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ABSTRACT

Image retrieval enables an efficient search through vast
amounts of satellite imagery and returns similar images to
a query. Deep learning models can identify images across
various semantic concepts without the need for annotations.
This work proposes to use Geospatial Foundation Models,
like Prithvi, for remote sensing image retrieval with mul-
tiple benefits: i) the models encode multi-spectral satellite
data and ii) generalize without further fine-tuning. We intro-
duce two datasets to the retrieval task and observe a strong
performance: Prithvi processes six bands and achieves a
mean Average Precision of 97.62% on BigEarthNet-43 and
44.51% on ForestNet-12, outperforming other RGB-based
models. Further, we evaluate three compression meth-
ods with binarized embeddings balancing retrieval speed
and accuracy. They match the retrieval speed of much
shorter hash codes while maintaining the same accuracy
as floating-point embeddings but with a 32-fold compression.
The code is available at https://github.com/IBM/
remote-sensing-image-retrieval.

Index Terms— Multi-spectral, Image retrieval, Geospa-
tial foundation model, Similarity search

1. INTRODUCTION

Remote sensing image retrieval has become increasingly es-
sential in geospatial data analysis, with its potential appli-
cations extending across meteorology [1], economic assess-
ment [2], and ecological analysis [3]. In recent years, machine
learning enabled a shift from traditional metadata-based re-
trieval methods to content-based image retrieval (CBIR) [4].
CBIR focuses on the intrinsic features within a query image.
This enables the retrieval of potentially any semantic concept
without requiring pre-defined annotations in metadata.
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Central to CBIR are retrieval speed and accuracy. While
accuracy ensures the relevance of the retrieved images to the
query, speed is crucial for efficient processing in large-scale
databases. To balance these metrics, compression techniques,
such as hash functions, are used to reduce memory require-
ments and increase retrieval speed. Promising works have
combined pre-trained vision models with deep hash net-
works [5, 6, 7, 8]. Each image is represented by the model
embedding, which is compressed into a hash code. How-
ever, these models only process RGB data, overlooking the
potential of multi-spectral information in satellite imagery.

Geospatial Foundation Models (GeoFM), for instance
Prithvi [9], open new possibilities because they are pre-
trained on a vast amount of multi-spectral data. The models
have been successfully applied to various tasks, including
flood and wildfire segmentation [9]. GeoFMs can utilize
multi-spectral data for CBIR without requiring fine-tuning.

Our contributions are threefold: i) We showcase the ap-
plication of GeoFMs for remote sensing image retrieval,
ii) we introduce baselines for two multi-spectral datasets to
benchmark multi-spectral remote sensing image retrieval, and
iii) we conduct a detailed analysis of retrieval performance
between vector-based and binary hash-based approaches,
focusing on the balance between speed and accuracy.

2. RELATED WORK

Image retrival in remote sensing has evolved significantly,
shifting focus from traditional metadata-based methods to
more advanced techniques that use computer vision to ana-
lyze the image content [4]. Among these developments, deep
hash networks have played a central role [5, 8, 10, 11]. These
models compress images into hash codes which are stored in
a database and used for calculating distances. Researchers
explored various learning techniques, such as contrastive
learning [8] and metric learning [12], with the aim of mini-
mizing the need for extensive training data.

Some approaches use the embeddings of existing com-
puter vision models and combine them with smaller hash
models [5, 6, 12]. Because these models are trained on
RGB data, they cannot take advantage of all multi-spectral
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data from satellites. Furthermore, the fine-tuning of hash
networks on specific datasets limits their transferability to
different semantic concepts, potentially reducing accuracy in
varying contexts beyond their initial training datasets.

Despite the progress in various CBIR techniques, most
evaluations are primarily focused on RGB datasets, i.e.,
UCM [13] and AID [14] being the de-facto standard eval-
uation [5, 6, 8, 10, 11, 12, 15, 16]. An exception is works on
cross-modal image retrieval [4]. E.g., one study uses a subset
of BigEarthNet [17], which includes multi-spectral data [7].

GeoFMs, such as Prithvi and Presto [18], are character-
ized by their ability to process multi-spectral data. Their pre-
training on diverse satellite images overcomes the limitations
of general models and benefits earth observation tasks [9].

In conclusion, while existing approaches have advanced
the field, they are focused on RGB datasets and depend on
annotated training data. These limitations emphasize the need
for new approaches utilizing GeoFMs and multi-spectral data.

3. APPROACH

The CBIR task requires identifying and retrieving images
from a large database based on their visual similarity to a
given query image. This process requires an efficient mech-
anism to compare and rank the database images in terms of
their similarity to the query.
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Fig. 1: GeoFM embeddings enable simple but accurate CBIR.
Optionally, the embeddings are compressed into smaller bi-
nary vectors. For each query image, similar images from the
database are returned and sorted based on a distance function.

