural processing units (e.g., Snapdragon 845, Kirin
980 CPU and Apple A12 Bionic CPU [5]). Being equipped
with the latest computing resources at the edge, the model
training can be updated locally leading to the reduction in
the time to upload raw data to the data center. Secondly, the
increase in storage capacity, as well as the plethora of sensors
(e.g., cameras, microphones, GPS) in UEs enables them to
collect a wealth amount of data and store it locally. This
facilitates unprecedented large-scale flexible data collection
and model training. With recent advances in edge computing,
FL can be more easily implemented in reality. For example, a
crowd of smart devices can proactively sense and collect data
during the day hours, then jointly feedback and update the
global model during the night hours, to improve the efficiency
and accuracy for next-day usage. We envision that such this
approach will boost a new generation of smart services, such
as smart transportation, smart shopping, and smart hospital.

Despite its promising benefits, FL comes with new chal-
lenges to tackle. On one hand, the number of UEs in FL
can be large and the data generated by UEs have diverse
distributions [4]. Designing efficient algorithms to handle
statistical heterogeneity with convergence guarantee is thus
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a priority question. Recently, several studies [4], [6], [7]
have used de facto optimization algorithms such as Gradient
Descent (GD), Stochastic Gradient Descent (SGD) to enable
devices’ local updates in FL. One of the most well-known
methods named FedAvg [4] which uses average SGD updates
was experimentally shown to perform well in heterogeneous
UE data settings. However, this work lacks theoretical con-
vergence analysis. By leveraging edge computing to enable
FL, [7] proposed algorithms for heterogeneous FL networks
by using GD with bounded gradient divergence assumption
to facilitate the convergence analysis. In another direction,
the idea of allowing UEs to solve local problems in FL with
arbitrary optimization algorithm to obtain a local accuracy (or
inexactness level) has attracted a number of researchers [8],
[9]. While [8] uses primal-dual analysis to prove the algorithm
convergence under any distribution of data, the authors of
[9] propose adding proximal terms to local functions and use
primal analysis for convergence proof with a local dissimilarity
assumption, a similar idea of bounding the gradient divergence
between local and global loss functions.

While all of the above FL algorithms’ complexities are
measured in terms of the number of local and global update
rounds (or iterations), the wall clock time of FL when deployed
in a wireless environment mainly depends on the number of
UEs and their diverse characteristics, since UEs may have
different hardware, energy budget, and wireless connection
status. Specifically, the total wall-clock training time of FL
includes not only the UE computation time (which depend on
UEs’ CPU types and local data sizes) but also the commu-
nication time of all UEs (which depends on UEs’ channel
gains, transmission power, and local data sizes). Thus, to
minimize the wall-clock training time of FL, a careful resource
allocation problem for FL over wireless networks needs to
consider not only the FL parameters such as accuracy level
for computation-communication trade-off, but also allocating
the UEs’ resources such as power and CPU cycles with
respect to wireless conditions. From the motivations above,
our contributions are summarized as follows:

• We propose a new FL algorithm with only assumption
of strongly convex and smooth loss functions, named
FEDL. The crux of FEDL is a new local surrogate
function, which is designed for each UE to solve its
local problem approximately up to a local accuracy
level θ, and is characterized by a hyper-learning rate η.
Using primal convergence analysis, we show the linear
convergence rate of FEDL by controlling η and θ, which
also provides the trade-off between the number of local
computation and global communication rounds. We then
employ FEDL on Tensorflow to verify the theoretical
findings with several federated datasets. The experimental
results show that FEDL outperforms the vanilla FedAvg
[4] in terms of training loss, convergence rate and test
accuracy.

• We propose a resource allocation problem for FEDL
over wireless networks to capture the trade-off between
the wall clock training time of FEDL and UE energy
consumption by using the Pareto efficiency model. To

handle the non-convexity of this problem, we exploit its
special structure to decompose it into three sub-problems.
The first two sub-problems relate to UE resource al-
location over wireless networks, which are transformed
to be convex and solved separately; then their solutions
are used to obtain the solution to the third sub-problem,
which gives the optimal η and θ of FEDL. We derive
their closed-form solutions, and characterize the impact
of the Pareto-efficient controlling knob to the optimal: (i)
computation and communication training time, (ii) UE
resource allocation, and (iii) hyper-learning rate and local
accuracy. We also provide extensive numerical results to
examine the impact of UE heterogeneity and Pareto curve
of UE energy cost and wall clock training time.

The rest of this paper is organized as follows. Section II dis-
cusses related works. Section III contains system model. Sec-
tions IV and V provide the proposed FL algorithm’s analysis
and resource allocation over wireless networks, respectively.
Experimental performance of FEDL and numerical results of
the resource allocation problem are provided in Section VI and
Section VII, respectively. Section VIII concludes our work.

II. RELATED WORKS

Due to Big Data applications and complex models such as
Deep Learning, training machine learning models needs to be
distributed over multiple machines, giving rise to researches
on decentralized machine learning [10]–[15]. However, most
of the algorithms in these works are designed for machines
having balanced and/or independent and identically distributed
(i.i.d.) data. Realizing the lack of studies in dealing with
unbalanced and heterogeneous data distribution, an increasing
number of researchers place interest in studying FL, a state-
of-the-art distributed machine learning technique [4], [7], [9],
[16], [17]. This technique takes advantage of the involvement
of a large number of devices where data are generated locally,
which makes them statistically heterogeneous in nature. As
a result, designing algorithms with global model’s conver-
gence guarantee becomes challenging. There are two main
approaches to overcome this problem.

The first approach is based on de facto algorithm SGD
with a fixed number of local iterations on each device [4].
Despite its feasibility, these studies still have limitations as
lacking the convergence analysis. The work in [7], on the
other hand, used GD and additional assumptions on Lipschitz
local functions and bounded gradient divergence to prove the
algorithm convergence.

Another useful approach to tackling the heterogeneity chal-
lenge is to allow UEs to solve their primal problems approxi-
mately up to a local accuracy threshold [9], [17]. Their works
show that the main benefit of this approximation approach
is that it allows flexibility in the compromise between the
number of rounds run on the local model update and the
communication to the server for the global model update.
While the authors of [9] use primal convergence analysis
with bounded gradient divergence assumption and show that
their algorithm can apply to non-convex FL setting, [17] uses
primal-dual convergence analysis, which is only applicable to
FL with convex problems.
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From a different perspective, many researchers have recently
focused on the efficient communications between UEs and
edge servers in FL-supported networks [1], [7], [18]–[22].
The work [7] proposes algorithms for FL in the context
of edge networks with resource constraints. While there are
several works [23], [24] that study minimizing communicated
messages for each global iteration update by applying spar-
sification and quantization, it is still a challenge to utilize
them in FL networks. For example, [18] uses the gradient
quantization, gradient sparsification, and error accumulation to
compress gradient message under the wireless multiple-access
channel with the assumption of noiseless communication.
The work [19] studies a similar quantization technique to
explore convergence guarantee with low-precision training.
[25] considers joint learning with a subset of users and wireless
factors such as packet errors and the availability of wireless
resources while [20] focuses on using cell-free massive MIMO
to support FL. Contrary to most of these works which make
use of existing, standard FL algorithms, our work proposes a
new one. The authors in [21] adopt and compare a number
of scheduling policies in wireless. [22] considers the problem
of simultaneously optimizing the completion time of FL in
conjunction with the computation and transmission energy.
[26] uses the FL approach to improve the experience of virtual
reality (VR) for wireless users. Nevertheless, these works lack
studies on unbalanced and heterogeneous data among UEs. We
study how the computation and communication characteristics
of UEs can affect their energy consumption, training time, con-
vergence and accuracy level of FL, considering heterogeneous
UEs in terms of data size, channel gain and computational and
transmission power capabilities.

III. SYSTEM MODEL

We consider a wireless multi-user system which consists of
one edge server and a set N of N UEs. Each participating
UE n stores a local dataset Dn, with its size denoted by Dn.
Then, we can define the total data size by D =

∑N
n=1Dn. In

an example of the supervised learning setting, at UE n, Dn
defines the collection of data samples given as a set of input-
output pairs {xi, yi}Dni=1, where xi ∈ Rd is an input sample
vector with d features, and yi ∈ R is the labeled output value
for the sample xi. The data can be generated through the usage
of UE, for example, via interactions with mobile apps.

