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Chapter 1

The Hybrid Fortran
Framework

Hybrid Fortran is a directive based extension of the and a code transformation
tool within the Fortran language. It is intended for enabling GPGPU acceleration
of data parallel programs using a unified codebase. Performance Portability
was a major design aspect of this framework - not only should it enable the
accelerated target to achieve optimal performance, but the CPU target should
keep performing as before the migration. In the backend it automatically creates
CUDA Fortran or OpenACC Fortran code for GPU and OpenMP Fortran code
for CPU, in both cases making use of data parallelism defined by the user through
directives. Additionally, a GNU Make build system as well as an automatic test
system is provided. Hybrid Fortran has been successfully used for speeding up
the Physical Core of Japan’s national next generation weather prediction model
by a factor of 3.6x on Kepler K20x vs. 6 Core Westmere while not loosing any
CPU performance.

This chapter will describe the functionality of the Hybrid Fortran frame-
work from a user perspective. Chapter 2 guides through setup, portation, debug-
ging and testing in a ’howto’-like fashion. Chapter 3 will go into implementation
details for those who would like to adapt Hybrid Fortran to their own specific
usecases.

1.1 Design Goals

This section gives an overview over the design goals of the Hybrid Fortran
framework.

1. Hybrid Fortran is intended to enable performance portable parallel pro-
gramming for HPC purposes.

1
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2. Hybrid Fortran offers a unified codebase for both CPU and GPU execu-
tion.

3. The storage order is compile time defined since CPU and GPU implemen-
tations usually have different ideal storage orders.

4. The rules for creating the GPU code versions should have a low complexity,
such that optimizations performed by the user lead to predictable results.

5. The framework enables GPU performance at the level of hand optimized
CUDA Fortran while maintaining CPU performance as close as possible to
the original CPU code.

6. The implementation details are abstracted from the rest of the system,
such that other parallel programming frameworks can be supported in the
future without changes in the user code.

7. Hybrid Fortran is optimized for two use cases in particular: Stencil access
patterns with tight loops and Parallel vector access patterns with outside
loops. Hybrid Fortran abstracts domain specifications of arrays such
that the migration path from typical Fortran code for these two use cases
becomes minimal.
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1.2 Features

• Backends for OpenACC (GPU), CUDA Fortran (GPU) and OpenMP (CPU)
parallelizations.

• Separate parallel regions for CPU and GPU at multiple points in the call-
graph (if needed). This allows high performance for both CPU and GPU
implementations.

• Compile-time defined storage order with different orders for CPU and GPU
- all defined in one handy place, the storage_order.F90 file. Multiple
storage orders are supported through attributes in the Hybrid Fortran di-
rectives.

• Automatic compile time array reformatting - Hybrid Fortran reformats
your data with respect to privatization and storage order at compile time.
This means you can leave existing Fortran code as is, only the setup using
the two Hybrid Fortran directives is needed.

• Temporary automatic arrays, module data and imported scalars within
GPU kernels (aka subroutines containing a GPU ‘@parallelRegion‘) - this
functionality is provided in addition to CUDA Fortran’s device syntax fea-
tures.

• Support for Pointers.

• Separate build directories for the automatically created CPU and GPU
codes, showing you the created F90 files. Get a clear view of what happens
in the back end without cluttering up your source directories.

• Use any x86 Fortran compiler for the CPU code (PGI and Intel Fortran
have been tested).

• Highly human readable intermediate F90 source files. The callgraph, in-
cluding subroutine names, remains the same as in the user code you specify.
The code in the intermediate source files is auto indented for additional
reading comfort.

• Macro support for your codebase - a separate preprocessor stage is applied
even before the hybrid fortran preprocessor comes in, in order to facilitate
the DRY principle.

• Arbitrary usage of line length and line continuations is allowed in Hybrid
Fortran. The framework will automatically merge all continued lines, then
apply the transformation steps, then split the lines up again in order to
ensure compliance with Fortran compilers.
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• Automatic creation of your callgraph as a graphviz image, facilitating your
code reasoning. Simply type ‘make graphs‘ in the command line in your
project directory.

• Automatic testing together with your builds - after an initial setup you can
run validation tests as well as valgrind automatically after every build (or
by running ‘make tests‘). As an example, say you’d like the preprocessor to
tell you that there is a calculation error in array X at point i=10,j=5,k=3?
If you set up everything accordingly, this is pretty much what Hybrid
Fortran does for you. This speeds up development in large framework a
lot, since automated testing means that you can check your work after each
submodule or even kernel.

