
Bachelorthesis

Leveraging SLAM to bring Positional Tracking to
phone-based VR

Christoph Geske

(Matrikel-Nr. 2676432)

Examiner

Dr.-Ing. Sven Wachsmuth, Bielefeld University

Dr. rer. nat. Thies Pfeiffer, Bielefeld University

Bielefeld University

Faculty of Technology

Bioinformatics and Genome Research

31.10.2019

Erstellt mit einer Testversion von PDF Annotator - www.PDFAnnotator.de

STATUTORY DECLARATION

I Christoph Geske declare that I have authored this thesis independently, that I have

not used other than the declared sources / resources, and that I have explicitly marked

all material which has been quoted either literally or by content from the used sources.

Bielefeld, 31. October 2019

place, date signature

I

Abstract

This thesis examines the latest developments in phone-based virtual- and augmented

reality (VR/AR) and investigates how these technologies can be merged to enhance cur-

rent state-of-the-art phone-based VR. An overview over the available hard- and software

will be given, and limitations and chances discussed. Experiments measuring different

quality characteristics of the required hard- and software will be presented. The focus

of this work lies in the detailed investigation of the available tracking software and in

the filtering process for improving the tracking quality. Various approaches used to

validate and measure the tracking software and the developed filtering methods will be

described and compared. The latest research on human perception is presented and the

Importance of this thesis and future developments in this area emphasized. The limita-

tions of the presented tracking software will be described, and future research directions

discussed in the final chapter. Additionally, the outlook will give an impression on how

releasing the here presented tracking software can benefit the open source community

and how it influenced this thesis.

II

Contents

Abstract II

List of Abbreviations V

List of Figures VI

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

2 Virtual-, Augmented- and Mixed Reality 4

2.1 Virtual Reality (VR) . 4

2.2 Augmented Reality (AR) . 5

2.3 Mixed Reality (MR) . 5

3 Hardware Technology 6

3.1 Head Mounted Displays (HMDs) . 6

3.1.1 Phone-based VR HMDs . 7

3.1.2 Stand-Alone HMDs . 10

3.2 Sensors . 10

4 Software Technology 12

4.1 Camera Tracking . 12

4.1.1 Visual Odometry (VO), Visual Inertial Odometry (VIO) 12

4.1.2 Simultaneous localization and mapping (SLAM) 12

4.2 Software Development Kit’s (SDKs) . 12

4.2.1 Virtual Reality SDKs . 12

4.2.2 Augmented Reality SDKs . 13

4.3 Development Platform . 15

5 Perception and Sensation 16

5.1 Latency and how it is perceived . 16

5.2 Immersion . 16

5.3 Motion sickness . 18

6 Head Tracking 19

6.1 Leveraging ARCore for Positional Head Tracking 19

6.2 Evaluation Of Tracking Latency . 29

III

6.3 Interpolation on tracking data to improve visuals 32

6.4 Tracking Accuracy and quantification . 33

7 Filtering 36

7.1 Hard Coded Filter . 36

7.2 Kalman Filter . 36

8 Outlook 37

References 38

IV

List of Abbreviations

• HMD . head mounted display

• IMUInertial Measurement Unit, in general made up of accelerometer,

magnetometer and a gyroscope

• RGB camera . red-green-blue camera

• SDK . . Software Development Kit, collection of software and libraries necessary

for developing an application.

• SLAM .Simultaneous Localisation And Mapping

• VIO . Visual-Inertial Odometry

• VO .Visual Odometry

• 3DoF . Three Degrees of Freedom

• 6DoF . Six Degrees of Freedom

V

List of Figures

1 Reality–Virtuality Continuum. Reprinted from “Augmented reality: A

class of displays on the reality-virtuality continuum.” by Milgram et al.

(1995) . 4

2 Overview phone-based VR and stand-alone VR HMDs 7

3 Comparing ARCore ARKit and Tango AR SDKs. Reprinted from “AD-

VIO: An Authentic Dataset for Visual-Inertial Odometry” by Cortés et

al. (2019) . 14

4 Effects of latency on sense of presence. Reprinted from “Effects of Head-

Display Lag on Presence in the Oculus Rift.” by Kim et al. (2018) 17

5 Effects of latency on perceived scene instability. Reprinted from “Effects

of Head-Display Lag on Presence in the Oculus Rift.” by Kim et al. (2018) 17

6 Position data in x direction of a Galaxy S7 fixed to a skateboard. Curve

shows deceleration over roughly 4 meters. 20

7 Using interpolation leads to a more uniform distribution of the tracking

datapoints. Also, visible occasional discrepancies in the curve most likely

caused by ARCore internal loop closer and drift correction algorithms. . 21

8 Screen capture recording running in parallel to the phone-based VR HMD

tracking its position in space. Running both processes in parallel required

more processing power than the phone can deliver resulting in the tracking

not being able to update the position at 60fps. 22

9 Running an app that combines the VR functionalities of the Google VR

SDK with the positional tracking functionalities of the ARCore SDK. . . 23

10 Visible the excellent performance when using the “HelloAR sample app”

and no VR mode is enabled. Using Unity 2018.2.20. 23

11 Performance measurements of the GearVR and ARCore setup in the first

half and the ARCore and DIYVRCam in the second half. The comparison

shows the impact the “EarlyUpdate.TangoUpdate” function has on the

performance. 25

12 Vuforia powered positional tracking VR app running on the Galaxy S7

showing acceptable performance characteristics. 26

13 The graph shows the x position values of an app build using the Vuforia

AR SDK. The phone is attached to a pendulum. The curve describing

the pendulum motion shows significantly more jitter compared to curves

recorded with ARCore. The sinewave describes the ground truth of the

pendulum movement. 26

VI

14 Performance measurement of the combination ARCore + GearVR run-

ning on the Note 8. 27

15 Benchmark comparing performance of Note 8 and S7 [23] 28

16 Unity profiler showing the performance of a GearVR + ARCore app

and in blue the performance impact of multiple Debug Log processes

on the performance of the app and especially on the effect the “EarlyUp-

date.TangoUpdate” process has on the overall performance. The Debug

Log processes are not activated at the start of the app but instead after

a few seconds into the app running. 29

17 Schematic experimental setup to measure the latency of the ARCore

tracking. 30

18 Using the VLC media players and its single frame-by-frame function to

go through every frame. As soon as the phone starts to move the cam-

era frames are counted and noted and the number on the screen which

describes the current position is listed. The frames it takes the tracking

software to notice a change in its position can then be used to determine

the system latency of the ARCore tracking software. 31

19 List of the position values displayed on the phone screen at 60fps. The

first column shows the distance from the starting point which is displayed

on the phone’s screen. The second row shows the number of frames that

have passed since the beginning of the measurement. The third column

shows if the phone is moving and in which direction. The fourth column

calculates the distance from the previous position. The fifth column uses

colors to indicate areas of speeding up and slowing down either towards

the right (green) or the left (red) side. The sixth column indicates when

the tracking software recognizes the change in position either stating,

stopping or reversing the direction. The seventh column shows the num-

ber of frames it takes from the high-speed camera recognizing a change

in position to the tracking software displaying a change in position. . . . 32

20 Schematic how interpolation can be used to generate a 60fps tracking

solution from tracking data that only updates with a rate of 30fps. 33

21 Schematic on how the interpolation introduces lag by not immediately

applying the new position data. 33

22 Schematic on how the linear extrapolation could be used to generate a

60fps tracking solution without lag but possibly introducing erroneous

position data. 34

VII

23 The 3 dimensional positional tracking data of the Vive tracker and the

phone running the ARCore tracking solution where transformed into a 2D

representation and plotted on top of each other. This 2D representation

was generated by calculating the vector length between adjacent points

and the length was plotter without scaling or compressing. 35

24 The positional tracking data of the Vive Tracker and the phone where

plotted on top of each other after the transformation, scaling and com-

pressing steps where performed. 35

25 GitHub page showing an already released version of the tracking software

presented in this thesis. 38

VIII

Bachelorthesis 1 Introduction

1 Introduction

Within the last decade, driven by Moore’s law, high demand and the yearly release cycle

of phone manufacturers, phones improved significantly in the area of processing power,

display technology and sensor fidelity. The accumulation of all these developments

made it possible to use regular smartphones for virtual reality (VR) applications (apps)

using only the built-in sensors, software and a headset with two optical lenses. The

sensors in the first smartphones were not chosen with the requirement of responsive head

tracking for VR apps in mind, but with better sensors becoming available in regular

phones dedicated phone-based VR came to market able to track the rotation of the

head very precisely. In recent years companies which were leaders in the field of phone-

based VR shifted their focus away from these systems to developing dedicated stand-

alone hardware optimized for VR. At the same time phones continued to evolve and

computer vision software got more efficient. Especially in the development of augmented

reality the software made great strides allowing phones to leverage the camera to get

an understanding of the environment, calculate their own position in space and extend

the camera image with virtual objects. First proof of principle projects showing that

the AR platforms ARKit and ARCore can be leveraged to extend phone-based VR

with positional tracking were released in 2017. All these projects rely solely on the

tracking capabilities provided by the AR platforms and do not seek to improve the

quality of the tracking. In this thesis the feasibility of extending phone-based VR with

positional 6 degrees of freedom (6DoF) head tracking by using current AR software

tools which only rely on a single red-green-blue (RGB) camera for tracking will be

evaluated. The latest literature will be reviewed to determine which characteristics a

VR positional tracking system must fulfil and how tracking errors and latency affect

the user’s experience. Implementing a phone-based VR HMD, extending it about a

positional tracking component and quantifying the result with different measurement

approaches to determine what such a system can offer and where its weaknesses lie will

be some of the main goals of this thesis.