In a typical learning problem, for a sample data {xi, yi}
with input xi (e.g., the response time of various apps inside
the UE), the task is to find the model parameter w ∈ Rd that
characterizes the output yi (e.g., label of edge server load, such
as high or low, in next hours) with the loss function fi(w).
The loss function on the data set of UE n is defined as

Fn(w) :=
1

Dn

∑
i∈Dn

fi(w).

Then, the learning model is the minimizer of the following
global loss function minimization problem

min
w∈Rd

F (w) :=
∑N

n=1
pnFn(w), (1)

where pn := Dn
D ,∀n.

Assumption 1. Fn(·) is L-smooth and β-strongly convex, ∀n,
respectively, as follows, ∀w,w′ ∈ Rd:

Fn(w) ≤ Fn(w′)+
〈
∇Fn(w′), w − w′

〉
+
L

2
‖w − w′‖2

Fn(w) ≥ Fn(w′)+
〈
∇Fn(w′), w − w′

〉
+
β

2
‖w − w′‖2 .

Throughout this paper, 〈w,w′〉 denotes the inner product of
vectors w and w′ and ‖·‖ is Euclidean norm. We note that
strong convexity and smoothness in Assumption 1, also used
in [7], can be found in a wide range of applications such as l2-
regularized linear regression model with fi(w) = 1

2 (〈xi, w〉−
yi)

2 + β
2 ‖w‖

2
, yi ∈ R, and l2-regularized logistic regression

with fi(w) = log
(
1 + exp(−yi〈xi, w〉)

)
+ β

2 ‖w‖
2
, yi ∈

{−1, 1}. We also denote ρ := L
β the condition number of

Fn(·)’s Hessian matrix.

IV. FEDERATED LEARNING ALGORITHM DESIGN

In this section, we propose a FL algorithm, named FEDL, as
presented in Algorithm 1. To solve problem (1), FEDL uses an
iterative approach that requires Kg global rounds for global
model updates. In each global round, there are interactions
between the UEs and edge server as follows.

UEs update local models: In order to obtain the local
model wtn at a global round t, each UE n first receives the
feedback information wt−1 and ∇F̄ t−1 (which will be defined
later in (4) and (5), respectively) from the server, and then
minimize its following surrogate function (line 3)

min
w∈Rd

J tn(w) := Fn(w) +
〈
η∇F̄ t−1 −∇Fn(wt−1), w

〉
. (2)

One of the key ideas of FEDL is UEs can solve (2) approxi-
mately to obtain an approximation solution wtn satisfying∥∥∇J tn(wtn)

∥∥ ≤ θ ∥∥∇J tn(wt−1)
∥∥ ,∀n, (3)

which is parametrized by a local accuracy θ ∈ (0, 1) that is
common to all UEs. This local accuracy concept resembles
the approximate factors in [8], [27]. Here θ = 0 means
the local problem (2) is required to be solved optimally,
and θ = 1 means no progress for local problem, e.g., by
setting wtn = wt−1. The surrogate function J tn(.) (2) is
motivated from the scheme Distributed Approximate NEwton
(DANE) proposed in [12]. However, DANE requires (i) the
global gradient ∇F (wt−1) (which is not available at UEs
or server in FL context), (ii) additional proximal terms (i.e.,
µ
2

∥∥w − wt−1
∥∥2

), and (iii) solving local problem (2) exactly
(i.e., θ = 0). On the other hand, FEDL uses (i) the global
gradient estimate ∇F̄ t−1, which can be measured by the
server from UE’s information, instead of exact but unrealistic
∇F (wt−1), (ii) avoids using proximal terms to limit additional
controlling parameter (i.e., µ), and (iii) flexibly solves local
problem approximately by controlling θ. Furthermore, we
have ∇J tn(w) = ∇Fn(w) + η∇F̄ t−1 − ∇Fn(wt−1), which
includes both local and global gradient estimate weighted by
a controllable parameter η. We will see later how η affects to
the convergence of FEDL. Compared to the vanilla FedAvg,
FEDL requires more information (UEs sending not only wtn
but also ∇Fn(wtn)) to obtain the benefits of a) theoretical
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Algorithm 1 FEDL

1: Input: w0, θ ∈ [0, 1], η > 0.
2: for t = 1 toKg do
3: Computation: Each UE n receives wt−1 and ∇F̄ t−1

from the server, and solves (2) in Kl rounds to achieve
θ-approximation solution wtn satisfying (3).

4: Communication: UE n transmit wtn and ∇Fn(wtn),
∀n, to the edge server.

5: Aggregation and Feedbacks: The edge server updates
the global model wt and ∇F̄ t as in (4) and (5),
respectively, and then fed-backs them to all UEs.

linear convergence and b) experimental faster convergence,
which will be shown in later sections. And we will also show
that with Assumption 1, the theoretical analysis of FEDL
can avoid the gradient divergence bound assumption as in [7,
Definition 1], [9, Assumption 1].

Edge server updates global model:
After receiving the local model wtn and gradient ∇Fn(wtn),

∀n, the edge server aggregates them as follows

wt :=
∑N

n=1
pnw

t
n, (4)

∇F̄ t :=
∑N

n=1
pn∇Fn(wtn) (5)

and then broadcast wt and ∇F̄ t to all UEs (line 5), which
are required for participating UEs to minimize their surrogate
J t+1
n in the next global round t+1. We see that the edge server

does not access the local data Dn, ∀n, thus preserving data
privacy. For an arbitrary small constant ε > 0, the problem (1)
achieves a global model convergence wt when its satisfies

F (wt)− F (w∗) ≤ ε, ∀t ≥ Kg, (6)

where w∗ is the optimal solution to (1).
Next, we will provide the convergence analysis for FEDL.

We see that J tn(w) is also β-strongly convex and L-smooth as
Fn(·) because they have the same Hessian matrix. With these
properties of J tn(w), we can use GD to solve (2) as follows

zk+1 = zk − hk∇J tn(zk), (7)

where zk is the local model update and hk is a predefined
learning rate at iteration k, which has been shown to generate
a convergent sequence (zk)k≥0 satisfying a linear convergence
rate [28] as follows

J tn(zk)− J tn(z∗) ≤ c(1− γ)k
(
J tn(z0)− J tn(z∗)

)
, (8)

where z∗ is the optimal solution to the local problem (2), and
c and γ ∈ (0, 1) are constants depending on ρ.

Lemma 1. With Assumption 1 and the assumed linear con-
vergence rate (8) with z0 = wt−1, the number of local rounds
Kl for solving (2) to achieve a θ-approximation condition (3)
is

Kl =
2

γ
log

C

θ
, (9)

where C := cρ.

Theorem 1. With Assumption 1, the convergence of FEDL is
achieved with linear rate

F (wt)− F (w∗) ≤ (1−Θ)t(F (w(0))− F (w∗)), (10)

where Θ ∈ (0, 1) is defined as

Θ :=
η(2(θ − 1)2 − (θ + 1)θ(3η + 2)ρ2 − (θ + 1)ηρ2)

2ρ
(
(1 + θ)2η2ρ2 + 1

) .

(11)

Corollary 1. The number of global rounds for FEDL to
achieve the convergence satisfying (6) is

Kg =
1

Θ
log

F (w0)− F (w∗)

ε
. (12)

The proof of this corollary can be shown similarly to that
of Lemma 1. We have some following remarks:

1) The convergence of FEDL can always be obtained by
setting sufficiently small values of both η and θ ∈ (0, 1)
such that Θ ∈ (0, 1). While the denominator of (11) is
greater than 2, its numerator can be rewritten as 2η(A−
B), where A = 2(θ− 1)2− (θ+ 1)θ(3η+ 2)ρ2 and B =
(θ + 1)ηρ2. Since limθ→0A = 2 and limθ,η→0B = 0,
there exists small values of θ and η such that A−B > 0,
thus Θ > 0. On the other hand, we have limη→0 Θ = 0;
thus, there exists a small value of η such that Θ < 1.