• Automatic ’printf’ based device debugging mode. Prints all input arrays,
output arrays and temporary arrays at the end of each kernel run at a
compile-time specified point in a nicely readable format. This output can
then be manually validated against the CPU version (which should already
produce correct results at that point). Please note: Since PGI’s CUDA
Fortran does not yet support real device debugging, Hybrid Fortran cannot
support that either at this point. However, since the code runs on CPU
as well, the class of bugs that are affected by this restriction is rather
small (since computational code can be validated on the CPU first) and
the current debug mode has been proven to be sufficient for the time being.

• Automatic linking and installing of executables. Simply specify the exe-
cutable names in the ‘MakesettingsGeneral‘ configuration file and use cor-
responding filenames for the main files (which can be placed anywhere in
your source tree). The Hybrid Fortran build system will automatically
generate the executables (each in CPU and GPU version) and install them
in subdirectories of your test directory. The test directories are persistant,
such that you can put your initialization files, validation scripts and perfor-
mance test scripts there. All this happens simply through running ‘make;
make install‘ in your project directory.
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1.3 Hybrid Fortran Directives

The directives introduced with the Hybrid Fortran framework are the only
additions that have been made to the Fortran 90 language in order to achieve
the objectives stated in sec. 1.1. All other syntax elements in Hybrid Fortran
are a strict subset of Fortran 90.

It is necessary to introduce the following denotations before introducing the
new directives:

A domain in this context denotes a tuple containing a data dimension and its
size. For example, if we have an array a declared within the range (1, NX)
and looped over using the iterator x, we call this array to be domain
dependant in domain x. For simplicity, we assume that iterators over the
same data dimension and range are always named in a consistant way.

A parallel region is a code region that can be executed in parallel over a one
or more domains.

The following section lists the two directives and their available options for
later reference.

1.3.1 Parallel Region Directive

Listing 1.1 shows the parallel region directive. This directive is an abstraction
of for-loops as well as CUDA kernels that allows the framework to define these
structures at compile time. It is only allowed to be inserted in the implementation
part of a subroutine.

1 @parallelRegion{ATTRIBUTE_NAME1(MEMBER1 , MEMBER2 , ...), ...}

2 ! code to be executed in parallel !

3 symbol1 , symbol2 , ...

4 @end parallelRegion

Listing 1.1: Parallel region directive syntax.

The following attributes are supported for this directive:

appliesTo Specify one or more of the following attribute members in order to
set this parallel region to apply to either the CPU code version, the GPU
version or both. Omitting this attribute has the same effect as specifying
all supported architectures.

1. CPU

2. GPU
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domName (Required) Specify one or more domain names over which the code
can be executed in parallel. These domain names are being used as iterator
names for the respective loops or CUDA kernels.

domSize (Required) Set of the domain dimensions in the same order as their re-
spective domain names specified using the domName attribute. It is required
that |domName| = |domSize|.

startAt Set the lower boundary for each domain at which to start computations.
Omitting this attribute will set all boundaries to 1. It is required that
|startAt| = |domName|.

endAt Set the upper boundary for each domain at which to end computations.
Omitting this attribute will set all boundaries to domSize for each domain.
It is required that |startAt| = |domName|.

reduction Works in the same way as OpenMP reduction directives. This
is only supported with the OpenACC backend however. For example
reduction(+:result) sums up result over all threads.

template Defines a postfix that is to be applied to different attributes that are
loaded using the preprocessor. Currently this only affects CUDA Block-
sizes: They are loaded using CUDA_BLOCKSIZE_X_[Template-Name] from
the preprocessor (storage_order.F90 is the most handy place to define
them). The goal of this attribute is to to be able to hoist hardware de-
pendent attributes outside of the code, so when a new architecture comes
along, all you need to do is rewriting the template. This functionality will
be extended in future Hybrid Fortran releases. Specify this template name
without quotes.