1.1 Motivation

Modern smartphones have the necessary hardware for delivering good quality 3 degrees

of freedom (3DoF) VR experiences and with the technology of today’s high-end phones

quickly finding its way into cheaper models which are sold into every corner of the

globe even more people will have access to phones which are able to deliver a good

VR experience. Dedicated stand-alone hardware which is optimized for VR purposes

can deliver a much better overall performance when compared to phone-based VR,

Christoph Geske page 1

Bachelorthesis 1 Introduction

even when similar hardware is used but the advantage that only a cheap headset is

needed provided the phone is already available makes this technology still relevant. With

millions of headsets already in consumer’s, educator’s and creator’s hands, offering a

6DoF tracking which allows for more immersive interactions with the technology without

the need to purchase new hardware seems like a goal worth pursuing. The lack of 6DoF

head and hand tracking is one of the biggest drawbacks of current phone-based VR

compared to standalone and wired HMDs and offering solutions which don’t require

additional hardware would be significant. Offering a low-cost open source VR headset

as an alternative to expensive commercially available stand-alone VR devices can also

be seen as a great equalizer allowing more people especially with a low income to have

access to a more immersive VR technology. Amin et al. (2016) see in phone-based

VR the potential to be used in the healthcare sector as cost effective pain relieve for

domestic use by many patients and by enhancing the immersion of the technology the

effectiveness will increase as well according to Parsons et al. (2009). Since the main

phone manufacturers stopped offering new phone models supporting phone-based VR

platforms other than Cardboard VR developing new tracking solutions for these already

well established platforms together with help of the open source community can perhaps

make a contribution in moving the field forward and offer a free open source alternative

to currently available stand-alone VR. By combining multiple open source modules for

VR and positional tracking as well as pointing to even more modules for hand, eye

and body tracking, this project gives students and developers great flexibility to extend

and modify the presented software and develop their own VR projects with it. Part

of the code might also be used in areas different from VR like robotics or the related

field of augmented reality (AR). Offering an open source project as an alternative to the

proprietary hardware and software solution available on the market might be interesting

for some users concerned about their privacy or companies working with sensible data

interested in an open source code base.

1.2 Goals

The goal of this thesis is to explore the possibilities and limitations of the latest AR track-

ing technology for bringing positional tracking to phone-based VR. Making available a

comprehensive list of the requirements that a positional tracking system for a VR HMD

needs to fulfil will help with the process of testing current AR tracking technologies for

their suitability in use as a tracking solution for phone-based VR. Furthermore, knowing

these will benefit future research concerned with further improving the here presented

software solutions. By concentrating on the most widely distributed VR headsets more

precisely Google Cardboard, Daydream View and GearVR the goal is to give as many

Christoph Geske page 2

Bachelorthesis 1 Introduction

developers as possible access to a cost-effective VR HMD with 6DoF positional tracking.

Even when hardware and software companies now offer good stand-alone HMDs millions

of capable phone-based VR which would benefit greatly from 6DoF positional tracking

exist in schools, universities, companies and households or can be purchased for a low

price on the secondhand marketplace. Significantly extending the capabilities of cur-

rent phone-based VR might also prolong the lifetime of these systems having a financial

and environmental benefit. With phones constantly improving especially in the area

of positional tracking and environmental understanding for AR applications research-

ing possible solutions now with current hardware might help with developing appealing

software solutions faster in the future when the hardware has further improved.

Christoph Geske page 3

Bachelorthesis 2 Virtual-, Augmented- and Mixed Reality

2 Virtual-, Augmented- and Mixed Reality

When describing technology that allows users to immerse themselves into a computer

generated virtual world or enhance the real world with computer generated contend it

is useful to look at the reality–virtuality continuum Figure 1 proposed by Milgram et al.

(1995) which illustrates how the technologies are interconnected and merge seamlessly.

In recent years the term extended reality (xR) is often used to describe all three terms

whereby the letter x is a place holder for the initial letters (V, A and M).

Figure 1: Reality–Virtuality Continuum. Reprinted from “Augmented reality: A class
of displays on the reality-virtuality continuum.” by Milgram et al. (1995)

2.1 Virtual Reality (VR)

The definitions for VR differ from one source to another but one common aspect is that

a simulated environment is first generated with the help of a computer and the user is

then enabled to be immersed in and engage with that simulated environment. Vision is

arguably the most important sense affected by VR technology and some definitions rely

exclusively on visual stimulation when describing VR: “Computer graphics technology

called virtual reality (VR) creates a visual scene, in which the user feels immersed. As

the user makes active head movements, the computer determines the new direction of

gaze and recreates the scene from the new point of view.” (Akizuki et al.) “VR occurs

when computer generated data completely obscures the real world.” (Nowacki et al.

(2019)) “Virtual Reality (VR) – defined as three-dimensional, stereoscopic, interactive

computer graphics – is a computer-generated environment that can simulate physical

presence in virtual worlds by engaging human sensory experiences.” (Amin et al.) Other

sources have an even narrower definition requiring multiple senses to be stimulated to

speak of VR: “Virtual reality (VR) enables interactions that satisfy the five senses

of users—particularly the visual, auditory, and tactile senses—in order to provide an

experience similar to reality.” (Lee et al. (2017)) In their review article Roche et al.

(2019) point out that a strict consensus regarding the definition of Virtual Reality (VR)

is missing and give the following definition: “VR has been defined as a form of technology

Christoph Geske page 4

Bachelorthesis 2 Virtual-, Augmented- and Mixed Reality

that permits advanced, dynamic interaction between humans and a computer interface.

VR is often additionally described as being immersive and/or interactive.” whereby

the terms ‘immersive’ and ‘interactive’ have various meanings throughout the literature

and we will explore what immersiveness means and how it is effected by technology

in the chapter about Perceptions and Sensation. All current phone-based VR HMDs

can be placed on the right side on the reality–virtuality continuum since they only use

internal sensor information for head tracking and do not make use of information of the

environment to augment the virtual scene.

2.2 Augmented Reality (AR)

AR in comparison to VR profits from a good understanding of the environment for

tasks like placing virtual objects into it and make them appear to be part of the real

world. Despite an understanding of the environment not being necessary for VR, a

VR experience can benefit from the advancements made in AR technology since both

technologies require to react to the movements of the user and both VR and AR have

come up with different tracking solutions. According to Arth et al. (2015) the history

of mobile AR technology can be traced way back to 1989 but tracking technologies like

visual-inertial odometry (VIO) and Simultaneous Localization and Mapping (SLAM)

running on mobile phones only started to be possible in recent history with technologies

like “PointCloud” the first commercially available SLAM system to run on a mobile

phone being released in 2011.

2.3 Mixed Reality (MR)

“Mixed Reality can be defined as both the real and virtual are mixed, where the virtual

augments the real and the real augments the virtual.” (Fast-Berglund et al. (2018))

When adopting the obstacle detection, object classification or hand tracking function-

alities of an AR software to augment the content displayed in a phone-based VR HMD

one would move to the left on the reality-virtuality continuum becoming a Mixed Re-

ality technology. Using more features developed for AR the systems will result in a

new term phone-based MR but since this thesis is primarily concerned with adding po-

sitional tracking to the phone-based VR HMDs and not augmenting the virtual world

with information about the real world the term phone-based VR will be used.

Christoph Geske page 5

Bachelorthesis 3 Hardware Technology

3 Hardware Technology

The advantage of phone-based VR is that no external hardware is required except a

headset with two lenses magnifying the display and breaking the light so that a wide

field of view is possible.

3.1 Head Mounted Displays (HMDs)

There are many VR HMDs on the market but since this thesis focuses on extending

phone-based VR with positional tracking capabilities only the most relevant mobile

HMDs which also rely on a mobile processor will be discussed. Anthes et al. (2016) dis-

tinguish between mobile and wired HMDs and define mobile HMDs as being wireless and

not requiring an additional PC. Anthes et al. (2016) introduces three subcategories for

mobile HMDs: “simple casing”, “ergonomically designed” and “stand-alone systems”.

The subcategories “simple casing” and “ergonomically designed” booth describe HMDs

that are assembled from two parts the phone as the display and processing unit and the

headset for holding the phone and containing the lenses. The “ergonomically designed”

HMDs differ only in terms of better optics and more comfort. The subcategory “stand-

alone systems” describes HMDs that have all the hardware build in not requiring an

additional phone. However, with the wide range of available headsets to insert the phone

into, this sub categorization breaks apart for some HMDs. The Google Cardboard for

example can be combined with multiple headsets of varying quality making the expe-

rience on some headsets even more ergonomic than on GearVR or Daydream headsets.

To distinguish the sub-category “stand-alone systems” from the other two is relevant

since these systems are optimized for VR while phone-based VR HMDs are multipur-

pose computing devices with VR only being one of many possible applications. In this

thesis only two subcategories will be used to describe mobile HMDs: “phone-based VR

HMDs” and the term “stand-alone systems” introduced by Anthes et al. (2016) will be

changed to “stand-alone VR HMDs” to distinguish between VR, AR and MR HMDs.

The new subcategory “phone-based VR HMDs” unites the two terms “simple casing”

and “ergonomically designed” and describes HMDs that rely on a phone but doesn’t

categorizes them by the quality of the headset or lenses. A tree structure similar to

the one used by Anthes et al. (2016) can give a quick overview over the relevant hard-

ware. An important feature of all VR HMDs is head tracking and two categories are

common for mobile VR HMDs: three degrees of freedom (3DoF) head tracking where

the environment responds to head rotations and six degrees of freedom (6DoF) head

tracking where the virtual environment responds to translational and rotational head

movements.