2) There is a convergence trade-off between the number
of local and global rounds characterized by θ: small θ
makes large Kl, yet small Kg , according to (9) and
(12), respectively. This trade-off was also observed by
authors of [8], though their technique (i.e., primal-dual
optimization) is different from ours.

3) While θ affects to both local and global convergence, η
only affects to the global convergence rate of FEDL. If
η is small, then Θ is also small, thus inducing large Kg .
However, if η is large enough, Θ may not be in (0, 1),
which leads to the divergence of FEDL. We call η the
hyper-learning rate for the global problem (1).

4) The condition number ρ also affects to the FEDL con-
vergence: if ρ is large (i.e., poorly conditioned problem
(2)), both η and θ should be sufficiently small in order for
Θ ∈ (0, 1) (i.e., slow convergence rate.) This observation
is well-aligned to traditional optimization convergence
analysis [29, Chapter 9].

The time complexity of FEDL is represented by Kg

communication rounds and computation complexity is KgKl

computation rounds. When implementing FEDL over wireless
networks, the wall clock time of each communication round
can be significantly larger than that of computation if the
number of UEs increases, due to multi-user contention for
wireless medium. In the next section, we will study the UE
resource allocation to enable FEDL over wireless networks.

V. FEDL OVER WIRELESS NETWORKS

In this section, we first present the system model and
problem formulation of FEDL over a time-sharing wireless
environment. We then decompose this problem into three
sub-problems, derive their closed-form solutions, reveal the
hindsights, and provide numerical support.
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A. System Model

At first, we consider synchronous communication which
requires all UEs to finish solving their local problems before
entering the communication phase. During the communication
phase, the model’s updates are transferred to the edge server
by using a wireless medium sharing scheme. In the com-
munication phase, each global round consists of computation
and communication time which includes uplink and downlink
ones. In this work, however, we do not consider the downlink
communication time as it is negligible compared to the uplink
one. The reason is that the downlink has larger bandwidth
than the uplink and the edge server power is much higher
than UE’s transmission power. Besides, the computation time
only depends on the number of local rounds, and thus θ,
according to (9). Denoting the time of one local round by
Tcp, i.e., the time to computing one local round (8), then the
computation time in one global round is Kl Tcp. Denoting the
communication time in one global round by Tco, the wall clock
time of one global round of FEDL is defined as

Tg := Tco +Kl Tcp.

1) Computation Model: We denote the number of CPU
cycles for UE n to execute one sample of data by cn, which
can be measured offline [30] and is known a priori. Since all
samples {xi, yi}i∈Dn have the same size (i.e., number of bits),
the number of CPU cycles required for UE n to run one local
round is cnDn. Denote the CPU-cycle frequency of the UE n
by fn. Then the CPU energy consumption of UE n for one
local round of computation can be expressed as follows [31]

En,cp =
∑cnDn

i=1

αn
2
f2
n =

αn
2
cnDnf

2
n, (13)

where αn/2 is the effective capacitance coefficient of UE
n’s computing chipset. Furthermore, the computation time per
local round of the UE n is cnDn

fn
, ∀n. We denote the vector

of fn by f ∈ Rn.
2) Communication Model: In FEDL, regarding to the com-

munication phase of UEs, we consider a time-sharing multi-
access protocol (similar to TDMA) for UEs. We note that this
time-sharing model is not restrictive because other schemes,
such as OFDMA, can also be applied to FEDL. The achievable
transmission rate (nats/s) of UE n is defined as follows:

rn = B ln
(
1 +

h̄npn
N0

)
, (14)

where B is the bandwidth, N0 is the background noise, pn is
the transmission power, and h̄n is the average channel gain
of the UE n during the training time of FEDL. Denote the
fraction of communication time allocated to UE n by τn, and
the data size (in nats) of wn and ∇Fn(wn) by sn. Because the
dimension of vectors wn and ∇Fn(wn) is fixed, we assume
that their sizes are constant throughout the FEDL learning.
Then the transmission rate of each UE n is

rn = sn/τn, (15)

which is shown to be the most energy-efficient transmission
policy [32]. Thus, to transmit sn within a time duration τn,
the UE n’s energy consumption is

En,co = τn pn(sn/τn), (16)

where the power function is

pn(sn/τn) :=
N0

h̄n

(
e
sn/τn
B − 1

)
(17)

according to (14) and (15). We denote the vector of τn by
τ ∈ Rn.

Define the total energy consumption of all UEs for each
global round by Eg , which is expressed as follows:

Eg :=
∑N

n=1
En,co +KlEn,cp.

B. Problem formulation

We consider an optimization problem, abusing the same
name FEDL, as follows

minimize
f,τ,θ,η,Tco,Tcp

Kg

(
Eg + κTg

)
subject to

∑N

n=1
τn ≤ Tco, (18)

max
n

cnDn

fn
= Tcp, (19)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N , (20)

pminn ≤ pn(sn/τn) ≤ pmaxn , ∀n ∈ N , (21)
0 ≤ θ ≤ 1. (22)

Minimize both UEs’ energy consumption and the FL time
are conflicting. For example, the UEs can save the energy by
setting the lowest frequency level all the time, but this will
certainly increase the training time. Therefore, to strike the
balance between energy cost and training time, the weight
κ (Joules/second), used in the objective as an amount of
additional energy cost that FEDL is willing to bear for one
unit of training time to be reduced, captures the Pareto-optimal
tradeoff between the UEs’ energy cost and the FL time. For
example, when most of the UEs are plugged in, then UE
energy is not the main concern, thus κ can be large. According
to optimization theory, 1/κ also plays the role of a Lagrange
multiplier for a “hard constraint” on UE energy [29].

While constraint (18) captures the time-sharing uplink trans-
mission of UEs, constraint (19) defines that the computing
time in one local round is determined by the “bottleneck”
UE (e.g., with large data size and low CPU frequency). The
feasible regions of CPU-frequency and transmit power of UEs
are imposed by constraints (20) and (21), respectively. We
note that (20) and (21) also capture the heterogeneity of UEs
with different types of CPU and transmit chipsets. The last
constraint restricts the feasible range of the local accuracy.
C. Solutions to FEDL

We see that FEDL is non-convex due to the constraint (19)
and several products of two functions in the objective function.
However, in this section we will characterize FEDL’s solution
by decomposing it into multiple simpler sub-problems.
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We consider the first case when θ and η are fixed, then
FEDL can be decomposed into two sub-problems as follows:

SUB1: minimize
f,Tcp

∑N

n=1
En,cp + κTcp

subject to
cnDn

fn
≤ Tcp, ∀n ∈ N , (23)

fminn ≤ fn ≤ fmaxn , ∀n ∈ N .

SUB2 : min.
τ,Tco

∑N

n=1
En,co + κTco

s.t.
∑N

n=1
τn ≤ Tco, (24)

pminn ≤ pn(sn/τn) ≤ pmaxn , ∀n. (25)

While SUB1 is a CPU-cycle control problem for the
computation time and energy minimization, SUB2 can be
considered as an uplink power control to determine the UEs’
fraction of time sharing to minimize the UEs energy and
communication time. We note that the constraint (19) of FEDL
is replaced by an equivalent one (23) in SUB1. We can
consider Tcp and Tco as virtual deadlines for UEs to perform
their computation and communication updates, respectively.
It can be observed that both SUB1 and SUB2 are convex
problems.

1) SUB1 Solution: We first propose Algorithm 2 in order
to categorize UEs into one of three groups: N1 is a group of
“bottleneck” UEs that always run its maximum frequency; N2

is the group of “strong” UEs which can finish their tasks before
the computational virtual deadline even with the minimum
frequency; and N3 is the group of UEs having the optimal
frequency inside the interior of their feasible sets.

Lemma 2. The optimal solution to SUB1 is as follows

f∗n =


fmaxn , ∀n ∈ N1,

fminn , ∀n ∈ N2,
cnDn
T∗cp

, ∀n ∈ N3,

(26)

T ∗cp = max
{
TN1

, TN2
, TN3

}
, (27)

where N1,N2,N3 ⊆ N are three subsets of UEs produced by
Algorithm 2 and

TN1
= max

n∈N

cnDn

fmaxn

,

TN2 = max
n∈N2

cnDn

fminn

,

TN3 =

(∑
n∈N3

αn(cnDn)3

κ

)1/3

. (28)

From Lemma 2, first, we see that the optimal solution
depends not only on the existence of these subsets, but also
on their virtual deadlines TN1

, TN2
, and TN3

, in which the
longest of them will determine the optimal virtual deadline
T ∗cp. Second, from (26), the optimal frequency of each UE
will depend on both T ∗cp and the subset it belongs to. We
note that depending on κ, some of the three sets (not all) are
possibly empty sets, and by default TNi = 0 if Ni is an empty
set, i = 1, 2, 3. Next, by varying κ, we observe the following
special cases.