Please note: CUDA Fortran differentiates between different subroutine types
[1, p. 4]. Following its design goal of keeping a low complexity, Hybrid Fortran
simply rewrites subroutines definitions to one of the CUDA subroutine types, de-
pending on the subroutine’s position relative to the parallel region (determined
through metainformation about the entire visible source code). This introduces
some restrictions for subroutines calling, containing or being called by GPU par-
allel regions (see also sec.1.4). For future reference these restricted subroutines
are named in the following way (see figure 1.1):

1. Subroutines that call one or more subroutines containing a GPU parallel
region are called “wrapper subroutines”.

2. Subroutines that contain a GPU parallel region are called “kernel subrou-
tines”.

3. Subroutines that are called inside a GPU parallel region are called “inside
kernel subroutines”.
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4. All other subroutines are called “host subroutines”.

1.3.2 Domain Dependant Directive

Listing 1.2 shows the “domain dependant” directive. It is used to specify the
involved symbols and their domain dependencies. This information then allows
the framework to rewrite the symbol accesses and declarations for the GPU and
CPU cases (see example in section 1.3.4). Please note the following for using
this directive:

1. For symbols the framework only operates on local information available
for each subroutine. As an example, whether a symbol has already been
copied to the GPU is not being analyzed. For this reason the present flag
has been introduced (see below).

2. Domain Dependant Directives need to be specified between the specifica-
tion and the implementation part of a Fortran 90 subroutine.

1 @domainDependant{ATTRIBUTE_NAME1(MEMBER1 , MEMBER2 , ...), ...}

2 ! symbols that share the attributes !

3 ! defined above to be defined here , separated !

4 ! by commas !

5 ...

6 @end domainDependant

7

8 !Minimal Example:

9 @domainDependant{domName(x), domSize(NX)}

10 a, b, c

11 @end domainDependant

12 !-> Defines the three arrays a, b, c to be dependant in domain x.

Listing 1.2: Domain dependant directive syntax.

The following attributes are supported for this directive:

domName Set of all domain names in which the symbol needs to be privatized.
This needs to be a superset of the domains that are being declared as the
symbol’s dimensions in the specification part of the current subroutine
(except if the autoDom attribute flag is used, see below). More specifically,
the domain names specified here must be the set of domains from the
specification part plus the parallel domains (as specified using the parallel
region directive, see section 1.3.1) for which privatization is needed.

domSize Set of the domain dimensions in the same order as their respective
domain names specified using the domName attribute. It is required that
|domName| = |domSize|.
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accPP Preprocessor macro name that takes |domSize| arguments and outputs
them comma separated in the current storage order for symbol accesses.
This macro must be defined in the file storage_order.F90 (see section
3.1). In case the autoDom attribute is being used, the accPP specification
is not necessary - AT, AT4, AT5 (...) are assumed as defined storage order
macro names, depending on the number of array dimensions.

domPP Preprocessor macro name that takes |domSize| arguments and out-
puts them comma separated in the current storage order for the symbol
declaration. This macro must be defined in the file storage_order.F90

(see section 3.1). In case the autoDom attribute is being used, the domPP

specification is not necessary - DOM, DOM4, DOM5 (...) are assumed as defined
storage order macro names, depending on the number of array dimensions.
This preprocessor macro is usually identical to the one defined in accPP.

attribute Attribute flags for these symbols. Currently the following flags are
supported:

present In case this flag is specified, the framework assumes array data
to be already present on the device memory for GPU compilation and
the data will not be transfered.

transferHere In case this flag is specified, all domain dependants with
intent specified as in, inout or out will be transfered to- and from
the device (according to the intent). This flag may not be specified
together with the present flag (and it should not be necessary, since
it has exactly opposite effects).

autoDom In case this flag is specified, the framework will use the ar-
ray dimensions that have been declared using standard Fortran 90
syntax to determine the domains for each symbol. In case the par-
allel domains are ommitted from the Fortran specification (in order
to allow different parallelization for CPU and GPU), they still need
to be specified using domName and domSize for symbols that are to
be privatized for each thread. The parallel domains will be inserted
before any independent domains picked up through the declaration,
depending on the subroutine’s position towards the parallel region.
In addition, using autoDom will by default enable standard accPP and
domPP settings, if not specified otherwise. Using this flag then greatly
simplifies the @domainDependant specification part, since the direc-
tive template (everything between the directive and the corresponding
@end domainDependant statement) can be reused by symbols of dif-
ferent domains.

host In subroutines or modules that are not related to a parallel region
in their callgraph, Hybrid Fortran would not know whether a symbol
resides on the host or the device. This attribute makes this clear. It
is mostly needed in setup code and for module arrays.
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Please note: In case neither present nor transferHere is being used,
Hybrid Fortran will automatically transfer all domain dependants with
intent specified as in, inout or out from and to the device according
to their intent - if and only if the current subroutine is calling a ker-
nel. In other words, the automatic behavior without specifying present

or transferHere in host- or wrapper subroutines will only work if the
domain dependants are only used within one wrapper subroutine. For
real world callgraphs it is therefore usually necessary to use present and
transferHere attributes in all host- and wrapper subroutines.