Christoph Geske page 6

Bachelorthesis 3 Hardware Technology

Figure 2: Overview phone-based VR and stand-alone VR HMDs

3.1.1 Phone-based VR HMDs

Phone-based VR HMDs rely on the processing power, the high-resolution screens and

built-in sensors of regular smartphones to deliver an immersive experience. The phones

are in general not designed with VR in mind however some sensors might have been

chosen so that they allow the phone to perform better when used for VR purposes. The

biggest advantage of phone-based VR is that many people already own a phone that

has all the necessary hardware build in to deliver a compelling 3DoF VR experience

and that the cost for a headset to put the phone into is considerably less compared to

a complete stand-alone system presuming the user already owns a capable phone. The

three phone-based VR HMDs: Google Cardboard, Daydream and GearVR dominate

the market and which system a phone supports depends on the hardware, but to a

greater extend on the support provided by the platform operators. As an example, the

Samsung Galaxy S9 supports all three platforms while an even more powerful successor

phone like the Samsung Galaxy Note 10 only supports the Google Cardboard platform.

The first widely available phone-based VR headset was the Google Cardboard which

was developed by Google engineers in 2014. In 2015 Samsung and Oculus released the

GearVR headset which contained a highly accurate Inertial Measurement Unit (IMU)

allowing for the precise measurement of acceleration and rotation of the headset. In

Christoph Geske page 7

Bachelorthesis 3 Hardware Technology

2015 Google unveiled the Daydream platform which had no additional IMU build in the

headset but only worked in combination with selected phones having a precise and well

calibrated IMU sensor. Both platforms came together with special SDKs providing the

necessary software allowing developers to create VR apps for use together with these

high-quality headsets. Now for the first time consumers with a supported smartphone

had the chance to experience VR with low latency 3-degrees of freedom (3DoF) head

tracking and a wide field of view under the headset. The headsets from Oculus and

Google were more expensive than the Cardboard viewer but with around 100 still much

more affordable compared to VR HMDs available for desktop PCs. The improvements

in smartphone technology and computer vision software also made it possible to combine

the sensor data of an IMU and a camera to track the phone’s position in 6DoF with high

precision and allow for appealing AR experiences running on millions of phones. In 2016

the first phone running the Tango platform was released which made use of a time of

flight depth sensor, an build in IMU and the SLAM technology for determining the device

position in 6DoF with high precision. The Tango platform was primarily used for AR

applications but Bhandari et al. (2017) used it to develop a cable free phone-based VR

HMD with 6DoF head tracking. However, the low number of specialized smartphones

supporting the Tango platform led to its termination in 2018 and the focus shifted to only

relying on the red-green-blue (RGB) cameras found in most regular phones to obtain

depth and positional information of the surrounding for positional tracking. In the last

years Google and Apple focused primarily on bringing AR to the masses by relying on

the already widely distributed mono cameras in smartphones. Both companies released

free to use but closed proprietary positional tracking software based on the SLAM

technology called ARCore in 2018 and ARKit in 2017. In October 2017 Roberto Lopez

Mendez published a blog post describing the idea of using ARCore in combination with

a GearVR headset. Building on Mendez’s initial idea this thesis will dive deeper in the

technology which is allowing to enhance phone-based VR by adding 6DoF head tracking

using ARCore and the underling SLAM technology.

Google Cardboard The Google Cardboard v1 released in 2014 is the oldest phone-

based VR HMD available for consumers and by far the most affordable option. It

has Cross-platform support for both Android and iOS. For many people the Google

Cardboard headset was the first encounter with VR as a new technology and at the time

of this thesis the Play Store shows 10,000,000 – 50,000,000 downloads of the associated

Google Cardboard app. Cutting the cardboard yourself and ordering plastic lenses

online for less than 1 per pair is the cheapest option to build a phone-based VR HMD

when a smartphone with the required hardware is already available. The small lenses

Christoph Geske page 8

Bachelorthesis 3 Hardware Technology

on the first Google Cardboard version v1 were not ideal and the later version Google

Cardboard v2 improved on the input method and lenses. But despite the improvements

using Google Cardboard v2 for prolonged VR sessions is not practical.

Many other headset designs and solutions are available online in all price ranges and

most of them are very cheap with 13 of 15 of the first smartphone holding headsets on

amazon being priced below 30. The Google Cardboard app only has very low require-

ments on the phone (Android 4.4 ’KitKat’ or iOS versions 8.0) and should run on 96%

of all Android and 99% of all iPhones available today. But even if a phone is capable

of running a Cardboard app the gyroscope in older phones were not chosen with fast

response time or high accuracy in mind [24].

With release of the Google VR SDK the Cardboard SDK was combined with the Day-

dream SDK improving the quality of Cardboard experiences for Daydream ready phones.

Google Daydream The Google Daydream platform was released in 2016 and the View

1 headset was the first headset meant to be used in combination with a Daydream ready

phone. The Daydream platform only supports phones that fulfil specific requirements

mainly in the area of chipset, display and sensors. The phone recognizes the headset

with a near field communication (NFC) chip installed in the lid of the headset and

no physical connection with the headset is required making the setup very simple. A

noticeable disadvantage of the Daydream View headset is that the front lid obscures the

camera and users interested in making use of the 6-dof tracking solution presented in

this thesis either need to permanently modify the Daydream Viewer or build their own

solution to keep the phone in place without the lid covering the camera.

GearVR The GearVR was developed in a partnership between Oculus and Samsung

and released in 2015. The GearVR only supports a subset of Samsung phones, is avail-

able in different sizes to optimize the fit and might require an adapter because of different

connector. Since the headset has no cover which could obscures the camera it is bet-

ter suited for developing a camera based 6DoF tracking solution when compared to the

Daydream headset. Publishing software on the GearVR store is also possible when some

conditions for example running at 60 fps and for at least 45 minutes without overheating

are fulfilled. Apps using similar camera-based tracking solutions as the one presented

in this thesis can already be found in the GearVR store.

Christoph Geske page 9

Bachelorthesis 3 Hardware Technology

3.1.2 Stand-Alone HMDs

Stand-alone headsets impress with great performance on limited hardware. By having

more control offer the hard and software manufacturers can achieve better results than

phone-based VR HMDs for example the Oculus Go uses the same processor as the S7

used in this thesis but can offer higher frame rates and better performance partly because

of optimized software and partly because the hardware is better suited for removing heat

from the CPU compared to a regular phone. Stand-alone VR HMDs allow manufacturers

to install sensors and hardware components that are perfectly suited for VR applications

reducing costs by avoiding unnecessary components and improving performance by by

matching the components to each other.

3.2 Sensors

The inertial measurement unit (IMU) and the camera are the two sensors that play a

role in this project and will be described briefly. An IMU found in current smartphones

consists of an accelerometere, a gyroscope and a magnetometer. In phones they are

primarily used for:

• making changes to the user interface e.g. reacting to changes in the phone’s

orientation

• gaming

• image stabilization

• navigation

• augmented reality

• virtual reality

Accelerometere The accelerometere measures forces acting on masses. This way the

accelerometere can measure gravity and forces resulting from accelerating the phone.

The accelerometere can however not distinguish between the gravitational force and

forces created by linear acceleration. On the physical level a phone accelerometere

is comprised of a semiconductor material that form beams that flex when forces are

applied. The flex changes the distance of capacitor plate to one another which can be

precisely measured. https://patents.google.com/patent/US4736629A/en Since earth’s

gravity stays constant this sensor does not suffer from drift over long periods of time.

Christoph Geske page 10

Bachelorthesis 3 Hardware Technology

Magnetometer The magnetometer can detect magnetic fields but can not distinguish

between magnetic fields created by earth’s iron core or other electric devices in or near

the phone. In general, 3-axis magnetometer are used that can measure the magnetic

field independent on how the phones orientation is. Together with the accelerometere

measuring gravity it can be determined where the earth’s surface is and which of the

3 magnetometers needs to be used. On a physical level the magnetometer work by

current being deflected from the interaction with magnetic fields through the so called

Hall-Effect. Since earth’s magnetic field stays constant this sensor does not suffer from

drift over long periods of time.

Gyroscope Gyroscope measure angular velocity which describe how fast an object is

rotating. Angular velocity is thereby defined by the rate of change of the angular rotation

over change in time. On a physical level they often work by an oscillating mass which is

affected by changes in orientation and the movement is converted into an electric signal

that can be amplified and measured. Triple axis gyroscope able to measure change in all

three directions are commonly found in current consumer electronics. Important to note

is that acceleration or linear velocity do not affect the measurements of the gyroscope

which only measures angular velocity. Since the absolute angular position is calculated

via integration from the angular velocity the gyroscope tends to drift. By combining

the gyroscope with the accelerometere or magnetometer which are stable over longer

time periods the drift can be reduced in a process called sensor fusion. The camera

which does not tend to drift can also be used to correct for drift that accumulates when

integrating IMU sensor data for positional tracking.

Christoph Geske page 11

Bachelorthesis 4 Software Technology

4 Software Technology

4.1 Camera Tracking

The tracking technology used for this thesis requires a camera to eliminate the drift of

the responsive but error prone IMU sensors. Since the phone only has one camera 3D

dept perception is derived from motion.

4.1.1 Visual Odometry (VO), Visual Inertial Odometry (VIO)

Yousif et al. ((2015)) describe Visual Odometry (VO) as follows: “VO mainly focuses

on local consistency and aims to incrementally estimate the path of the camera/robot

pose after pose, and possibly performing local optimization.” The process of combining

the data of IMU and a camera to track the position is called Visual Inertial Odometry

(VIO). The frame rate at which the position can be updated is limited by the speed by

which the camera image can be processed, position information can be extracted and

then used to correct for drift by the IMU.