Algorithm 2 Finding N1,N2,N3 in Lemma 2

1: Sort UEs such that c1D1

fmin1
≤ c2D2

fmin2
. . . ≤ cNDN

fminN

2: Input: N1 = ∅, N2 = ∅, N3 = N , TN3
in (28)

3: for i = 1 toN do
4: if maxn∈N

cnDn
fmaxn

≥ TN3 > 0 and N1 == ∅ then
5: N1 = N1 ∪

{
m : cmDmfmaxm

= maxn∈N
cnDn
fmaxn

}
6: N3 = N3 \ N1 and update TN3 in (28)
7: if ciDi

fmini
≤ TN3 then

8: N2 = N2 ∪ {i}
9: N3 = N3 \ {i} and update TN3

in (28)

Corollary 2. The optimal solution to SUB1 can be divided
into four regions as follows.
a) κ ≤ minn∈N αn(fminn )

3
:

N1 and N3 are empty sets. Thus, N2 = N , T ∗co = TN2
=

maxn∈N
cnDn
fminn

, and f∗n = fminn ,∀n ∈ N .

b) minn∈N αn(fminn )
3
< κ ≤

(
maxn∈N2

cnDn
fminn

)3
:

N2 and N3 are non-empty sets, whereas N1 is
empty. Thus, T ∗cp = max

{
TN2

, TN3

}
, and f∗n =

max
{
cnDn
T∗cp

, fminn

}
,∀n ∈ N .

c)
(
maxn∈N2

cnDn
fminn

)3
< κ ≤

∑
n∈N3

αn

(
cnDn

)3(
maxn∈N

cnDn
fmaxn

)3 :

N1 and N2 are empty sets. Thus N3 = N , T ∗cp = TN3
,

and f∗n = cnDn
TN3

,∀n ∈ N .

d) κ >
∑
n∈N3

αn

(
cnDn

)3(
maxn∈N

cnDn
fmaxn

)3 :

N1 is non-empty. Thus T ∗cp = TN1
, and

f∗n =

{
fmaxn , ∀n ∈ N1,

max
{
cnDn
TN1

, fminn

}
, ∀n ∈ N \ N1.

(29)

We illustrate Corollary 2 in Fig. 1 with four regions1 as
follows.
a) Very low κ (i.e., κ ≤ 0.004): Designed for solely energy

minimization. In this region, all UE runs their CPU at the
lowest cycle frequency fminn , thus T ∗cp is determined by the
last UEs that finish their computation with their minimum
frequency.

b) Low κ (i.e., 0.004 ≤ κ ≤ 0.1): Designed for prioritized
energy minimization. This region contains UEs of both N2

and N3. T ∗cp is governed by which subset has higher virtual
computation deadline, which also determines the optimal
CPU-cycle frequency of N3. Other UEs with light-loaded
data, if exist, can run at the most energy-saving mode fminn

yet still finish their task before T ∗cp (i.e., N2).
c) Medium κ (i.e., 0.1 ≤ κ ≤ 1): Designed for balancing

computation time and energy minimization. All UEs belong
to N3 with their optimal CPU-cycle frequency strictly
inside the feasible set.

d) High κ (i.e., κ ≥ 1): Designed for prioritized computation
time minimization. High value κ can ensure the existence
of N1, consisting the most “bottleneck” UEs (i.e., heavy-
loaded data and/or low fmaxn ) that runs their maximum

1All closed-form solutions are also verified by the solver IPOPT [33].
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Fig. 1: Solution to SUB1 with five UEs. For wireless communication model, the UE channel gains follow the exponential
distribution with the mean g0(d0/d)4 where g0 = −40 dB and the reference distance d0 = 1 m. The distance between these
devices and the wireless access point is uniformly distributed between 2 and 50 m. In addition, B = 1 MHz, σ = 10−10 W,
the transmission power of devices are limited from 0.2 to 1 W. For UE computation model, we set the training size Dn of
each UE as uniform distribution in 5− 10 MB, cn is uniformly distributed in 10− 30 cycles/bit, fmaxn is uniformly distributed
in 1.0− 2.0 GHz, fminn = 0.3 GHz. Furthermore, α = 2× 10−28 and the UE update size sn = 25, 000 nats (≈4.5 KB).

CPU-cycle in (29) (top) and thus determines the optimal
computation time T ∗cp. The other “non-bottleneck” UEs
either (i) adjust a “right” CPU-cycle to save the energy
yet still maintain their computing time the same as T ∗cp
(i.e., N3), or (ii) can finish the computation with minimum
frequency before the “bottleneck” UEs (i.e., N2) as in (29)
(bottom).

2) SUB2 Solution: Before characterizing the solution to
SUB2, from (17) and (25), we first define two bounded values
for τn as follows

τmaxn =
sn

B ln(h̄nN
−1
0 pminn + 1)

,

τminn =
sn

B ln(h̄nN
−1
0 pmaxn + 1)

,

which are the maximum and minimum possible fractions of
Tco that UE n can achieve by transmitting with its minimum
and maximum power, respectively. We also define a new
function gn : R→ R as

gn(κ) =
sn/B

1 +W
(κN−1

0 h̄n−1
e

) ,
where W (·) is the Lambert W -function. We can consider gn(·)
as an indirect “power control” function that helps UE n control
the amount of time it should transmit an amount of data sn
by adjusting the power based on the weight κ. This function
is strictly decreasing (thus its inverse function g−1

n (·) exists)
reflecting that when we put more priotity on minimizing the
communication time (i.e., high κ), UE n should raise the
power to finish its transmission with less time (i.e., low τn).

Lemma 3. The solution to SUB2 is as follows
a) If κ ≤ g−1

n (τmaxn ), then

τ∗n = τmaxn

b) If g−1
n (τmaxn ) < κ < g−1

n (τminn ), then

τminn < τ∗n = gn(κ) < τmaxn

c) If κ ≥ g−1
n (τminn ), then

τ∗n = τminn ,
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(b) UEs’ optimal transmission
time .

Fig. 2: The solution to SUB2 with five UEs. The numerical
setting is the same as that of Fig. 1.

and T ∗co =
∑N
n=1 τ

∗
n.

ρ κ θ∗ Θ η∗

1.4/2/5
0.1 .033/.015/.002 .094/.042/.003 .253/.177/.036
1 .035/.016/.002 .092/.041/.003 .253/.177/.036
10 .035/.016/.002 .092/.041/.003 .253/.177/.036

TABLE I: The solution to SUB3 with five UEs. The numerical
setting is the same as that of Fig. 1.

This lemma can be explained through the lens of network
economics. If we interpret the FEDL system as the buyer and
UEs as sellers with the UE powers as commodities, then the
inverse function g−1

n (·) is interpreted as the price of energy
that UE n is willing to accept to provide power service for
FEDL to reduce the training time. There are two properties of
this function: (i) the price increases with repect to UE power,
and (ii) the price sensitivity depends on UEs characteristics,
e.g., UEs with better channel quality can have lower price,
whereas UEs with larger data size sn will have higher price.
Thus, each UE n will compare its energy price g−1

n (·) with
the “offer” price κ by the system to decide how much power it
is willing to “sell”. Then, there are three cases corresponding
to the solutions to SUB2.

a) Low offer: If the offer price κ is lower than the minimum
price request g−1

n (τmaxn ), UE n will sell its lowest service
by transmitting with the minimum power pminn .
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b) Medium offer: If the offer price κ is within the range of an
acceptable price range, UE n will find a power level such
that the corresponding energy price will match the offer
price.

c) High offer: If the offer price κ is higher than the maximum
price request g−1

n (τminn ), UE n will sell its highest service
by transmitting with the maximum power pmaxn .