In our method, as illustrated in Figure 1, the first step
involves processing the query images through a GeoFM. The
model generates embedding vectors that comprehensively
represent latent features of the images. The query embedding
is compared with the pre-computed embeddings stored in a
vector database. The similarity between query vectors and
database vectors is computed using common distance func-
tions like Hamming, Jaccard, Euclidean or Cosine distance.
This approach takes advantage of the robust pre-training of
the underlying GeoFM, which improves the accuracy and
generalizability of the retrieval results. Optionally, the vector
embeddings are compressed into shorter binary vectors using
existing methods like hash functions. This reduces memory
usage and inference time but can lead to information loss.

The simplest compression is the binarization of the em-
bedding vector through a sign function. This reduces the
memory usage by a factor of 32. For further compression, we
propose a trivial hash function as a simple baseline: The em-
beddings are split into an equally sized number of dimensions
and averaged to reduce the vector to the hash length. We then
apply the sign function to generate binary hash codes. This
approach assumes an equal distribution of information across
the dimensions and around zero within each dimension.

4. EXPERIMENTAL SETUP

Following literature [5, 6, 8, 10, 11, 12, 15, 16], we evaluate
our experiments with mean Average Precision (mAP) based
on the top 20 retrieved images. For multi-label datasets, any
overlap within the labels is counted as a positive match [7,
19]. Each validation split serves as test queries, and the test
split is used as the database. We use different splits to avoid a
geographical overlap between the queries and the database1.
Further, we use the L1 norm as a distance function in our ex-
periments, which is equal to the hamming distance for binary
values. We also tested the L2 norm and observed minimal
differences within ± 1 pp. mAP.

We use Milvus [20] for our speed experiments. Milvus
is a production-ready vector database and includes a search
functionality based on binary and floating-point vectors. The
L2 norm is used for float vectors, as L1 is only available for
binary vectors. Milvus indexes2 include a cluster-based ap-
proach: First, the query is compared to the cluster centers,
followed by a comparison with the images in the top clusters.
This drastically reduces the retrieval time.

4.1. Models

The underlying GeoFM is Prithvi-100M with a model in-
put of 224x224 pixels. The model is a Vision Transformer
(ViT) [21] with 100M parameters. Prithvi processes six
bands, unlike the three RGB channels of the vanilla ViT. The
pre-training includes a subset of the Harmonized Landsat-
Sentinel (HLS) dataset consisting of images from the Landsat
8 and Sentinel-2 satellites. We also report the results of

1Other works iterate over the test split as query images, using the re-
maining test images as the database [6, 12]. This is appropriate for aerial
datasets but not for satellite datasets. The splits are often geographically
grouped to avoid similar regional patterns benefiting the model performance.
We also find some implementations using train images as part of the queries
or database [7, 8, 15, 16]. Using the same images during training and testing
can lead to data leakage, which benefits over-fitted models.

Therefore, we select two different splits for the queries and databases.
Note that we do not train any model since we use a pre-trained GeoFM.
However, we avoid using the train splits to facilitate a fair comparison with
potential future works that use trained models. For training, we recommend
further splitting the train images and not using the validation splits.

2See https://milvus.io/docs/index.md for details. We used
the indexes INV FLOAT and BIN IVF FLAT with the default values of 128
clusters and 8 top clusters.
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Model Method BigEarthNet-43 BigEarthNet-19 ForestNet-12 ForestNet-4 Mean

Prithvi-100M

Embedding 97.62 97.98 44.51 60.76 75.22
Binary emb. 97.44 97.83 43.28 59.85 74.6
Trivial hash 82.75 84.26 34.91 51.71 63.41
LSH 68.36 ± 4.96 71.18 ± 4.66 28.98 ± 1.85 45.63 ± 1.39 53.47

Prithvi-100M-RGB

Embedding 92.15 93.17 38.65 53.85 69.46
Binary emb. 91.38 92.43 38.11 53.31 68.81
Trivial hash 73.36 75.47 32.35 50.47 57.91
LSH 53.09 ± 8.43 55.21 ± 8.61 29.02 ± 1.45 45.42 ± 1.26 45.65

ViT-B/16-RGB

Embedding 89.31 90.21 38.92 56.49 68.73
Binary emb. 88.71 89.7 39.19 57.01 68.65
Trivial hash 75.74 77.34 33.01 49.95 59.01
LSH 76.52 ± 0.95 78.02 ± 0.92 32.77 ± 1.32 49.13 ± 2.09 59.08

Table 1: mAP@20 results for all models and datasets. We highlight the best-performing method in bold and underline the
second-best one. LSH is reported with a 95% confidence interval based on five seeds as this method uses random planes.

