
6.2.3 Implementing the ScEM in Chaste

To simulate the ScEM we extend the implementation in Chaste for simulating the over-

lapping spheres model described in Chapter 3. This is an example of the benefit of

Chaste’s design as a modular library: much of the functionality including setup, output

and the parallel algorithm, as well as the necessary data structures are already imple-

mented and well tested. Consequently, implementing the ScEM is reduced to defin-

ing a new force class SemForce, children of the mesh and population classes for over-

lapping spheres (SemMesh and NodeBasedCellPopulationWithSemId) and two helper

classes: a class (SemParameterScaler) to scale parameters ηi, u0 and req, and a class

(SemCellsGenerator) to enable the construction of a population of ScEM cells from a

single archive of a cell’s initial element locations. The archives for ScEM cells are created

with a standalone Python script using an algorithm to place elements close to equilib-

rium. All classes in Chaste are templated over spatial dimensions, making the transition

between 2D and 3D models straightforward.

Creating ScEM cells

To generate a 2D ScEM cell consisting of N elements and of area πR2
cell inside a region Ω

(also of area πR2
cell) we proceed as follows. A location rα0 ∈ Ω is chosen for element α0. A

possible location r̃α1 for element α1 is selected uniformly at random in Ω and accepted if

||r̃α1−rα0|| ≥ 0.75req. This process is iterated, accepting r̃αk
only if ||r̃αk

−rαj
|| ≥ 0.75req

for all j < k, until all elements are assigned a location. This is implemented in a standalone

Python [Python, 2013] script.

Force class

The SemForce class has member variables mSpringStiffness, which corresponds to k0

in equation (6.4), mNuclearSpringFactor corresponding to Knuc in equation (6.6) and a

map from cell indices i to relative cell stiffnesses Ki in equation (6.7). As a member of the

mechanics class hierarchy in Chaste, SemForce has a method AddForceContribution(),

165

which takes a reference to the cell population as an input argument. From the cell popu-

lation it obtains a list of neighbouring elements and the force between pairs of elements

is evaluated using the appropriate equation from equations (6.6)-(6.7), depending on the

element types.

Parameter scaling

Since scaling of the parameters depends on the number of elements per cell, and is used

in multiple classes throughout the simulation, we implement a helper method using the

singleton design pattern [Gamma et al., 1994]. This ensures that all parameters are

scaled consistently across all classes, and brings all scaling into a single code source file,

reducing the likelihood of introducing bugs. The class contains a map from cell indices to

the number of elements contained in the cell, as well as members for the constants ρ and

λ. Two methods accept a cell index and an unscaled damping constant ηi or unscaled

spring constant k0 and return the scaled value of ηi and u0 respectively. A further method

returns the equilibrium distance req.

Mesh and cell population classes

The mesh class SemMesh inherits from the NodesOnlyMesh and differs only by correctly

setting the cell and nucleus labels of elements. The cell population child class overwrites

output methods to write ScEM cell indices to file in addition to location data. The

method for updating element locations is modified to take into account the scaled damping

constant ηi in the integration scheme.

Generating cell populations

The class SemCellsGenerator constructs initial conditions by accepting the location of

a cell archive file generated by the Python scripts and a translation co-ordinate for each

cell. A copy of each cell from the archive is then created with its centre of mass translated

appropriately. This class also defines the initial nuclear region of a cell as a sphere (or

166

circle) or radius Rnuc, centered at rnuc in the untranslated cell.

Gaussian noise

We implement the Gaussian noise in equation (6.1) in the force class SemDiffusionForce

as a random perturbation to the force on each element at each time step. The perturbation

at time t to the force on an element αi is given by ξξξαi
(t) = (ξmαi

(t)) where for all m = 1, 2,

ξmαi
(t) ∼ N(0, ηi

√
2D/∆t), where ηi is the viscosity, ∆t the integration time step and D

is a diffusion parameter.

6.3 Results

We carry out three compression experiments. First, we consider the dynamics of cell nuclei

in a layer of model cells under compression for different values of the nuclear stiffness Knuc.

Second, we consider the effect of the different size of Paneth and stem cells observed in

the crypt on the buckling of a layer of cells. Finally, we consider whether altering the

relative stiffness of Paneth and stem cell cytoplasm significantly alters these results. The

common parameter values for each experiment are given in Table 6.1.

In each simulation we consider two metrics to characterise the level of buckling seen

within the layer at time t. First, for the buckled state of the whole cell layer, we consider

the standard deviation of the height above the basal boundary condition of the centre of

mass of each cell, given by

σcell =

√√√√√Ncell−1∑
i=0

(ȳi − ȳ)2

Ncell

,

where ȳi is the mean height of elements in cell i above the basal boundary condition at

time t and ȳ is the mean height of all elements above the basal boundary condition at time

t. Second, we consider the standard deviation of the height above the basal boundary

condition of the centre of mass of each cell nuclei, given by

167