Lemma 3 is further illustrated in Fig. 2, showing how the
solution to SUB2 varies with respect to κ. It is observed from
this figure that due to the UE heterogeneity of channel gain,
κ = 0.1 is a medium offer to UEs 2, 3, and 4, but a high offer
to UE 1, and low offer to UE 5.

While SUB1 and SUB2 solutions share the same threshold-
based dependence, we observe their differences as follows. In
SUB1 solution, the optimal CPU-cycle frequency of UE n
depends on the optimal T ∗cp, which in turn depends on the loads
(i.e., cnDn

fn
, ∀n ) of all UEs. Thus all UE load information

is required for the computation phase. On the other hand,
in SUB2 solution, each UE n can independently choose its
optimal power by comparing its price function g−1

n (·) with κ
so that collecting UE information is not needed. The reason is
that the synchronization of computation time in constraint (23)
of SUB1 requires all UE loads, whereas the UEs’ time-sharing
constraint (24) of SUB2 can be decoupled by comparing with
the fixed “offer” price κ.

3) SUB3 Solution: We observe that the solutions to SUB1
and SUB2 have no dependence on θ so that the optimal T ∗co,
T ∗cp, f∗, τ∗, and thus the corresponding optimal energy values,
denoted by E∗n,cp and E∗n,cp, can be determined based on κ
according to Lemmas 2 and 3. However, these solutions will
affect to the third sub-problem of FEDL, as will be shown in
what follows.

SUB3 :

minimize
θ,η>0

1

Θ

(∑N

n=1
E∗n,co +KlE

∗
n,cp + κ

(
T ∗co +Kl T

∗
cp

))
subject to 0 < θ < 1, 0 < Θ < 1.

SUB3 is unfortunately non-convex. However, since there
are only two variables to optimize, we can employ numerical
methods to find the optimal solution. The numerical results in
Table I show that the solution θ∗ and η∗ to SUB3 decreases
when ρ increases, which makes Θ decreases, as explained by
the results of Theorem 1. Also we observe that κ as more
effect to the solution to SUB3 when ρ is small.

4) FEDL Solution: Since we can obtain the stationary
points of SUB3 using Successive Convex Approximation
techniques such as NOVA [34], then we have:

Theorem 2. The combined solutions to three sub-problems
SUB1, SUB2, and SUB3 are stationary points of FEDL.

The proof of this theorem is straightforward. The idea is
to use the KKT condition to find the stationary points of
FEDL. Then we can decompose the KKT condition into three
independent groups of equations (i.e., no coupling variables
between them), in which the first two groups matches exactly
to the KKT conditions of SUB1 and SUB2 that can be solved
by closed-form solutions as in Lemmas 2, 3, and the last group
for SUB3 is solved by numerical methods.
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Fig. 3: Effect of η on the convergence of FEDL. Training
processes use full-batch gradient descent, full devices partici-
pation (N = S = 100 UEs), Kg = 200, and Kl = 20.
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Fig. 4: Effect of different batch-size with fixed value of Kl =
20, Kg = 800, N = 100, S = 10, (B = ∞ means full batch
size) on FEDL’s performance.

We then have some discussions on the combined solution
to FEDL. First, we see that SUB1 and SUB2 solutions
can be characterized independently, which can be explained
that each UE often has two separate processors: one CPU
for mobile applications and another baseband processor for
radio control function. Second, neither SUB1 nor SUB2
depends on θ because the communication phase in SUB2
is clearly not affected by the local accuracy, whereas SUB2
considers the computation cost in one local round. However,
the solutions to SUB1 and SUB2, which can reveal how much
communication cost is more expensive than computation cost,
are decisive factors to determine the optimal level of local
accuracy. Therefore, we can sequentially solve SUB1 and
SUB2 first, then SUB3 to achieve the solutions to FEDL.
We also summarize the complexities in the following table:

SUB1 SUB2 SUB3
O(N2) O(1) O(N)

TABLE II: Summary of the sub-problem complexity.
VI. EXPERIMENTS

This section will validate the FEDL’s learning performance
in a heterogeneous network. The Tensorflow experimental
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Fig. 5: Effect of increasing local computation time on the
convergence of FEDL (N = 100, S = 10, Kg = 800).

results show that FEDL gains performance improvement from
the vanilla FedAvg [4] in terms of training loss convergence
rate and test accuracy in various settings. All codes and data
are published on GitHub [35].

Experimental settings: In our setting, the performance
of FEDL is examined by both classification and regression
tasks. The regression task uses linear regression model with
mean square error loss function on a synthetic dataset while
the classification task uses multinomial logistic regression
model with cross-entropy error loss function on real federated
datasets (MNIST [36], FEMNIST [37]). The loss function for
each UE is given below:

1) Mean square error loss for linear regression (synthetic
dataset):

Fn(w) =
1

Dn

∑
(xi,yi)∈Dn

(〈xi, w〉 − yi)2.

2) Cross-entropy loss for multinomial logistic regression
(MNIST and FEMNIST datasets):

Fn(w) =
−1

Dn

[Dn∑
i=1

C∑
c=1

1{yi=c} log
exp(〈xi, wc〉)∑C
j=1 exp(〈xi, wj〉)

]

+
β

2

C∑
c=1

‖wc‖2 .

We consider N = 100 UEs. To verify that FEDL also works
with UE subset sampling, we allow FEDL to randomly sample
a number of subset of UEs, denoted by S, following a uniform
distribution as in FedAvg in each global iteration. In order to
generate datasets capturing the heterogeneous nature of FL,
all datasets have different sample sizes based on the power
law in [9]. In MNIST, each user contains three of the total of
ten labels. FEMNIST is built similar to [9] by partitioning the
data in Extended MNIST [38] (62 labels). For synthetic data,
to allow for the non-iid setting, each user’s data is generated

using a mean value drawn from N (0, 1) and has the dimension
d = 40. We control the value of ρ by using the data generation
method similar to that in [39], in which users’ weights
are drawn from N (0,Σ). Here Σ is a diagonal covariance
matrix with Σii = i−p, i ∈ [1, d] and p = log(ρ)

log(d) , where
ρ is considered as multiplicative inverse for the minimum
covariance value of Σ. The number of data samples of each
UE is in the ranges [55, 3012], [504, 1056], and [500, 5326] for
MNIST, FEMNIST, and Synthetic, respectively. All datasets
are split randomly with 75% for training and 25% for testing.
Each experiment is run at least 10 times and the average
results are reported. We summarized all parameters used for
the experiments in Table. III

Parameters Description
ρ Condition number of Fn(·)′s Hessian Matrix, ρ = L

β
Kg Global rounds for global model update
Kl Local rounds for local model update
η Hyper-learning rate
hk Local learning rate
B Batch Size (B =∞ means full batch size for GD)

TABLE III: Experiment parameters.

Effect of the hyper-learning rate on FEDL’s conver-
gence: We first verify the theoretical finding by predetermining
the value of ρ and observing the impact of changing η on
the convergence of FEDL using a synthetic dataset. In Fig.
3, we examine four different values of ρ. As can be seen in
the figure, with all value of ρ, there were exist small enough
values of η that allow FEDL to converge. We also observe
that using the larger value of η makes FEDL converge faster.
In addition, even if FEDL allows UEs to solve their local
problems approximately, the experiment shows that the gap
between the optimal solution and our approach in Fig. 3 is
negligible. It is noted that the optimal solution is obtained by
solving directly the global loss function (1) as we consider the
local loss function at each UE is mean square error loss.

Effect of different gradient descent algorithms on
FEDL’s performance: As UEs are allowed to use different
gradient descent methods to minimize the local problem (2),
the convergence of FEDL can be evaluated on different
optimization algorithms: GD and mini-batch SGD by changing
the configuration of the batch size during the local training
process. Although our analysis results are based on GD,
we also monitor the behavior of FEDL using SGD in the
experiments for the comparison. While a full batch size is
applied for GD, mini-batch SGD is trained with a batch size
of 20 and 40 samples. We conducted a grid search on hk
to find the value allowing FEDL and FedAvg to obtain the
best performance in terms of accuracy and stability. Fig. 4
demonstrates that FEDL outperforms FedAvg on all batch size
settings (the improvement in terms of testing accuracy and
training loss are approximately 1.3% and 9.1% respectively for
the batch size 20, 0.7% and -0.2% for the batch size 40, and
0.8% and 14% for the full batch size). Besides, FEDL is more
stable than FedAvg when the small number of devices is sub-
sampling randomly during the training process. Even though
using larger batch size benefits the stability of both FedAvg
and FEDL, very large batch size can make the convergence
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Fig. 8: Pareto-optimal points of FEDL.

of FEDL slow. However, increasing the value of η allows
speeding up the convergence of FEDL in case of GD.