4.1.2 Simultaneous localization and mapping (SLAM)

In recent years it became possible to run SLAM algorithms which extend the pure motion

tracking about map building directly on the phone. Yousif et al. (2015) describe SLAM

as follows: “SLAM aims to obtain a globally consistent estimate of the camera/robot

trajectory and map.”

4.2 Software Development Kit’s (SDKs)

4.2.1 Virtual Reality SDKs

Beside the AR SDKs that bring 6DoF positional tracking to phones this project relies

on SDKs which allow supported smartphones to be used as HMDs and display convinc-

ing 3D virtual content. Google and Oculus both developed SDKs for their respective

platforms with the Oculus Mobile SDK for GearVR compatible phones and the Google

VR SDK for Daydream and Cardboard compatible phones. These SDKs target differ-

ent phone models and together bring phones-based VR to almost all phones currently

in use worldwide. By targeting all three SDKs the reach of this thesis is maximized

and more people should be able to benefit from this research. The two VR SDKs are

provided for native development and for the two most widely used game engines Unreal

and Unity. The SDKs provide developers with all the necessary software to build full

3DoF VR applications. The Oculus Mobile SDK provides all the necessary tools for

Christoph Geske page 12

Bachelorthesis 4 Software Technology

developing for the GearVR platform and the Google VR SDK does likewise for devel-

oping for Google Cardboard and Daydream HMDs. Together these two SDKs bring

phone-based VR functionalities to most modern phones. The VR and AR SDKs can

booth be imported into Unity and used in combination to complement each other. De-

spite the Cardboard/Daydream and GearVR platform offering similar functionalities

the corresponding VR SDKs differ significantly in naming conventions or how and what

kind of sensor data can be accessed which complicates the joint development for both

platforms.

4.2.2 Augmented Reality SDKs

The two most prominent Augmented Reality SDKs offering motion tracking via the

built-in RGB camera are ARCore (more than 400 million devices) as the successor of

the Tango platform and ARKit (more than ?? million devices) which runs on some of

the latest apple smartphones and tablets. ARCore and ARKit are backed by Google

and Apple, offer great performance, good quality motion tracking, are compatible with

many phones, are specially calibrated/certified for the hardware they are running on

which improves the tracking quality and are free of charge. All these characteristics

make those SDKs best suited for this thesis and influenced the decision to choose them

over other prominent AR SDKs like Vuforia, Wikitude or MaxST which offer similar

functionalities like SLAM, motion tracking, image/object detection, plane finding and

so on. Since this thesis is interested in extending phone-based VR with 6DoF head

tracking, a VIO tracking solution would in principle be enough, but ARKit and AR-

Core rely on SLAM or concurrent odometry and mapping respectively which extends

the pure tracking part with an on the fly map building process. For AR applications

who are used to add virtual objects to the image of the real world it is essential to

have a consistent understanding of the surrounding which they build using the SLAM

software. Having a map of the surrounding available in addition to the pure position

information opens up other use cases that could be explored in the future projects like

building a representation of the surrounding as a sort of safety system that warns the

user when he comes to close to an object. Relying on proprietary systems like AR-

Core and ARKit for an open source project is not ideal since the code providing the

positional tracking capabilities is not fully accessible. Open source tracking solutions

are also available and in their 2018 paper Cortés et al. (2019) compare five different

tracking solutions: three proprietary systems ARCore, ARKit and Tango and two open

published academic tracking solutions “Robust Visual Inertial Odometry (ROVIO)” and

“Probabilistic Inertial-Visual Odometry (PIVO)”. Cortés et al. (2019) compares the

tracking performance over longer periods of time and come to the conclusion that the

Christoph Geske page 13

Bachelorthesis 4 Software Technology

Tango device offers the best tracking results, followed by ARCore and ARKit. The

academic solutions showed some weaknesses and diverged significantly from the ground

truth data.

Figure 3: Comparing ARCore ARKit and Tango AR SDKs. Reprinted from “ADVIO:
An Authentic Dataset for Visual-Inertial Odometry” by Cortés et al. (2019)

Cortés et al. (2019) choose these two academic tracking solutions since they showed

similar results to the Tango tracking but when running on an iPhone with an inferior

IMU sensor and a camera with a small field of view they performed worse than ARCore,

ARKit and Tango. But even when the two open published academic tracking solutions

are not well suited to run on the chosen iPhones with cheap sensors and tracking the

position reliable over large distances, that doesn’t mean that they would not work well

over shorter periods of time which are more important for good positional tracking on

phone-based VR. Cortés et al. (2019) list multiple reasons for the lower performance

of the academic tracking solutions compared to the proprietary systems. One possible

reason for the differences according to Cortés et al. (2019) is that ARCore and ARKit

can rely on factory-calibrated IMU data. Comparing open source academic tracking

solutions against proprietary systems like ARCore and ARKit for the use of bringing

positional tracking to phone based VR on different phone models with better IMUs

and wider field of view cameras could be subject to future research especially when

being interested in an alternative to the proprietary systems. Cortés et al. (2019) also

compare the tracking results of the three proprietary systems with one another describing

Apple’s ARKit as performing well in most situations but showing drift in some outdoor

settings, ARCore as being more aggressive when performing visual loop-closure which

can lead to jumps and Tango as performing best and close to ground truth because of

the specialized hardware. Nowacki et al. (2019) also made comparison measurements

but looked specifically at the differences between ARCore and ARKit on different phone

models and measured more characteristics like CPU load, memory usage, loading time of

models, accuracy of plane detection and performance under different lighting conditions.

Christoph Geske page 14

Bachelorthesis 4 Software Technology

Just as Cortés et al. (2019), Nowacki et al. (2019) also recognized that ARCore performs

slightly worse when used indoors but is ahead in outside environments. Additionally,

Nowacki et al. (2019) showed that ARCore loses tracking after fast movements about

three times as often as compared to ARKit but booth need roughly 2s to recover. On the

other hand, ARCore recovers with just above 0.5s significantly faster after full occlusion

of the camera compared to ARKit which requires 5s. Nowacki et al. (2019) explain this

difference in recovering time with the different frame rates ARKit (60FPS) and ARCore

(30FPS) have access to. With ARCore version v1.11.0 now supporting 60FPS on some

devices the described difference in recovery rate is likely less pronounced or disappeared

completely which should be investigated in future research. An extensive list on all

the differences and advantages of the two platforms can be found in the corresponding

literature. Despite ARKit offering better indoor positional tracking results ARCore is

better suited for bringing 6DoF tracking to phone-based VR since only ARCore supports

all the available VR SDKs.

4.3 Development Platform

When choosing a platform to support the development of this project one can either use

a game engine that supports cross-platform development or develop natively for Android

and iOS with the promise to build a more performant application. When developing

natively one should consider that offering cross-platform support and developing 3D

virtual environments is more elaborate.

Unity is a game engine of choice for this thesis since it is well suited for developing VR

applications for mobile, stand-alone and wired VR HMDs, supports all the mentioned

SDKs and a broad range of other computing platforms. The Unity game engine is well

documented, the community is active and regular releases, updates and bug fixes support

the development process. A possible alternative when looking for another cross-platform

game engine would be the Unreal game engine. Unity also has developer tools like the

profiler built in that support developers with the optimization process by showing which

processes need what amount of resources.

Christoph Geske page 15

Bachelorthesis 5 Perception and Sensation

5 Perception and Sensation

5.1 Latency and how it is perceived

A term often used when describing the quality and responsiveness of a VR tracking

solution is latency. Mania et al. (2004) defines the term as “the time lag between a

user’s action in a virtual environment and the system’s response to this action.”. Jerald

et al. defines latency simply as “the time required for a system to respond to a user’s

actions”. Raaen et al. (2015) points out that the perception of latency varies and can

be as low as 3-4 milliseconds (ms) or as high as 100 ms. Jerald et al. recommends an

end-to-end system latency of around 5ms to be imperceptible. However according to

Niehorster et al. (2017) and Kim et al. (2018) modern wired VR HMDs like the HTC

Vive and Oculus Rift CV1 run with a higher latency of around 22ms. Mania et al.

(2004) and Jason J. Jerald (20..) mention the hypothesis that not the latency by itself

is detected but the consequences latency has on the virtual environment is perceived by

the user making it appear to be unstable.

Jason J. Jerald in his PhD thesis (20. . .) coins the term “scene motion” which describes

the effect when the virtual environment shows visual motion while the head is not moving

in the real world. He also introduces the terms “unintentional scene motion” which is

scene motion caused by the technology including hardware specifications, latency and

imprecise calibration. Jason J. Jerald recommends that HMD systems should reduce

latency to a point where no scene motion is perceivable by the user.

To understand what these latency values could mean for the sense of presence the

research of Kim et al. (2018) on the “Effects of Head-Display Lag on Presence in the

Oculus Rift” is very insightful. Kim et al. (2018) used an Oculus Rift (CV1), added

varying amounts of latency and measured the perceived scene instability and sense of

presence in seven participants. The results of his research were significant and showed

a strong correlation which can be seen in Figure 4 and Figure 5

5.2 Immersion

Roche et al. (2019) defined three levels of immersion VR HMDs can offer whereby the

lowest level is 360-degree content for example panoramic video, the intermediate level is

3DoF tracking and the highest level is full 6DoF head tracking. Amin et al. also points

out that resolution and field of view play an important role in the level of immersion and

that more immersive experiences are more distracting which is relevant for applications

like pain relieve for example. In Roche et al. (2019) review paper it is also pointed out

that the quality of the VR technology may influence the results of a study and that the

Christoph Geske page 16

Bachelorthesis 5 Perception and Sensation

Figure 4: Effects of latency on sense of presence. Reprinted from “Effects of Head-
Display Lag on Presence in the Oculus Rift.” by Kim et al. (2018)

Figure 5: Effects of latency on perceived scene instability. Reprinted from “Effects of
Head-Display Lag on Presence in the Oculus Rift.” by Kim et al. (2018)

Christoph Geske page 17

Bachelorthesis 5 Perception and Sensation

effectiveness of immersion in improving mental wellness like self-reported distress and

mood could be shown. According to Lee et al. (2017) the immersion and presence in

VR applications can be improved further by stimulating more senses and using natural

interactions.