An important special case are scalar parameters: In case of a CUDA Fortran
implementation, scalars must be passed by value in device functions. The frame-
work must for that reason be aware of scalar symbols in kernel subroutines, such
that their specification can be adjusted accordingly. For simplicity reasons, the
@domainDependant directive has been reused for scalars and can be used in the
following way:

1 @domainDependant {}

2 scalar1 , scalar2 , ...

3 @end domainDependant

Listing 1.3: Domain dependant directive syntax for scalars.

In Hybrid Fortran terms then, a scalar is a domain dependant without
domains. You can however use attribute(autoDom) as well here. As a general
best practice, you will have two domain dependant directives: One listing the
symbols and arrays privatized in the parallel domains and one listing the non
privatized symbols and arrays (i.e. they are not variant over these domains).

1.3.3 Backend Implementations

Now that the directives have been introduced, you might wonder what exactly
Hybrid Fortran is doing with all this. Essentially, the code transformation frame-
work consists of three parts:

1. Parser (Your Hybrid Fortran code including directives).

2. Callgraph Analysis (Based on the Parser, produces a callgraph coloured by
the subroutines’ position relative to the parallel regions for CPU and GPU
case).

3. Backend Implementation (For each relevant code point, the Parser calls
implementation hooks for the transformation).

This separation of concerns allows different implementations to be passed
in and used, thus enabling portability to different hardware platforms as well
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as flexibility during development and testing. The implementation class can be
chosen using the MakesettingsGeneral file in your project’s config folder (see
also sec. 2.2). Table 1.1 gives you an overview over the capabilities of each
implementation. Adding your own implementation class is as easy as imple-
menting the class in the file hf_processor/FortranImplementation.py, using
any of the provided classes as a base class and specifying your class name in
MakesettingsGeneral. For a more detailed look at how to do this, please see
also sec. 3.5.

1.3.4 Example

Let’s look at the following example module that performs matrix element ad-
dition as well as multiplication. Please note, that the storage order inefficien-
cies are disregarded in the lst. 1.4. Also, please note that there are many
more examples provided in soure form on http://github.com/muellermichel/

Hybrid-Fortran/blog/master/examples/Overview.md.

1 module example

2 contains

3 subroutine wrapper(a, b, c)

4 real , intent(in), dimension(NX, NY, NZ) :: a, b

5 real , intent(out), dimension(NX, NY, NZ) :: c

6 integer (4) :: x, y

7 do y=1,NY

8 do x=1,NX

9 call add(a(x,y,:), b(x,y,:), c(x,y,:))

10 call mult(a(x,y,:), b(x,y,:), c(x,y,:))

11 end do

12 end do

13 end subroutine

14

15 subroutine add(a, b, c)

16 real , intent(in), dimension(NZ) :: a, b, c

17 integer :: z

18 do z=1,NZ

19 c(z) = a(z) + b(z)

20 end do

21 end subroutine

22

23 subroutine mult(a, b, d)

24 real , intent(in) :: a(NZ), b(NZ)

25 real , intent(out) :: d(NZ)

26 integer :: z

27

28 do z=1,NZ

29 d(z) = a(z) * b(z)

30 end do

31 end subroutine

32 end module example

Listing 1.4: CPU version of matrix element module

http://github.com/muellermichel/Hybrid-Fortran/blog/master/examples/Overview.md
http://github.com/muellermichel/Hybrid-Fortran/blog/master/examples/Overview.md
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Porting this to the GPU, one might want to move the loops over the x and
y domains to the add and mult subroutines, in order to eliminate the need for
inlining and optimize for register usage. The following listing shows how this is
done in Hybrid Fortran. Figure 3.3 in chap. 3 shows the (programmatically
created) callgraph of this module.