Effect of increasing local computation on convergence
time: In order to validate the performance of FEDL on a
different value of local updates Kl, in the Fig. 5, we use
both mini-batch SGD algorithm with the fixed batch size of
20 and GD for the local update and increase Kl from 10
to 40. For all Kl, even when the learning rate of FedAvg
is tuned carefully, FEDL in all batch size settings achieve a
significant performance gap over FedAvg in terms of training
loss and testing accuracy. Also in this experiment, FEDL
using minibatch outperforms FEDL using GD for FEMNIST
dataset. While larger Kl does not show the improvement on
the convergence of FedAvg, the rise of Kl has an appreciably
positive impact on the convergence time FEDL. However, the
larger Kl requires higher local computation at UEs, which
costs the EU’s energy consumption.

VII. NUMERICAL RESULTS

In this section, both the communication and computation
models follow the same setting as in Fig. 1, except the
number of UEs is increased to 50, and all UEs have the same

fmaxn = 2.0 GHz and cn = 20 cycles/bit. Furthermore, we
define two new parameters, addressing the UE heterogeneity
regarding to computation and communication phases in FEDL,

respectively, as Lcp =
maxn∈N

cnDn
fmaxn

minn∈N
cnDn
fminn

and Lco =
maxn∈N τ

min
n

minn∈N τmaxn
.

We see that higher values of Lcp and Lco indicate higher levels
of UE heterogeneity. For example, Lcp = 1 (Lco = 1) can
be considered as high heterogeneity level due to unbalanced
data distributed and/or UE configuration (unbalanced channel
gain distribution) such that UE with their minimum frequency
(maximum transmission power) still have the same computa-
tion (communication) time as those with maximum frequency
(minimum transmission power). The level of heterogeneity is
controlled by two different settings. To vary Lcp, the training
size Dn is generated with the fraction Dmin

Dmax ∈
{

1, 0.2, 0.001
}

but the average UE data size is kept at the same value
7.5 MB for varying values of Lcp. On the other hand, to
vary Lco, the distance between these devices and the edge
server is generated such that dmin

dmax ∈
{

1., 0.2, 0.001
}

but
the average distance of all UEs is maintained at 26 m for
different values of Lco. Here Dmin and Dmax (dmin and
dmax) are minimum and maximum data size (edge server-to-
UE distance), respectively. In all scenarios, we fix Lcp = 0.3
when varying Lco and fix Lco = 0.48 when varying Lcp.

1) Impact of UE heterogeneity: We first examine the impact
of UE heterogeneity on SUB1 and SUB2 in Fig. 6, which
shows that increasing Lcp and Lco enforces the optimal f∗n
and τ∗n having more diverse values, and thus makes increase
the computation and communication time T ∗cp and T ∗co, re-
spectively. As expected, we observe that the high level of
UE heterogeneity has negative impact on the FEDL system,
as illustrated in Figs. 7a and 7b, such that the total cost is
increased with higher value of Lcp and Lco respectively.

2) Pareto Optimal trade-off: We next illustrate the Pareto
curve in Fig. 8. This curve shows the trade-off between the
conflicting goals of minimizing the time cost K(θ)Tg and
energy cost K(θ)Eg , in which we can decrease one type of
cost yet with the expense of increasing the other one. This
figure also shows that the Pareto curve of FEDL is more
efficient when the system has low level of UE heterogeneity
(i.e., small Lcp and/or Lco).

VIII. CONCLUSIONS

In this paper, we studied FL, a learning scheme in which the
training model is distributed to participating UEs performing
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training over their local data. Although FL shows vital ad-
vantages in data privacy, the heterogeneity across users’ data
and UEs’ characteristics are still challenging problems. We
proposed an effective algorithm without the i.i.d. UEs’ data
assumption for strongly convex and smooth FL’s problems and
then characterize the algorithm’s convergence. For the wireless
resource allocation problem, we embedded the proposed FL
algorithm in wireless networks which considers the trace-offs
not only between computation and communication latencies
but also the FL time and UE energy consumption. Despite
the non-convex nature of this problem, we decomposed it
into three sub-problems with convex structure before analyz-
ing their closed-form solutions and quantitative insights into
problem design. We then verified the theoretical findings of
the new algorithm by experiments on Tensoflow with several
datasets, and the wireless resource allocation sub-problems
by extensive numerical results. In addition to validating the
theoretical convergence, our experiments also showed that the
proposed algorithm can boost the convergence speed compared
to an existing baseline approach.
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APPENDIX

A. Review of useful existing results

With Assumption 1 on L-smoothness and β-strong convex-
ity of Fn(·), according to [28][Theorems 2.1.5, 2.1.10, and
2.1.12], we have the following useful inequalities
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2L(Fn(w)− Fn(w∗)) ≥ ‖∇Fn(w)‖2 , ∀w (30)

〈∇Fn(w)−∇Fn(w′), w − w′〉≥ 1

L

∥∥∇Fn(w)−∇Fn(w′)
∥∥2 (31)

2β(Fn(w)− Fn(w∗)) ≤ ‖∇Fn(w)‖2 , ∀w (32)
β ‖w − w∗‖ ≤ ‖∇Fn(w)‖ , ∀w, (33)

where w∗ is the solution to problem minw∈Rd Fn(w).
B. Proof of Lemma 1

Due to L-smooth and β-strongly convex Jn, from (30) and
(32), respectively, we have

Jtn(zk)− Jtn(z∗) ≥
∥∥∇Jtn(zk)

∥∥2

2L
,

Jtn(z0)− Jtn(z∗) ≤
∥∥∇Jtn(z0)

∥∥2

2β

Combining these inequalities with (8), and setting z0 = wt−1

and zk = wtn, we have∥∥∇Jtn(wtn)
∥∥2 ≤ cL

β
(1− γ)k

∥∥∇Jtn(wt−1)
∥∥2

Since (1− γ)k ≤ e−kγ , the θ-approximation condition (3) is
satisfied when

c
L

β
e−kγ ≤ θ2.

Taking log both sides of the above, we complete the proof.
C. Proof of Theorem 1

We remind the definition of J tn(w) as follows
Jtn(w) = Fn(w) + 〈η∇F̄ t−1 −∇Fn(wt−1), w〉. (34)

Denoting ŵtn the solution to minw∈Rd J
t
n(w), we have

∇Jtn(wt−1) = η∇F̄ t−1, (35)

∇Jtn(ŵtn) = 0 = ∇Fn(ŵtn) + η∇F̄ t−1 −∇Fn(wt−1). (36)

Since F (·) is also L-Lipschitz smooth (i.e.,
‖∇F (w)−∇F (w′)‖ ≤

∑N
n=1

Dn
D
‖∇Fn(w)−∇Fn(w′)‖ ≤

L ‖w − w′‖ , ∀w,w′, by using Jensen’s inequality and L-
smoothness, respectively), we have

F (wtn)− F (wt−1)

≤ 〈∇F (wt−1), wtn − wt−1〉+
L

2

∥∥wtn − wt−1
∥∥2

= 〈∇F (wt−1)−∇F̄ t−1, wtn − wt−1〉+
L

2

∥∥wtn − wt−1
∥∥2

+ 〈∇F̄ t−1, wtn − wt−1〉 (37)