5.3 Motion sickness

According to Muth et al. (2018) prolonged use of VR technologies can causes side effects

like decreased task performance and cognitive deficits similar to the effects of alcohol

intoxication whereby the exact causes are unknown. Muth et al. (2018) cite different

proposed causes like a narrow field of view, occlusion of peripheral vision or system

latency. Brooks et al. (2010) mentions that the “sensory conflict theory” is the theory

most widely accepted to be the main cause of motion sickness.

According to Brooks et al.(2010) many factors like age, experience, gender, illness and

others can have an effect and lead to motion sickness. Since system latency and motion

sickness are strongly correlated this thesis will aim to measure and explore solutions to

reducing the latency introduced by the newly developed tracking method. The frame

rate will also be measured to avoid introducing additional latency by overloading the

system and dropping frames as a result.

According to Langbehn et al. (2018) the inner ear is sensitive to acceleration and

orientation whereby the eyes only perceive motion. An evaluation of the responsiveness

of the developed to changes in acceleration is described in the chapter on evaluation of

tracking latency. When users perform lateral head movements wearing a phone-based

VR HMD with 3DoF tracking the virtual scene doesn’t react at all to this sort of head

movement. According to Langbehn et al. (2018) the major cause for VR induced

discomfort is when the eyes perceive different or no visual movement cues whatsoever

compared to the vestibular sense and proprioception perceiving head motion.

Christoph Geske page 18

Bachelorthesis 6 Head Tracking

6 Head Tracking

In order to feel immersed and present in the virtual world low latency head tracking

plays a crucial role. In general VR headsets deliver either rotational head tracking also

known as 3DoF or full translational as well as rotational head tracking abbreviated as

6DoF. All currently available phone-based VR HMDs only deliver 3DoF tracking while

most of the currently available stand-alone and wired systems offer full 6DoF head and

controller tracking. Powell et al. (2016) points out that current phone-based VR is

generally used for passive entertainment or viewing 360 degree media and that it is not

well suited for the active exploration of virtual environments. Extending the tracking

to full 6DoF could open up many more possible applications for phone-based VR. The

tracking software developed for this thesis targets all three phone-based VR platforms,

but the focus lies on the GearVR in combination with ARCore.

For 3DoF tracking only an IMU sensor found in most modern phones is necessary since

the gravity measured by the accelerometere always points down and can be used to

prevent drift and the accumulation of errors over time. In principle the IMU would

allow for 6DoF tracking as well but since all sensors suffer from measurement errors

calculating the change in position in 6DoF from the IMU alone is not practical since

drift accumulates quickly even over short time periods. The camera of the phone can be

used together with Visual Odometry (VO) algorithms to eliminate the drift that occurs

when using the IMU for positional tracking. The IMU has the advantage of being

highly responsive and detect quick changes in the HMDs orientation and acceleration,

the camera on the other hand can be used to calculate the change in position over longer

periods of time without experiencing drift.

Using ARCore for tracking comes with other challenges beside latency. Errors in the

position data provided by ARCore are likely caused by ARCore’s aggressive loop closure

process as described by Cortés et al. (2019) and drift between IMU and camera data

which needs to be resolved by the ARCore software internally. When ARCore is used for

AR application intended to be used an arm length away and only displays the virtual

content in 2D such errors are hardly noticeable. When using ARCore for tracking a

HMD one must consider that VR applications place stricter requirements on the tracking

technology as is discussed in the chapter on Perceptions and Sensation.

6.1 Leveraging ARCore for Positional Head Tracking

In this sub chapter the detailed process of exploring the available AR tracking software

mainly ARCore for bringing 6DoF tracking to phone-based VR will be described and

methods used for quantifying tracking quality will be discussed. The process of finding

Christoph Geske page 19

Bachelorthesis 6 Head Tracking

the right tools and methods was iteratively refined based on new results and measure-

ments. Initial tests were carried out directly in VR and it was immediately noticeable

that the tracking is not error free. The reasons were not clear at this point and possible

reasons for the tracking errors spanned from general inaccurate tracking by the ARCore

software, performance bottlenecks on a rather old phone like the Galaxy S7 used, wrong

setting in the game engine or incompatibilities between the multitude of leveraged SDKs

or the SDKs with the game engine.

Hypothesis One: ARCore suffers from tracking errors. To test the most plausible

hypothesis that ARCore suffers from tracking errors, the position data were recorded

at 60fps with a Unity script, one of the 3 tracked direction x,y,z were chosen and data

points plotted as shown in Figure 6. To not influence the results by holding the phone in

the hand the camera was mounted on a skateboard and pushed once resulting in a curve

shown in Figure 6. The blue points are the position values in x direction of the phone.

The position values come in pairs since the phone records at 60fps and tracking data

by ARCore is provided at 30fps. Sometimes position values come in triplets suggesting

that the software was not able to deliver a new position value on time and the old value

is returned again.

Figure 6: Position data in x direction of a Galaxy S7 fixed to a skateboard. Curve shows
deceleration over roughly 4 meters.

To rule out that the jumps detected in Figure 6 are caused by unevenness in the track a

different setup was chosen whereby the phone was attached to a pendulum. This way the

movements was still based on a physical movement which helped with the interpretation

of the data and reduced the likelihood that bumps in the floor falsify the results. The

tracking results with the phone attached to the pendulum are shown in Figure 7. It

can be noticed that the position values in Fig. 11 no longer comes in pairs as was the

Christoph Geske page 20

Bachelorthesis 6 Head Tracking

case in Fig. 10 but each frame now has a different position value. This is due to using

an interpolation approach explained in chapter 9.5. The interpolation just generates a

new data point in between an old and a new position value resulting in a more balanced

distribution of data points having a positive effect on the visual appearance of the scene.

To determine if an uneven track caused the displacements seen in Figure 6 the focus was

put on Figure 7 and especially on the areas which seem not to fit the otherwise smooth

curve and deviate from the other well-spaced data points. These irregularities indicate

that the displacements in the curve are still present and hence it can be concluded that

the way the measurements is performed is not the reason for these displacements.

Figure 7: Using interpolation leads to a more uniform distribution of the tracking dat-
apoints. Also, visible occasional discrepancies in the curve most likely caused
by ARCore internal loop closer and drift correction algorithms.

The occasional displacements seen in Figure 6 and 7 are not the only indicators for

tracking errors. Using this tracking version inside a VR headset results in occasional

jumps of the camera movement which are noticeable by the user. If the occasional

jumps in the headset and the displacements seen in the curve are the same phenomena

was not clear. To record the display while running the tracking application the free

“Screen Recorder – XRecorder” software found on the Google Play Store was used. For

simplifying the measurements process the phone was no longer attached to a pendulum

resulting in a less regular curve seen in Figure 8. Clearly visible is that the updates of the

position data are delayed significantly compared to previous measurements taking up to

6 frames until a new position value is available for tracking. This experiment made clear

that performance has a significant effect on the tracking quality of the developed app

and indicates that focusing on the performance first before performing further tracking

measurements is the right approach.

Christoph Geske page 21

Bachelorthesis 6 Head Tracking

Figure 8: Screen capture recording running in parallel to the phone-based VR HMD
tracking its position in space. Running both processes in parallel required
more processing power than the phone can deliver resulting in the tracking
not being able to update the position at 60fps.

Hypothesis Two. Bad performance leads to errors in tracking. To evaluate the

performance of the application the phone was connected to the PC where the Unity

profiler was actively recording and measuring multiple performance indicators of the

application running on the phone. To analyze the performance, the Unity profiler was

set up to display the frame rate and list the most demanding processes in descending

order as can be seen in Figure Tango Destroyed. The green-blue graph shown in Figure

9 indicated that the app runs close to the 60fps limit and dropped below this threshold

regularly. This 60fps limit also seen in the screenshot as a white line indicates the overall

performance of the application and a drop below 60fps results in the app not being able

to render a new image to the screen which refreshes at 60fps and hence results in a

noticeable freeze of the whole application. As described in chapter 5 Perception and

Sensation having a refresh rate of 60fps is necessary to deliver a coherent experience in

VR that does not show noticeable stutter by frames not being updated.

The results of the Unity profiler seemed to confirm the second hypothesis that bad per-

formance is to blame for the noticeable stutter and the discontinuities in the plotted

position data. Looking at the list of the most demanding processes one process “Ear-

lyUpdate.TangoUpdate” was especially troubling since it accounted on average for more

than 1/3 of all the available processing power. This process seems to be part of AR-

Core since “Tango” is the predecessor of ARCore and uses large portions of the Tango

code. The “EarlyUpdate.TangoUpdate” function itself cannot be accessed directly since

ARCore is a partly closed SDK which makes troubleshooting some issues difficult. To

evaluate what impact ARCore has on the performance of the app and to further inves-

tigate the “EarlyUpdate.TangoUpdate” function a pure AR app was implemented. The

Christoph Geske page 22

Bachelorthesis 6 Head Tracking

Figure 9: Running an app that combines the VR functionalities of the Google VR SDK
with the positional tracking functionalities of the ARCore SDK.

AR app was installed on a Galaxy S7 and the profiler used to display the performance

as shown in Figure 10.

Figure 10: Visible the excellent performance when using the “HelloAR sample app” and
no VR mode is enabled. Using Unity 2018.2.20.