1 module example contains

2 subroutine wrapper(a, b, c, d)

3 real , dimension(NZ), intent(in) :: a, b

4 real , dimension(NZ), intent(out) :: c, d

5 @domainDependant{domName(x,y), domSize(NX ,NY), attribute(autoDom)

}

6 a, b, c

7 @end domainDependant

8 @parallelRegion{appliesTo(CPU), domName(x,y), domSize(NX , NY)}

9 call add(a, b, c)

10 call mult(a, b, d)

11 @end parallelRegion

12 end subroutine

13

14 subroutine add(a, b, c)

15 real , dimension(NZ), intent(in) :: a, b

16 real , dimension(NZ), intent(out) :: c

17 integer :: z

18 @domainDependant{domName(x,y), domSize(NX ,NY), attribute(autoDom)

}

19 a, b, c

20 @end domainDependant

21 @parallelRegion{appliesTo(GPU), domName(x,y), domSize(NX , NY)}

22 do z=1,NZ

23 c(z) = a(z) + b(z)

24 end do

25 @end parallelRegion

26 end subroutine

27

28 subroutine mult(a, b, d)

29 real , dimension(NZ), intent(in) :: a, b

30 real , dimension(NZ), intent(out) :: d

31 integer :: z

32

33 @domainDependant{domName(x,y), domSize(NX ,NY), attribute(

autoDom)}

34 a, b, d

35 @end domainDependant

36

37 @parallelRegion{appliesTo(GPU), domName(x,y), domSize(NX , NY)}

38 do z=1,NZ

39 d(z) = a(z) * b(z)

40 end do

41 @end parallelRegion

42 end subroutine

43 end module example

Listing 1.5: example of a Hybrid Fortran subroutine with a parallel region
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This will be rewritten by the Hybrid Fortran framework into two versions.
The CPU version will be look like the original (but with an optimized storage
order and added OpenMP directives for the parallelization) while the GPU ver-
sion, using the CUDA Fortran backend implementation, is shown below. Please
note, that

1. the two implementations loop over the xy domains at different points, ac-
cording to the appliedTo attribute defined in the @parallelRegion direc-
tives. See figure 3.3 in cha. 3 in order to get an overview.

2. the declarations and accessors for the arrays a, b, c and d did not need to
be changed in the add and mult subroutines.

1 module example

2 contains

3 subroutine wrapper(a, b, c, d)

4 use cudafor

5 real , intent(in) :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY, NZ))

6 real ,device :: a_d(DOM(NX, NY, NZ))

7 real ,device :: b_d(DOM(NX, NY, NZ))

8 real , intent(out) :: c(DOM(NX, NY, NZ)), d(DOM(NX, NY, NZ))

9 real ,device :: c_d(DOM(NX, NY, NZ))

10 real ,device :: d_d(DOM(NX, NY, NZ))

11

12 type(dim3) :: cugrid , cublock

13 integer (4) :: cuerror

14 a_d(:,:,:) = a(:,:,:)

15 c_d(:,:,:) = 0

16 b_d(:,:,:) = b(:,:,:)

17 d_d(:,:,:) = 0

18

19 cugrid = dim3(NX / CUDA_BLOCKSIZE_X , NY / CUDA_BLOCKSIZE_Y , 1)

20 cublock = dim3(CUDA_BLOCKSIZE_X , CUDA_BLOCKSIZE_Y , 1)

21 call add <<< cugrid , cublock >>>(a_d(AT(:,:,:)), b_d(AT(:,:,:))

, c_d(AT(:,:,:)))

22 ! **** error handling left away to improve readability *** !

23

24 cugrid = dim3(NX / CUDA_BLOCKSIZE_X , NY / CUDA_BLOCKSIZE_Y , 1)

25 cublock = dim3(CUDA_BLOCKSIZE_X , CUDA_BLOCKSIZE_Y , 1)

26 call mult <<< cugrid , cublock >>>(a_d(AT(:,:,:)), b_d(AT(:,:,:)

), d_d(AT(:,:,:)))

27 ! **** error handling left away to improve readability *** !