Prithvi only processing the RGB channels (Prithvi-100M-
RGB). The model input of the infrared channels is set to
zero. For comparison, we include the vanilla ViT-B/16 model
(ViT-B/16-RGB) [21], which is pre-trained on ImageNet.

We run the experiments with the model embeddings of
size 768, binary embeddings, and two different hash encod-
ings: The trivial hash function and Locality-Sensitive Hash-
ing (LSH) [22]. LSH splits the latent space into two areas
for each binary value using a random hyperplane. Both hash
methods use a hash length of 32 to balance compression and
accuracy. We do not vary the length in the reported results as
other works already studied the effect [5, 6, 12]. Generally,
decreasing the hash length reduces the precision.

4.2. Datasets

Reviewing remote sensing datasets revealed a limited avail-
ability of multi-spectral multi-class datasets with an image
size of equal or more than 224 pixels [4, 23, 24]. BigEarth-
Net [17] and ForestNet [25] fulfill these requirements.

BigEarthNet consists of Sentinel-1 and -2 images with
120x120 pixels and includes two sets of multi-label annota-
tions with 19 resp. 43 classes. The classes cover different
land-use types such as mixed forest, water bodies, or airports.
We are using the six Sentinel-2 channels supported by Prithvi.
The images are bi-linear scaled up to match the model input,
which corresponds to a five-meter resolution.

ForestNet includes Landsat 8 imagery from forest loss
events. The images are annotated with twelve classes and four
super-classes. The classes indicate types of deforestation,
such as timber plantation or small-scale agriculture. Forest-
Net uses composite images created by averaging up to five
cloud-free images. The images have a size of 332x332 and a
22-meter resolution after re-scaling.

Note that the data of both datasets differs from the Prithvi
pre-training: The HLS data has a 30-meter resolution and in-

cludes additional data processing for harmonization. Further-
more, Prithvi-100M is pre-trained on US data and does not in-
clude any data from BigEarthNet and ForestNet which cover
Europe and Indonesia, resp. [9, 17, 25].

5. RESULTS

Our results are presented in Table 1. Prithvi-100M outper-
forms Prithvi-100M-RGB in every method by over 5.5 pp.
on average. The differences for hash methods are significant
for the BigEarthNet dataset, while the performance is com-
parable on ForestNet. The comparison of Prithvi-100M with
the vanilla ViT-B/16-RGB leads to similar results, except a
better-performing LSH method. LSH seems better suited for
the vanilla ViT as it performs 5.61 pp. better than Prithvi-
100M and on pair with the trivial hash method. Overall, the
comparison highlights the information gain when using multi-
spectral data with GeoFMs.

The transition from float embeddings to hash-based ap-
proaches typically results in a notable drop in model per-
formance. E.g., Prithvi-100M with a 32-bit trivial hash has
an 11.81 pp. lower mAP. This drop highlights the challenge
of maintaining accuracy while simplifying the data represen-
tations. However, we observe that the performance loss is
mainly influenced by the hash length and not by binarization.

(a) Embedding (b) Binary emb. (c) LSH (d) Trivial hash

Fig. 2: t-SNE plots of the ForestNet-4 test set with colored
classes comparing the embedding space with hash codes.
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Coniferous forest,
Mixed forest,

Transitional woodland/shrub
2 2 2

Discontinuous urban fabric,
Non-irrigated arable land,

Complex cultivation patterns,
Agriculture with
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(a) BigEarthNet-43

Oil palm plantation

Small-scale agriculture

(b) ForestNet-12

Fig. 3: Examples from two datasets with query images (left), their labels, and retrieved images (right) using Prithvi and the
trivial hash method. Images with green frames indicate positive matches, while those with red frames have different labels.
Orange shows partial correct matches, where the number represents the number of label matches within the multi-labels.

The binary embeddings perform nearly as well as the floating-
point embeddings, with an average difference of only 0.62 pp.
mAP for Prithvi.

We visually compare the ForestNet-4 embeddings and
hash functions with t-SNE plots in Figure 2. The latent space
is well distributed for the default and binarized embeddings
but clustered with LSH. The clusters do not discriminate
the semantic classes, which explains the lower performance.
In comparison, trivial hash codes also include some larger
clusters but retain the overall distribution better.

Figure 3 shows examples of retrieved images based on
the trivial hashes. Retrieved images from BigEarthNet-43
have a large share of images with partial label matches, which
is also represented by a 82.75 mAP. Those images are often
similar in their overall color and appearance. However, some
classes are less frequently matched, e.g., specific infrastruc-
ture classes like construction sites or airports. This is also ob-
servable in ForestNet-12, which has more fine-grained classes
that are harder to differentiate. Still, the trivial approach re-
turns some matching examples for most queries.