The performance of the AR app was much better than expected with framerates staying

often well above 100fps and the “EarlyUpdate.TangoUpdate” which in previous mea-

surements required more than 30% of the available CPU performance was down to 5%.

This result indicated that adding the VR SDK to the mix results in the performance

dropping from above 100 frames, when the ARCore app is running on its own, to below

60fps when a VR camera is added to the scene. To investigate this phenomenon the

performance of the AR app was constantly measured and different VR SDKs added.

It turned out that as soon as a VR SDK independent of whether the Google VR SDK

or the GearVR SDK was used the performance dropped sharply. These results again

seemed to confirm the second hypothesis that bad performance is to blame and that

Christoph Geske page 23

Bachelorthesis 6 Head Tracking

the combination of VR and AR SDKs is too demanding for an old phone like the S7

even when VR apps and AR apps on their own work fine combining them is too much.

Since there are no other VR SDKs available for Android except those from Google and

Oculus a custom VR setup was developed just for testing if a custom VR camera could

be used in combination with the well performing ARCore SDK to build an application

which does not rely on any of the VR SDK from Google and Oculus. Making use of

two in-game cameras, spacing them apart at the human pupillary distance which is in

general between 54-68mm and splitting the screen in two halves worked well for setting

up a custom VR camera delivering a different view of the virtual world for the left and

right eye. To add rotational head tracking to the custom VR camera the IMU sensor

was used and the change in rotation transferred to the two in-ame cameras. For adding

positional head tracking the tracking capabilities of the ARCore SDK were used as de-

scribed before. With this custom VR camera, the performance was evaluated shown

in Figure 11. The first half of the profiler screenshot in Figure 11. shows the per-

formance of an app using the GearVR SDK for generating a 3D image and delivering

rotational head tracking and ARCore for positional tracking. The second half of the

performance curve shown in Figure 11 shows a different app using the custom build VR

camera consisting of two side-by-side cameras and again using ARCore for positional

tracking. Surprisingly the performance of the custom camera is excellent compared to

the GearVR + ARCore combination. This result either meant that the GearVR cam-

era is much more demanding than the custom VR camera or that combining the VR

SDKs with the ARCore SDK leads to incompatibilities which manifest in the “Ear-

lyUpdate.TangoUpdate” process. That the GearVR camera is more demanding than

the custom camera was rather unlikely since Oculus uses many software optimizations

to reduce the performance impact of the VR camera. A second argument against this

explanation was that the “EarlyUpdate.TangoUpdate” process with the high impact on

the performance was somehow related to the ARCore SDK not the GearVR SDK. The

most likely explanation therefore was that ARCore and all the available VR SDKs are

incompatible or that the Unity game engine does not support both SDKs running in

parallel.

Hypothesis Three: Unity does not support running both ARCore and the available

VR SDKs To test this hypothesis a different version of Unity called AR Foundation

was used. AR foundation differs from the regular Unity engine by targeting a multi-

platform API instead of ARCore or ARKit directly allowing for an easier development

of multi-platform AR applications. Building an app either using the VR SDK or an AR

SDK alone was possible but combining both into one app resulted in the app freezing

Christoph Geske page 24

Bachelorthesis 6 Head Tracking

Figure 11: Performance measurements of the GearVR and ARCore setup in the first
half and the ARCore and DIYVRCam in the second half. The compari-
son shows the impact the “EarlyUpdate.TangoUpdate” function has on the
performance.

when starting on the Android device. For the AR Foundation version of Unity the

Hypothesis that the game engine itself is to blame for the incompatibility can therefore

be assumed but it was still unclear if the regular Unity version is also to blame for the

performance hit seen when combining the different SDKs. Developing the app with one

of the alternative game engines Unreal would also be an option but was not performed

since this would have been beyond the scope of this work.

Hypothesis Four: ARCore is incompatible with the VR SDKs independent of the

game engine used. This hypothesis seemed to be confirmed by comments made by

Google engineers on the official GitHub page of ARCore stating that: “Hi, ARCore

+ Cardboard is an unsupported configuration and we won’t be fixing this.” (ARCore

GitHub page Unity issue 102) Since the ARCore SDK is not fully accessible further

investigating the “EarlyUpdate.TangoUpdate” method to determine what might cause

this incompatibility was not possible. This seemingly insurmountable hurdle seemed to

rule out the use of ARCore for extending phone-based VR with a positional tracking

function. At least when trying to build the app with Unity and apply on Android

devices. The Vuforia SDK with similar functionalities to ARCore was chosen as an

alternative to realize the tracking after all. The setup process was more complicated

compared to ARCore nonetheless it was possible to combine the Vuforia SDK with the

VR SDKs to build an application of which the performance Figure 12 and tracking

quality Figure 13 could be measured.

The sharp tracking quality differences between ARCore and Vuforia were not just no-

ticeable in the recorded data Figure 13 but also when wearing the headset seriously

impacting the quality of the experience questioning the usefulness of Vuforia tracking

Christoph Geske page 25

Bachelorthesis 6 Head Tracking

Figure 12: Vuforia powered positional tracking VR app running on the Galaxy S7 show-
ing acceptable performance characteristics.

Figure 13: The graph shows the x position values of an app build using the Vuforia
AR SDK. The phone is attached to a pendulum. The curve describing the
pendulum motion shows significantly more jitter compared to curves recorded
with ARCore. The sinewave describes the ground truth of the pendulum
movement.

for the goal of bring positional tracking to phone-based VR systems. With no alterna-

tive to using ARCore for getting acceptable positional tracking another approach was

taken using an old Google Cardboard SDK which at the time of release was not part of

the Unity engine but had to be imported separately. Using this old version allowed to

disable the VR support in the Unity engine and import all the necessary software via

the old Google Cardboard SDK. Unfortunately, the old Google Cardboard SDK could

not be imported into the latest Unity version since it was incompatible and importing

it caused lots of incompatibility errors. Using an older Unity version allowed for the

Google Cardboard SDK to be imported correctly but caused lots of incompatibility

Christoph Geske page 26

Bachelorthesis 6 Head Tracking

when importing the latest ARCore SDK. After no alternative to using ARCore and the

VR SDKs built into Unity could be found the decision was made to accept that the

“EarlyUpdate.TangoUpdate” is requiring a large amount of the available performance

betting on future updates to resolve the issue. In the hope that the performance impact

of the “EarlyUpdate.TangoUpdate” function will be less relevant when using a more

powerful device, a Note 8 was used to repeat the measurements and the results are

shown in Figure 14.

Figure 14: Performance measurement of the combination ARCore + GearVR running
on the Note 8.

When comparing Figure 14 showing the app running on a Galaxy Note 8 with Figure

9 showing the app running on a Galaxy S7 no significant differences can be identified.

Trying to explain this result the performance benchmarks of the two phones were com-

pared shown in Figure 15 indicating that the Note 8 should perform better compared

to the S7. Since the benchmark data show a significant difference it is not clear how

much the contribute to the performance of an VR app. It was therefore concluded that

the differences might be to small to notice a difference in the VR app tested on the two

phones.

Without a roadmap on how to avoid the performance issues introduced by the “EarlyUp-

date.TangoUpdate” function the focus shifted to the exact cause of the displacements

seen in the all the position recordings. Looking at the raw tracking data indicated that

these displacements could be filtered out since the outlier data points differed signifi-

cantly from the transitions seen between the previous and subsequent data points. The

exact process of developing a filter for these displacements is described in chapter 10

Filtering.

While developing the filter extensive use of debug logs was made. These debug logs

caused the app to lag significantly during the measuring phase and the profiler was used

to investigate the causes. The profiler showed (Figure 16) that the debug logs have

Christoph Geske page 27

Bachelorthesis 6 Head Tracking

Figure 15: Benchmark comparing performance of Note 8 and S7 [23]
.

an especially large impact on the performance and not removing them when building

and testing the app resulted in the noticeable lag. The profiler screenshot shows three

segments. The first 1/10 segment is the GearVR app with ARCore tracking starting

up. The second large segment shows the performance of the app running and tracking

the position clearly visible the “EarlyUpdate.TangoUpdate” process requiring most of

the processing power. The last 1/10 of the curve shows a blue area which is the CPU

usage taken up by the debug logs running in the background. The debug log processes

are delayed because they are positioned after an if statement which becomes true af-

ter a few seconds. Compared to the the “EarlyUpdate.TangoUpdate” which seems to

be added on top of other processes the Debug Log functions suppress the “EarlyUp-

date.TangoUpdate” function reducing its influence on the overall performance. This

indicates that the “EarlyUpdate.TangoUpdate” process is some sort of pseudo function

just pretending to require all the performance left over making the app appear to always

run at the performance limit at least when measured with the Unity profiler.

At this stage in the development of the tracking solution it was clear that performance

was not an issue and that the cause for stutter under the HMD and displacements visible

curves of the plotted position measurements were only caused by errors in the tracking

caused by imprecisions in the tracking process of ARCore and possible realignments and

loop closure processes performed internally by the ARCore software. How these tracking

errors were eliminated is described in chapter 10 on filtering.

Christoph Geske page 28

Bachelorthesis 6 Head Tracking

Figure 16: Unity profiler showing the performance of a GearVR + ARCore app
and in blue the performance impact of multiple Debug Log processes on
the performance of the app and especially on the effect the “EarlyUp-
date.TangoUpdate” process has on the overall performance. The Debug Log
processes are not activated at the start of the app but instead after a few
seconds into the app running.