28

29 c(:,:,:) = c_d(:,:,:)

30 d(:,:,:) = d_d(:,:,:)

31 end subroutine

32

33 attributes(global) subroutine add(a, b, c)

34 use cudafor

35 real , intent(in) ,device :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY,

NZ))

36 real , intent(out) ,device :: c(DOM(NX, NY, NZ))
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37 integer :: z

38 integer (4) :: x, y

39

40 x = (blockidx%x - 1) * blockDim%x + threadidx%x

41 y = (blockidx%y - 1) * blockDim%y + threadidx%y

42 do z=1,NZ

43 c(AT(x,y,z)) = a(AT(x,y,z)) + b(AT(x,y,z))

44 end do

45 end subroutine

46

47 attributes(global) subroutine mult(a, b, d)

48 use cudafor

49 real , intent(in) ,device :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY,

NZ))

50 real , intent(out) ,device :: d(DOM(NX, NY, NZ))

51 integer :: z

52 integer (4) :: x, y

53

54 x = (blockidx%x - 1) * blockDim%x + threadidx%x

55 y = (blockidx%y - 1) * blockDim%y + threadidx%y

56 do z=1,NZ

57 d(AT(x,y,z)) = a(AT(x,y,z)) * b(AT(x,y,z))

58 end do

59 end subroutine

60 end module example

Listing 1.6: GPU version of the hybrid code shown above
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1.4 Restrictions

The following restrictions will need to be applied to standard Fortran 90 syntax
in order to make it compatible with the Hybrid Fortran framework in its
current state. For the most part these restrictions are necessary in order to
ensure CUDA Fortran compatibility. Other restrictions have been introduced
in order to reduce the program complexity while still maintaining suitability for
common physical packages.

Figure 1.1: Callgraph showing subroutine types with restrictions for GPU com-
pilation.

1. Hybrid Fortran has only been tested using free form Fortran 90 and Fortran
2003 syntax.

2. Your free form files will need the f90 or F90 file endings for the Hybrid
Fortran build system to pick them up (this is also recommended by Intel
if you want to use their compiler).

3. All pointers that are to touch the device need a specified intent and their
domain / dimension setup needs to be specified within a domainDependant
directive. See the diffusion3D example for an example code on how to
use pointers together with Hybrid Fortran.

4. When using the CUDA Fortran backend, Hybrid Fortran only supports
data parallel programming. In order to use reduce functions, it is recom-
mended to either use BLAS/CUBLAS (see poisson2d solver example) or
use the OpenACC backend together with @parallelRegion directives and
reduce attributes.
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5. Because of OpenACC / CUDA Fortran restrictions, kernel- and inside ker-
nel subroutines may not

(a) contain symbols declared with the DATA or SAVE attribute.

(b) contain multiple parallel regions.

(c) be recursive.

(d) call other kernel subroutines.

(e) contain the recursive, pure and elemental keywords.

(f) contain inline array initialisations. Static data initialisations are ide-
ally being done outside the parallel loop, typically in init subrou-
tines for each module that are always executed on the CPU. Hybrid
Fortran directives are not needed for code parts that are in no case
to be executed on the GPU, however the compile time storage order
needs to be be respected by using the same storage order macros as
specified in the domPP and accPP attributes for the involved arrays.
Alternatively you can specify @domainDependant directives in these
code parts, so HF will take over the storage order handling.

6. Inside kernel subroutines called by kernel subroutines must reside in the
same Fortran module as their caller.

7. All symbols that are declared as domain dependant using @domainDependant
directives must be of integer, real, character or logical type (however
any byte length within the Fortran 90/2003 specification is allowed). Hy-
brid Fortran doesn’t currently have support for derived types containing
data arrays that need to be copied onto the device. You can use derived
types in host-only code however.

8. Arrays that are declared as domain dependant using @domainDependant

directives may not appear in declaration lines with mixed domain depen-
dance. Example:

1 ..

2 real (8), dimension(nz) :: a, b

3 real (8), dimension(nz) :: c

4 ..

5 @domainDependant {domName(x), domSize(nx)}

6 a, b

7 @end domainDependant

8

9 @domainDependant {domName(y), domSize(ny)}

10 c

11 @end domainDependant

12 ..

Listing 1.7: This is ok.
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1 ..

2 real (8) dimension(nz) :: a, b, c

3 ..

4 @domainDependant {domName(x), domSize(nx)}

5 a, b

6 @end domainDependant

7

8 @domainDependant {domName(y), domSize(ny)}

9 c

10 @end domainDependant

11 ..

Listing 1.8: This is not ok.

9. All source files (h901, H902, f90, F90) need to have distinctive filenames
since they will be copied into flat source directories by the build system.