≤
∥∥∇F (wt−1)−∇F̄ t−1

∥∥ ∥∥wtn − wt−1
∥∥+

L

2

∥∥wtn − wt−1
∥∥2

+ 〈∇F̄ t−1, wtn − wt−1〉 (38)
(36)
=
∥∥∇F (wt−1)−∇F̄ t−1

∥∥ ∥∥wtn − wt−1
∥∥+

L

2

∥∥wtn − wt−1
∥∥2

− 1

η
〈∇Fn(ŵtn)−∇Fn(wt−1), wtn − wt−1〉

=
∥∥∇F (wt−1)−∇F̄ t−1

∥∥∥∥wtn − wt−1
∥∥+

L

2

∥∥wtn − wt−1
∥∥2

− 1

η
〈∇Fn(ŵtn)−∇Fn(wtn), wtn − wt−1〉

− 1

η
〈∇Fn(wtn)−∇Fn(wt−1), wtn − wt−1〉 (39)

≤
∥∥∇F (wt−1)−∇F̄ t−1

∥∥∥∥wtn − wt−1
∥∥+

L

2

∥∥wtn − wt−1
∥∥2

+
L

η

∥∥ŵtn − wtn∥∥∥∥wtn − wt−1
∥∥ (40)

− 1

η
〈∇Fn(wtn)−∇Fn(wt−1), wtn − wt−1〉

(31)

≤
∥∥∇F (wt−1)−∇F̄ t−1

∥∥∥∥wtn − wt−1
∥∥+

L

2

∥∥wtn − wt−1
∥∥2

+
L

η

∥∥ŵtn − wtn∥∥∥∥wtn − wt−1
∥∥

− 1

ηL

∥∥∇Fn(wtn)−∇Fn(wt−1)
∥∥2
, (41)

where (37) is by adding and subtracting ∇F̄ t−1, (38) is by
Cauchy-Schwarz inequality, (39) is by adding and subtracting
∇Fn(wtn), (40) is by using Cauchy-Schwarz inequality and
L-Lipschitz smoothness of Fn(·). The next step is to bound
the norm terms in the R.H.S of (41) as follows:
• First, we have∥∥ŵtn − wt−1

∥∥ (33)

≤ 1

β

∥∥∇Jtn(wt−1)
∥∥ (35)

=
η

β

∥∥∇F̄ t−1
∥∥ . (42)

• Next,∥∥ŵtn − wtn∥∥ (33)

≤ 1

β

∥∥∇Jtn(wtn)
∥∥ (3)

≤ θ

β

∥∥∇Jtn(wt−1)
∥∥

(35)
=

θη

β

∥∥∇F̄ t−1
∥∥ . (43)

• Using triangle inequality, (42), and (43), we have∥∥wtn − wt−1
∥∥ ≤ ∥∥wtn − ŵtn∥∥+

∥∥ŵtn − wt−1
∥∥

≤ (1 + θ)
η

β

∥∥∇F̄ t−1
∥∥ . (44)

• We also have∥∥∇Fn(wtn)−∇Fn(wt−1)
∥∥ (34)

=
∥∥∇Jtn(wtn)−∇Jtn(wt−1)

∥∥
≥
∥∥∇Jtn(wt−1)

∥∥− ∥∥∇Jtn(wtn)
∥∥

(3)

≥ (1− θ)
∥∥∇Jtn(wt−1)

∥∥
(35)
= (1− θ)η

∥∥∇F̄ t−1
∥∥ . (45)

• By definitions of ∇F (.) and ∇F̄ t−1, we have∥∥∇F (wt−1)−∇F̄ t−1
∥∥ =

∥∥∥∥∥
N∑
n=1

pn
(
∇Fn(wtn)−∇Fn(wt−1)

)∥∥∥∥∥
≤

N∑
n=1

pn
∥∥∇Fn(wtn)−∇Fn(wt−1)

∥∥
(46)

≤
N∑
n=1

pnL
∥∥wtn − wt−1

∥∥ (47)

≤ (1 + θ)η
L

β

∥∥∇F̄ t−1
∥∥ , (48)

where (46), (47) and (48) are obtained using Jensen’s in-
equality, L-Lipschitz smoothness, and (44), respectively.

• Finally, we have∥∥∇F (wt−1)
∥∥2 ≤ 2

∥∥∇F̄ t−1 −∇F (wt−1)
∥∥2

+ 2
∥∥∇F̄ t−1

∥∥2

(49)
(48)

≤ 2(1 + θ)2η2ρ2
∥∥∇F̄ t−1

∥∥2
+ 2

∥∥∇F̄ t−1
∥∥2

which implies∥∥∇F̄ t−1
∥∥2 ≥ 1

2(1 + θ)2η2ρ2 + 2

∥∥∇F (wt−1)
∥∥2
, (50)

where (49) comes from the fact that ‖x+ y‖2 ≤
2 ‖x‖2 + 2 ‖y‖2 for any two vectors x and y.

Defining

Z :=
η(−2(θ − 1)2 + (θ + 1)θ(3η + 2)ρ2 + (θ + 1)ηρ2)

2ρ
< 0
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and substituting (42), (44), (45), and (48) into (41), we have

F (wtn)− F (wt−1)

≤ Z

β

∥∥∇F̄ t−1
∥∥2

(50)

≤ Z

2β
(
(1 + θ)2η2ρ2 + 1

) ∥∥∇F (wt−1)
∥∥2

(32)

≤ − −Z(
(1 + θ)2η2ρ2 + 1

) (F (wt−1)− F (w∗)) (51)

= −η(2(θ − 1)2 − (θ + 1)θ(3η + 2)ρ2 − (θ + 1)ηρ2)

2ρ
(
(1 + θ)2η2ρ2 + 1

) (F (wt−1)− F (w∗))

(11)
= −Θ (F (wt−1)− F (w∗)). (52)

By subtracting F (w∗) from both sides of (52), we have

F (wtn)− F (w∗) ≤ (1−Θ)
(
F (wt−1)− F (w∗)

)
, ∀n. (53)

Finally, we obtain

F (wt)− F (w∗) ≤
∑N

n=1
pn
(
F (wtn)− F (w∗)

)
(54)

(53)

≤ (1−Θ) (F (wt−1)− F (w∗)), (55)

where (54) is due to the convexity of F (·).

D. Proof of Lemma 2

The convexity of SUB1 can be shown by its strictly convex
objective in (13) and its constraints determine a convex set.
Thus, the global optimal solution of SUB1 can be found using
KKT condition [29]. In the following, we first provide the
KKT condition of SUB1, then show that solution in Lemma 2
satisfy this condition.

The Lagrangian of SUB1 is

L1 =
∑N

n=1

[
En,cp + λn(

cnDn
fn

− Tcp)

+ µn(fn − fmaxn )− νn(fn − fminn )
]

+ κTcp

where λn, µn, νn are non-negative dual variables with their
optimal values denoted by λ∗n, µ

∗
n, ν
∗
n, respectively. Then the

KKT condition is as follows:
∂L

∂fn
=
∂En,cp
∂τn

− λn
cnDn
f2
n

+ µn − νn = 0, ∀n (56)

∂L

∂Tcp
= κ−

∑N

n=1
λn = 0, (57)

µn(fn − fmaxn ) = 0, ∀n (58)

νn(fn − fminn ) = 0, ∀n (59)

λn(
cnDn
fn

− Tcp) = 0. ∀n (60)

Next, we will show that the optimal solution according to
KKT condition is also the same as that provided by Lemma 2.
To do that, we observe that the existence of N1, N2, N3

and their respective TN1
, TN2

, TN3
produced by Algorithm 2

depends on κ. Therefore, we will construct the ranges of
κ such that there exist three subsets N ′1,N ′2,N ′3 of UEs
satisfying KKT condition and having the same solution as that
in Lemma 2 in the following cases.

a) T ∗cp = TN1 ≥ max
{
TN2 , TN3

}
: This happens when κ is

large enough so that the condition in line 4 of Algorithm 2

satisfies because TN3
is decreasing when κ increase. Thus

we consider κ ≥
∑N
n=1 αn(fmaxn )

3 (which ensures N1 of
Algorithm 2 is non-empty).
From (57), we have

κ =
∑N

n=1
λ∗n, (61)

thus κ in this range can guarantee a non-empty set N ′1 =
{n|λ∗n ≥ αn(fmaxn )

3} such that

∂En,cp(f
∗
n)

∂fn
− λ∗n

cnDn

f∗n
2 ≤ 0, ∀n ∈ N ′1 : f∗n ≤ fmaxn .