6.2 Evaluation Of Tracking Latency

When talking about tracking and latency in VR the first term coming to mind is “frame-

rate” which is described by Raaen et al. (2015) as “a measurement of how fast frames

are sent through the rendering pipeline” or in other words the number of frames per

given time period coming through the rendering pipeline. Another term often used

is the display refresh rate describing how often the display can redraw the image and

is measured in frequency (Hz). Looking at phone-based VR HMDs they all have a

display refresh rate of 60Hz which results in a display latency of 1/60s or 16.67ms. For

comparison the HTC Vive has a display refresh rate of 90Hz and a system latency of

22ms. When intending to deliver a tracking solution to phone-based HMD’s that track

with no noticeable latency the positional tracking data should be updated with the same

rate as the display refresh rate of 60Hz. ARCore and ARKit both claim to offer 60fps

tracking whereby ARCore currently only offers 60fps on the Pixel 2 and Pixel 3. If the

claimed values of 60fps positional tracking are correct as soon as the phone is moved, and

the next frame is shown ARCore/ARKit should also recognize the change and return a

new position value. If the display refresh rate and the tracking refresh rate are in sync

which is an option ARCore offers the tracking should work with no perceivable latency.

In the case of ARCore running on phones that only support 30fps it would be possible

that the first position update is not available at the first frame. In the second frame the

new position value should be delivered but the system latency would have increased by

16.67ms at 60fps to 33.34ms at 30fps on a phone like the Galaxy S7 used for this thesis.

The time ARCore takes to react to movements of the phone was measured using the high-

Christoph Geske page 29

Bachelorthesis 6 Head Tracking

speed camera function of a Xiaomi Mi 9T Pro recording at 240fps. The values shown

on the phone display Figure 18 are written down every fourth frame when going frame-

by-frame through the 240fps high-speed video. Since the high-speed camera records at

240fps always four frames of the video footage show the same value. The four frames

are only added once to the list. The distance of each new datapoint to its predecessor

is calculated and when it gets larger that indicates that the tracking software started

to update its position and move away from the previous position. By comparing the

time point when the video showed that the phone running the tracking software started

moving to the time point when the position values on the phone screen changed can be

used to determine the system latency. In this experiment the latency of the ARCore

software was measured. No filter or interpolation processes where added resulting in the

quickest possible respond time of the software. As shown in Figure 19 the position data

is not updated as quickly as expected from a 30fps tracking solution. Even when the

ARCore data sheet mentiones a frame rate of 30fps the measurements showed that an

AR app using ARCore’s tracking solution, running on a Galaxy S7, takes 10-12 frames

or 167-200ms to recognize a change to its position. An end-to-end latency of 167-200ms

would according to Kim et al. (2018) research suggest that users will rate the sense

of present rather low and perceive the virtual scene as unstable independent of how

well the filter is able to remove errors made by the tracking software. To understand

what these latency values could mean for the user have a look at chapter 5.3 where the

research of Kim et al. (2018) and the effects of latency on test subjects is described.

Figure 17: Schematic experimental setup to measure the latency of the ARCore tracking.

According to an ARCore engineer ARCore’s visual-inertial-odometry algorithm only

updates the position at 10fps and forward-integration using the IMU sensor is used to

end up with the claimed 30fps. Since this statement is rather old and new versions of

ARCore now support 60fps on some devices it would be a logical next step to measure

the latency of such an ARCore version on an appropriated device. It would also be

interesting to repeat the experiment using an app developed natively and compare the

Christoph Geske page 30

Bachelorthesis 6 Head Tracking

Figure 18: Using the VLC media players and its single frame-by-frame function to go
through every frame. As soon as the phone starts to move the camera frames
are counted and noted and the number on the screen which describes the
current position is listed. The frames it takes the tracking software to notice
a change in its position can then be used to determine the system latency of
the ARCore tracking software.

latency to the results observed in this thesis by measuring an app developed with a

game engine. Since many phones do not yet support 60 fps tracking by ARCore another

possible solution to reduce latency is making use of the IMU of the phone or HMD

which are known to respond quickly to changes in acceleration. The Daydream ready

phones have a capable IMU sensor built in and getting data from them for improving

the positional tracking responsiveness might be possible. The Galaxy S7 used for this

thesis is not certified as Daydream ready and the built in IMU sensor might not be as

good as the ones in other devices but further experiments should be performed to find

out whether the IMU is capable enough to improve the responsiveness of the ARCore

tracking software. Using the IMU in the GearVR headset instead of the one in the

phone would also be an option but Oculus does not provide access to the IMU data of

the GearVR headset.

A Google engineer also made a recommendation on how to increase the responsiveness

of ARCore by forward integrating the IMU data to get the velocity. He recommends to

create an anchor at the position of the camera so that the next frame can be compared

with the anchor position in the previous frame. This way one can checked if the ARCore

tracking did a jump in position due to ARCore updating the IMU data because of drift

over time with data from the VIO or SLAM processes. Such readjusting can happen

when the understanding of the world due to loop closures for example changes [27]. This

might be a solution for improving the responsiveness of the here presented software in

the future.

Christoph Geske page 31

Bachelorthesis 6 Head Tracking

Figure 19: List of the position values displayed on the phone screen at 60fps. The first
column shows the distance from the starting point which is displayed on
the phone’s screen. The second row shows the number of frames that have
passed since the beginning of the measurement. The third column shows if
the phone is moving and in which direction. The fourth column calculates the
distance from the previous position. The fifth column uses colors to indicate
areas of speeding up and slowing down either towards the right (green) or
the left (red) side. The sixth column indicates when the tracking software
recognizes the change in position either stating, stopping or reversing the
direction. The seventh column shows the number of frames it takes from the
high-speed camera recognizing a change in position to the tracking software
displaying a change in position.

6.3 Interpolation on tracking data to improve visuals

ARCore only delivers new tracking results at 30fps on all devices except the Pixel 2

and Pixel 3 which support 60fps. For human perception to perceive a movement and

images as continuous a 60fps update of the position is necessary. To improve the visual

quality despite only having a 30fps tracking system available an interpolation approach

was chosen. An additional tracking point is thereby generated from the given 30 fps

tracking data. For generating a new tracking point the distance from the current position

to the new position value is calculated and divided by two. The current position is than

set to the calculated midpoint. In the next frame when no new position value is made

available by ARCore the position is set to the value received during the last update as

illustrated in Figure 20.

Christoph Geske page 32

Bachelorthesis 6 Head Tracking

Figure 20: Schematic how interpolation can be used to generate a 60fps tracking solution
from tracking data that only updates with a rate of 30fps.

Using this kind of interpolation, the latency of the system is increased by one frame or

one could argue by only half a frame. Figure 21 shows that this kind of interpolation can

also introduce additional scene motion whereby the virtual environment keeps moving

while the head has already come to a standstill.

Figure 21: Schematic on how the interpolation introduces lag by not immediately ap-
plying the new position data.

An alternative approach which would keep the responsiveness high is linear extrapolation

which uses the new position data as soon as it is available and predicts the next position

based on the changes seen in the last update. Figure 22 shows this variant schematically.

Notice that this approach can lead to overshooting when the prediction is wrong. But

when focusing on the critical areas like initial acceleration of the head and coming to

a stop this approach shows no added latency and could lead to less experienced scene

motion. As the research of Langbehn et al. (2018) on redirected walking has shown

small impressions in tracking are not perceivable by users and the errors in position

updates introduced by this approach might not be noticed by users.

6.4 Tracking Accuracy and quantification

Beside measuring latency, the overall quality and accuracy of the tracking in 3D space

was measured and recorded using a vive tracker. Tracking was slightly different from the

comparative measurement, but this should be less of an issue compared to the latency

we looked at before. The reason that such differences are less noticeable was described

by Langbehn et al. (2018) and is justified by the fact that the sense of vision dominates

the sense of Beside measuring latency, the overall quality and accuracy of the tracking

Christoph Geske page 33

Bachelorthesis 6 Head Tracking

Figure 22: Schematic on how the linear extrapolation could be used to generate a 60fps
tracking solution without lag but possibly introducing erroneous position
data.

in 3D space should be measured. In order to get the ground truth, a HTC Vive tracker

which is tracked via the HTC Vive lighthouse system was used. A script was written

in Unity and attached to the Vive tracker GameObject. Recording was initialized by

switching to Play Mode and recording performed directly in the Unity game engine.

The x, y and z position where recorded and saved in a text file on the PC. On the phone

the x, y and z position were recorded with a similar script, saved in a text file and stored

on the internal memory. Since two different tracking methods where used the resulting

tracking data could not be simply aligned. Three issues needed to be addressed before

the data could be aligned.

Compress data that is recorded at a different frame rate

Rotate the coordinate system to align the two datasets

Rescale the dataset to bring it to the same scale

The HTC Vive tracker recorded the data at a faster rate possibly because the target

framerate of the Unity engine was set to a higher value compared to the phone. The

phone tracked and recorded the position data with 60fps. The PC recorded the data

roughly 1.8 time faster than the phone suggesting that the frame rate was set to 100fps.

To align the two data sets, one of them must be compressed so that they both have the

same dimension.

To simplify the orientation, compression and scaling process the 3D datasets where

transformed into 2D datasets shown in Figure 23. This was achieved by calculation the

vector between adjacent data points describing the change in position after each frame.

By performing this transformation, two lists of vectors were generated. The change in

position is the same for the phone and the Vive tracker and by doing the transformation

the orientation of the underlying coordinate system became irrelevant. With only two

2D lists left the compression and scaling steps also became easies. The compression and

scaling steps were performed with python. Additionally, the Vive tracker dataset was

cleaned up because it contained strong outlier points. Figure 24 shows the result of the

described steps and that the curves can be aligned and compared.

Christoph Geske page 34

Bachelorthesis 6 Head Tracking

Figure 23: The 3 dimensional positional tracking data of the Vive tracker and the phone
running the ARCore tracking solution where transformed into a 2D repre-
sentation and plotted on top of each other. This 2D representation was
generated by calculating the vector length between adjacent points and the
length was plotter without scaling or compressing.

