Convergence of Excesses Over a Threshold

Convergence of Excesses Over a Threshold

Pickands-Balkema-de Haan Theorem
Let u be a suitably high level and denote $Y:=X-u$ such that $Y \mid Y>0$ is the r.v. of the conditional excesses over the threshold u, with d.f. F_{u}. Then, we have that

$$
F \in \mathcal{D}_{\mathcal{M}}\left(G_{\xi}\right) \Leftrightarrow \lim _{u \rightarrow x^{F}} 1-F_{u}(y)=(1+\xi y)^{-1 / \xi}
$$

The Automatic L-moment Ratio Selection Method

國 Silva Lomba, J., \& Fraga Alves, M. I. (2020). L-moments for automatic threshold selection in extreme value analysis. Stochastic Environmental Research and Risk Assessment, 34(3), 465-491.

Figure 3.3, page 63 - Visual aid of ALRSM procedure for a simulated sample of size $n=500$ from a Hybrid($0.75,0.2$) distribution, with sample quantile threshold candidates $\left\{u_{i}\right\}_{i=1}^{20}$

Dependence Analysis - III

Winter: Region 2

Figure 7.27, page 192 - Estimates of $\hat{\sigma}_{j_{1}, j_{2}}\left(k_{N}\right)$ for selected pairs of stations j_{1}, j_{2} in both seasons, for $k_{N}=$ $100, \ldots, 1400$.