Then from (56) we must have µ∗n−ν∗n ≥ 0, thus, according
to (58) f∗n = fmaxn , ∀n ∈ N ′1. From (60), we see that
N ′1 = {n : cnDnfmaxn

= T ∗cp}. Hence, by the definition in (19),

T ∗cp = max
n∈N

cnDn
fmaxn

. (62)

On the other hand, if there exist a non-empty set N ′2 =
{n|λ∗n = 0}, it must be due to

cnDn
fminn

≤ T ∗cp, ∀n ∈ N ′2

according to (60). In this case, from (56) we must have
µ∗n − ν∗n ≤ 0⇒ f∗n = fminn , ∀n ∈ N ′2.
Finally, if there exists UEs with cnDn

fminn
> T ∗cp and cnDn

fmaxn
<

T ∗cp, they will belong to the set N ′3 = {n|αn(fminn )
3
<

λ∗n < αn(fmaxn )
3} such that fminn < f∗n < fmaxn .

According to (60), T ∗cp must be the same for all n with
λ∗n > 0 , we obtain

f∗n =
cnDn
T ∗cp

=
cnDn

maxn
cnDn
fmaxn

, ∀n ∈ N ′3. (63)

In summary, we have

f∗n =


fmaxn , ∀n ∈ N ′1
fminn , ∀n ∈ N ′2
cnDn
T∗cp

, ∀n ∈ N ′3

with T ∗cp determined in (62).
b) T ∗cp = TN2 > max

{
TN1 , TN3

}
: This happens when

κ is small enough such that the condition in line 7 of
Algorithm 2 satisfies. In this case, N1 is empty and N2

is non-empty according to line 8 of this algorithm. Thus
we consider κ ≤

∑N
n=1 αn(fminn )

3.
Due to the considered small κ and (61), there must exist a
non-empty set N ′2 =

{
n : λ∗n ≤ αn(fminn )

3} such that

∂En,cp(f
∗
n)

∂fn
− λ∗n

cnDn

f∗n
2 ≥ 0,∀n ∈ N ′2 : f∗n ≥ fminn .

Then, from (56) we must have µ∗n−ν∗n ≤ 0, and thus from
(58), f∗n = fminn ,∀n ∈ N ′2. Therefore, by the definition
(19) we have

T ∗cp = max
n∈N ′2

cnDn
fminn

.

If we further restrict κ ≤ minn∈N αn(fminn )
3, then

we see that N ′2 = N , i.e., f∗n = fminn , ∀n ∈ N .
On the other hand, if we consider

∑N
n=1 αn(fminn )

3
<

κ ≤ minn∈N αn(fminn )
3, then there may exist UEs with

cnDn
fminn

> T ∗cp and cnDn
fmaxn

< T ∗cp, which will belong to the
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set N ′3 = {n |αn(fminn )
3
< λ∗n < αn(fmaxn )

3} such that
fminn < f∗n < fmaxn ,∀n ∈ N ′3. Then, according to (60),
T ∗cp must be the same for all n with λ∗n > 0 , we obtain

f∗n =
cnDn
T ∗cp

=
cnDn

maxn
cnDn
fminn

, ∀n ∈ N ′3. (64)

In summary, we have

f∗n =

{
cnDn
T∗cp

, ∀n ∈ N ′3
fminn , ∀n ∈ N ′2

c) T ∗cp = TN3
> max

{
TN1

, TN2

}
: This happens when κ is

between a range such that in Algorithm 2, the condition
at line 7 is violated at some round, while the condition at
line 4 not satisfied. In this case, N1 is empty and N3 is
non-empty according to line 8 of this algorithm. Thus we
consider

∑N
n=1 αn(fminn )

3
< κ <

∑N
n=1 αn(fmaxn )

3.
With this range of κ, and (61), there must exist a non-empty
set N ′3 = {n |αn(fminn )

3
< λ∗n < αn(fmaxn )

3} such that
fminn < f∗n < fmaxn ,∀n ∈ N ′3. Then, from (56) we have
µ∗n − ν∗n = 0 and the following equation

∂En,cp(fn)

∂fn
− λ∗n

cnDn

fn
2 = 0

has its solution f∗n =
(
λ∗n
αn

)1/3

,∀n ∈ N ′3. Furthermore,
from (60), we have

cnDn
f∗n

= cnDn
(αn
λ∗n

)1/3

= T ∗cp, ∀n ∈ N ′3. (65)

Combining (65) with (61), we have

T ∗cp =

(∑
n∈N ′3

αn(cnDn)3

κ

)1/3

.

On the other hand, if there exist a non-empty set N ′2 =
{n|λ∗n = 0}, it must be due to

cnDn
fminn

< T ∗cp, ∀n ∈ N ′2

according to (60). From (56) we must have µ∗n−ν∗n ≤ 0⇒
f∗n = fminn , ∀n ∈ N ′2. In summary, we have

f∗n =

{
cnDn
T∗cp

, ∀n ∈ N ′3
fminn , ∀n ∈ N ′2

Considering all cases above, we see that the solutions
characterized by KKT condition above are exactly the same
as those provided in Lemma 2.

E. Proof of Lemma 3

According to (16) and (17), the objective of SUB2 is the
sum of perspective functions of convex and linear functions,
and its constraints determine a convex set; thus SUB2 is a
convex problem that can be analyzed using KKT condition
[29].

The Lagrangian of SUB2 is

L2 =
∑N

n=1
En,co(τn) + λ(

∑N

n=1
τn − Tco)

+
∑N

n=1
µn(τn − τmaxn )−

∑N

n=1
νn(τn − τminn ) + κTco

where λ, µn, νn are non-negative dual variables. Then the
KKT condition is as follows:

∂L

∂τn
=
∂En,co
∂τn

+ λ+ µn − νn = 0, ∀n (66)

∂L

∂Tco
= κ− λ = 0, (67)

µn(τn − τmaxn ) = 0, ∀n (68)

νn(τn − τminn ) = 0, ∀n (69)

λ(
∑N

n=1
τn − Tco) = 0. (70)

From (67), we see that λ∗ = κ. Let x := sn
τnB

, we first
consider the equation

∂En,co
∂τn

+ λ∗ = 0⇔ N0

h̄n

(
ex − 1− xex

)
= −λ∗ = −κ

⇔ ex(x− 1) = κN−1
0 h̄n − 1⇔ ex−1(x− 1) =

κN−1
0 h̄n − 1

e

⇔ x = 1 +W
(κN−1

0 h̄n − 1

e

)
⇔ τn = gn(κ) =

sn/B

1 +W
(κN−1

0 h̄n−1

e

) .
Because W (·) is strictly increasing when W (·) > − ln 2,

gn(κ) is strictly decreasing and positive, and so is its inverse
function

g−1
n (τn) = −∂En,co(τn)

∂τn
.

Then we have following cases
a) If gn(κ) ≤ τminn ⇔ κ ≥ g−1

n (τminn ) :

κ = λ∗ ≥ g−1
n (τminn ) ≥ −∂En,co

∂τn

∣∣∣
τminn ≤τn

.

Thus, according to (66), µ∗n − ν∗n ≤ 0. Because both µ∗n
and ν∗n cannot be positive, we have µ∗n = 0 and ν∗n ≥ 0.
Then we consider two cases of ν∗: a) ν∗n > 0, from (69),
τ∗n = τminn , and b) ν∗n = 0, from (66), we must have
κ = g−1

n (τminn ), and thus τ∗n = τminn .
b) If gn(κ) ≥ τmaxn ⇔ κ ≤ g−1

n (τmaxn ), then we have

κ = λ∗ ≤ g−1
n (τmaxn ) ≤ −∂En,co

∂τn

∣∣∣
τn≤τmaxn

.

Thus, according to (66), µ∗n − ν∗n ≥ 0, inducing ν∗n = 0
and µ∗n ≥ 0. With similar reasoning as above, we have
τ∗n = τmaxn .

c) If τminn < gn(κ) < τmaxn ⇔ g−1
n (τmaxn ) < κ <

g−1
n (τminn ), then from (68) and (69), we must have µ∗n =
ν∗n = 0, with which and (66) we have

τ∗n = gn(κ).

Finally, with λ∗ = κ > 0, from (70) we have T ∗co =
∑N
n=1 τ

∗
n .