Figure 24: The positional tracking data of the Vive Tracker and the phone where plotted
on top of each other after the transformation, scaling and compressing steps
where performed.

Christoph Geske page 35

Bachelorthesis 7 Filtering

7 Filtering

7.1 Hard Coded Filter

The hard-coded filter used in this thesis consists of several if statements that if true

activate the filter. The if statements are checked for every new position data point

provided by the ARCore tracking software. The if statements rely on previous data

points and compare changes that occurred in the 2 to 3 preceding updates with the

latest change in position. If the new change differs significantly from the previous

changes the filter either slightly modifies the new position data or if the change is to

large discards the new position data and replaces it with a prediction generated from

previous changes. An upper limit for position changes accepted helps filter out extreme

jumps in the tracking data which are not humanly possible. Despite the hard-coded

filter working well for some cases in practice it requires a lot of fine tuning and needs to

be adjusted depending on the speed the head is moving. Distinguishing between large

and small head movements is important to adjust the sensitivity of the filter. In this

thesis the hard-coded filter is only used for detecting and filtering out movements that

are to large to be reasonable and don’t need to be consider.

7.2 Kalman Filter

The Kalman filter used in this thesis was released by Johnathon Selstad on GitHub in

2017 and modified to work on the 3-dimensional tracking data delivered by ARCore.

One of the main advantages of the Kalman filter compared to the hard-coded filter

is that it can automatically adjust to changes in the intensity of the head movement.

Another advantage is that the function predicting future changes is updated constantly

and refined depending on the incoming data. One of the biggest disadvantages of using

the Kalman filter is that the fine tuning of all the variables is cumbersome. For the

Kalman filter to work optimal the exact distribution of all the errors of the sensors and

the incoming data is required. The Kalman filter version used in this thesis makes an

educated guess on these distributions regarding the variance and expected value of the

measured data and already delivers promising filter results better than the results that

where possible with a hard-coded filter.

Christoph Geske page 36

Bachelorthesis 8 Outlook

8 Outlook

It is expected that the tracking system presented here will not meet the requirements

placed on a consumer product, therefore a warning is appropriate to inform about the

danger of suffering motion sickness when using this system in the current state, even

when for some users this high latency might be tolerable. Future research should improve

the latency of the tracking solution first and then perform a survey like the Motion

Sickness Assessment Questionnaire listed by Brooks et al. as one of the most common

surveys for measuring motion sickness to evaluate the quality of the VR experience.

The filters used in this thesis are not well optimized for reducing latency and by further

optimizing the parameters better tracking results should be possible.

The project described in this thesis was parallel to development published on GitHub

and enjoyed great popularity among the community. Sharing information on the process

on reddit, YouTube and answering comments of interested developers on the GitHub

page led to many people downloading the software and asking questions, presenting

ideas for improvements and developed their own apps with the provided software. The

Youtuber AlitaQuils showed of his own experiments in a video on his YouTube channel

[3].

Christoph Geske page 37

Bachelorthesis References

Figure 25: GitHub page showing an already released version of the tracking software
presented in this thesis.

References

[1] Anthes, Christoph, et al. ”State of the art of virtual reality technology.” 2016 IEEE

Aerospace Conference. IEEE, 2016.

[2] Arth, Clemens, et al. ”The history of mobile augmented reality.” arXiv preprint

arXiv:1505.01319 2015.

[3] AlitaQuils’s YouTube Video making use of the here developed tracking solution

URL: https://www.youtube.com/watch?v=ov-MBoYOt9A ,

Last accessed 31.10.2019.

[4] Bhandari, Jiwan, Sam Tregillus, and Eelke Folmer. ”Legomotion: Scalable walking-

based virtual locomotion.” Proceedings of the 23rd ACM symposium on virtual

reality software andtechnology. ACM, 2017.

Christoph Geske page 38

Bachelorthesis References

[5] Brooks, Johnell O., et al. ”Simulator sickness during driving simulation studies.”

Accident Analysis Prevention 42.3 (2010): 788-796.

[6] Cortés, Santiago, et al. ”ADVIO: An authentic dataset for visual-inertial odome-

try.” Proceedings of the European Conference on Computer Vision (ECCV). 2018.

URL: https://arxiv.org/pdf/1807.09828.pdf,

Last accessed 31.10.2019.

[7] Fast-Berglund, Åsa, Liang Gong, and Dan Li. ”Testing and validating extended

reality (xR) technologies in manufacturing.” Procedia Manufacturing 25 (2018):

31-38.

[8] John C. Cole, Patent, Micro-miniature accelerometer, Patent id US4736629A,

(1985) https://patents.google.com/patent/US4736629A/en

[9] Johnathon Selstad, GitHub, MathUtilities, 2017

URL: https://github.com/zalo/MathUtilities,

Last accessed 04.11.2019.

[10] Kim, Juno, et al. ”Effects of head-display lag on presence in the oculus rift.” Pro-

ceedings of the 24th ACM Symposium on Virtual Reality Software and Technology.

ACM, 2018.

[11] Langbehn, Eike, Paul Lubos, and Frank Steinicke. ”Evaluation of locomotion tech-

niques for room-scale vr: Joystick, teleportation, and redirected walking.” Proceed-

ings of the Virtual Reality International Conference-Laval Virtual. ACM, 2018.

[12] Lee, Jiwon, Mingyu Kim, and Jinmo Kim. ”A study on immersion and VR sickness

in walking interaction for immersive virtual reality applications.” Symmetry 9.5

(2017): 78.

[13] Mania, Katerina, et al. ”Perceptual sensitivity to head tracking latency in virtual

environments with varying degrees of scene complexity.” Proceedings of the 1st

Symposium on Applied perception in graphics and visualization. ACM, 2004.

[14] Mendez, Roberto Lopez. ”Mobile inside-out VR tracking, now available on your

phone.” ACM SIGGRAPH 2018 Appy Hour. ACM, 2018.

[15] Mendez, Roberto Lopez Blog Post

URL: https://community.arm.com/developer/tools-

software/graphics/b/blog/posts/mobile-inside-out-vr-tracking-now-on-your-phone-

with-unity,

Last accessed 31.10.2019.

Christoph Geske page 39

Bachelorthesis References

[16] Milgram, Paul, et al. ”Augmented reality: A class of displays on the reality-

virtuality continuum.” Telemanipulator and telepresence technologies. Vol. 2351.

International Society for Optics and Photonics, 1995.

[17] Mladenov, Boyan, et al. ”A Short Review of the SDKs and Wearable Devices to be

Used for AR Application for Industrial Working Environment.” Proceedings of the

World Congress on Engineering and Computer Science. Vol. 1. 2018.

[18] Muth, Eric, et al. ”Discussion Panel: Motion Sickness in Virtual Environments.”

Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol.

62. No. 1. Sage CA: Los Angeles, CA: SAGE Publications, 2018.

[19] Niehorster, Diederick C., Li Li, and Markus Lappe. ”The accuracy and precision

of position and orientation tracking in the HTC vive virtual reality system for

scientific research.” i-Perception 8.3 (2017): 2041669517708205.

[20] Nowacki, Pawe l, and Marek Woda. ”Capabilities of ARCore and ARKit Platforms

for AR/VR Applications.” International Conference on Dependability and Complex

Systems. Springer, Cham, 2019.

[21] Parsons, Thomas D., et al. ”Virtual reality in paediatric rehabilitation: a review.”

Developmental neurorehabilitation 12.4 (2009): 224-238.

[22] Powell, Wendy, et al. ”Getting around in google cardboard–exploring navigation

preferences with low-cost mobile VR.” 2016 IEEE 2nd Workshop on Everyday

Virtual Reality (WEVR). IEEE, 2016.

[23] Primate Labs Inc., Samsung Galaxy Note 8 Benchmarks - Geekbench Browser,

URL: https://browser.geekbench.com/androiddevices/387, Lastaccessed04.11.2019

[24] Raaen, Kjetil, and Ivar Kjellmo. ”Measuring latency in virtual reality systems.”

International Conference on Entertainment Computing. Springer, Cham, 2015.

[25] Roche, Kayla, Stephen Liu, and Steven Siegel. ”The effects of virtual reality on

mental wellness: A.” Ment Health 14 (2019): 811-818.

[26] Yousif, Khalid, Alireza Bab-Hadiashar, and Reza Hoseinnezhad. ”An overview to

visual odometry and visual SLAM: Applications to mobile robotics.” Intelligent

Industrial Systems 1.4 (2015): 289-311.

[27] GitHub, Inc., ARCore Unity SD Issue 604K

URL: https://github.com/google-ar/arcore-android-sdk/issues/604,

Last accessed 04.11.2019.

Christoph Geske page 40

	Abstract
	List of Abbreviations
	List of Figures
	Introduction
	Motivation
	Goals

	Virtual-, Augmented- and Mixed Reality
	Virtual Reality (VR)
	Augmented Reality (AR)
	Mixed Reality (MR)

	Hardware Technology
	Head Mounted Displays (HMDs)
	Phone-based VR HMDs
	Stand-Alone HMDs

	Sensors

	Software Technology
	Camera Tracking
	Visual Odometry (VO), Visual Inertial Odometry (VIO)
	Simultaneous localization and mapping (SLAM)

	Software Development Kit’s (SDKs)
	Virtual Reality SDKs
	Augmented Reality SDKs

	Development Platform

	Perception and Sensation
	Latency and how it is perceived
	Immersion
	Motion sickness

	Head Tracking
	Leveraging ARCore for Positional Head Tracking
	Evaluation Of Tracking Latency
	Interpolation on tracking data to improve visuals
	Tracking Accuracy and quantification

	Filtering
	Hard Coded Filter
	Kalman Filter

	Outlook
	References