Our analysis demonstrated the effect of compression on
the accuracy. Next, we discuss the effect on retrieval speed.
The overall retrieval speed depends on three factors: i) model
inference, ii) similarity search, and iii) data loading. The
first step mainly depends on the model used for the encod-
ing. We observed an inference time of 100 ms for Prithvi on
a NVIDIA V100 GPU. Using smaller GeoFMs can reduce the
processing time. The last step depends on the specific hard-
ware and is not affected by the retrieval approach. Therefore,
we focus our speed analysis on the actual retrieval computa-
tion. We used a VM with 12 cores and 24 Gb of memory
on an AMD EPYC 7452 processor for our experiments and
provide the results in Table 2.

Images in database
Data type Length 10K 50K 100K

Binary 32 16 ms 16 ms 17 ms
Binary 768 16 ms 16 ms 17 ms
Float 768 21 ms 32 ms 33 ms

Table 2: Experimental retrieval speeds with different vector
types for a varying number of images in the database.

The retrieval speed for binary vectors is almost not influ-
enced by the database size or the vector length. Floating-point
embeddings have a retrieval time of up to 33 ms. This is two
times longer than binary embeddings with 17 ms. The re-
sults demonstrate the efficient implementation of retrieval al-
gorithms in vector databases like Milvus. Therefore, the hash
length is mainly constrained by memory usage rather than the
retrieval speed.

6. CONCLUSION

This work demonstrates the applicability of GeoFMs for im-
age retrieval in remote sensing. Due to the learned represen-
tations through the pre-training, the model encodes multiple
semantics and does not require further fine-tuning. We intro-
duce two multi-spectral datasets to the retrieval task and pro-
vide strong baselines, enabling a more holistic evaluation for
remote sensing in the future. Accordingly, we could evalu-
ate three compression methods with binary embeddings, hav-
ing shown the best trade-off between accuracy and retrieval
speed. The approach can be easily implemented in various ap-
plications with any existing GeoFM and combined with more
advanced compression methods to improve performance.
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and Volker Markl, “Bigearthnet: A large-scale bench-
mark archive for remote sensing image understanding,”
in IGARSS 2019-2019 IEEE International Geoscience
and Remote Sensing Symposium. IEEE, 2019, pp. 5901–
5904.

[18] Gabriel Tseng, Ivan Zvonkov, Mirali Purohit, David
Rolnick, and Hannah Kerner, “Lightweight, pre-trained
transformers for remote sensing timeseries,” NeurIPS
2023 Workshop on Tackling Climate Change with Ma-
chine Learning: Blending New and Existing Knowledge
Systems, 2023.

[19] Qin Zou, Ling Cao, Zheng Zhang, Long Chen, and Song
Wang, “Transductive zero-shot hashing for multilabel
image retrieval,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 33, no. 4, pp. 1673–
1687, 2020.



[20] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin,
Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo,
Chengming Li, Xiaohai Xu, et al., “Milvus: A purpose-
built vector data management system,” in Proceedings
of the 2021 International Conference on Management of
Data, 2021, pp. 2614–2627.

[21] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al., “An image is
worth 16x16 words: Transformers for image recogni-
tion at scale,” in International Conference on Learning
Representations, 2020.

[22] Yi-Kun Tang, Xian-Ling Mao, Yi-Jing Hao, Cheng Xu,
and Heyan Huang, “Locality-sensitive hashing for find-
ing nearest neighbors in probability distributions,” in
Social Media Processing: 6th National Conference,
SMP 2017, Beijing, China, September 14-17, 2017, Pro-
ceedings. Springer, 2017, pp. 3–15.

[23] Zhitong Xiong, Fahong Zhang, Yi Wang, Yilei Shi, and
Xiao Xiang Zhu, “Earthnets: Empowering ai in earth
observation,” arXiv preprint arXiv:2210.04936, 2022.

[24] Alexandre Lacoste, Nils Lehmann, Pau Rodriguez,
Evan David Sherwin, Hannah Kerner, Björn Lütjens,
Jeremy Andrew Irvin, David Dao, Hamed Alemoham-
mad, Alexandre Drouin, et al., “Geo-bench: Toward
foundation models for earth monitoring,” Advances in
Neural Information Processing Systems, 2023.

[25] Jeremy Irvin, Hao Sheng, Neel Ramachandran, Sonja
Johnson-Yu, Sharon Zhou, Kyle Story, Rose Rustow-
icz, Cooper Elsworth, Kemen Austin, and Andrew Y
Ng, “Forestnet: Classifying drivers of deforestation
in indonesia using deep learning on satellite imagery,”
NeurIPS 2020 workshop on Tackling Climate Change
with Machine Learning, 2020.


	 Introduction
	 Related work
	 Approach
	 Experimental setup
	 Models
	 Datasets

	 Results
	 Conclusion
	 References