10. Subroutines in h90 and H90 files need distinctive names for the entire source
tree.

11. Only subroutines are supported together with Hybrid Fortran directives,
e.g. functions are not supported.

12. Preprocessor directives that affect the Hybrid Fortran preprocessing (such
as code macros) must be expandable from definitions within the same H90
file, i.e. imports are not followed. Use the H90 file suffix (instead of h90)
in case you want to use macros in your code.

13. If you use local module scalars inside a kernel subroutine, the wrapper
subroutine must reside in the same module.

14. Module scalars, when used in a kernel subroutine, will loose their constant
characteristic on GPU. They therefore can’t be used where a constant is
required, such as in a case statement. (They do work as a dimension
specifier for automatic arrays however.)

15. I/O statements such as read or write and STOP statements are not possible
inside GPU parallel regions, except for emulated mode. print is however
supported.

In general, since

1. GPU execution currently requires subroutine calls to be inlined and

2. the number of registers per GPU Streaming Multiprocessor is limited

1h90 is the file extension used for Hybrid Fortran source files.
2H90 is the file extension used for Hybrid Fortran source files that contain same-file macro

expansions.
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it is best to split deep callgraphs and large computations into multiple smaller
kernels (i.e. @parallelDomain{ appliedTo(GPU), ..}).
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1.5 Device Data Handling

The goal of device data handling is to hide and abstract code that is only
necessary for the CUDA execution path. Hybrid Fortran works similarly to
OpenACC in that respect. For all non-scalars that are marked as domain de-
pendant using the @domainDependant directive, the following rules apply with
respect to device data in case of GPU compilation:

1. If the current subroutine contains calls to kernel subroutines and the do-
main dependant symbol is declared using the intent(in) or intent(inout)
statement, a device version of the symbol will be allocated and its content
will be copied to that device array at the beginning of the subroutine.

2. If the current subroutine contains calls to kernel subroutines and the do-
main dependant symbol is declared using the intent(out) or intent(inout)
statement, a device version of the symbol will be allocated and set to zero
and the device array’s content will be copied to the original array at the
end of the subroutine.

3. If the domain dependant symbol is local for this subroutine, it will be
allocated as a device symbol and its content will be set to zero at the
beginning of the subroutine.

4. In case the domain dependant directive contains an attribute(present)

statement, no data will be copied and the original symbol will be declared
as a device symbol.

5. In case the domain dependant directive contains an attribute(transferHere)

statement, the data will always copied over to the device, following the
specified intents (as in (1), (2)).

1.5.1 Module Data

Using the following guidelines, Hybrid Fortran is able to manage your imported
module data to be copied to and from the device.

1. After the specification part of your module, add @domainDependant di-
rectives and include all arrays that need to be touched by your parallel
regions.

2. In case your module data arrays are allocatable (which is probably the
case if your problem dimensions are runtime defined), you cannot use
attribute(autoDom). Instead, use the domName and domSize attributes
to specify the domain setup. You may use runtime defined scalar vari-
ables (e.g. nx, i, ...) within this specification as long as these variables
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are always defined within the parallel regions that use these arrays. These
runtime variables do not need to be imported into the declaring module.

3. Specify attribute(host) for all these arrays in the module specification.

4. In the module data consuming kernel subroutine, simply import the data
with use statements (please note that Hybrid Fortran cannot parse multi-
line use statements at this point) and specify them also inside the corre-
sponding domainDependant directive. You may use attribute(autoDom)

there, since Hybrid Fortran will use the domain information that you pro-
vide in the module specification. The data handling at this point follows
the same rules as locally declared arrays (see above) - so make sure that
you use attribute(present) and attribute(transferHere) if you have
multiple kernel subroutines that touch the same data.
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1.6 Feature Comparison between Hybrid Fortran and
OpenACC

The following table gives an overview over the differences between OpenACC
and the Hybrid Fortran framework.
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Feature OpenACC Hybrid Comments
Fortran 90

Enables close to fully optimized X CUDA Fortran implementation
Fortran code for GPU execution available, which has equal or better

performance than OpenACC in all
cases known to us

Enables close to fully X Storage order abstraction as well
optimized Fortran code as allowing both coarse grained
for CPU execution as well as fine grained parallelization

leads to this result.

Automatic device data X X
copying

Allows adjusted looping X
patterns for CPU and
GPU execution

Allows changing the X
looping patterns with
minimal adjustments in
user code

Handles compile time X
defined storage order

Allows to adapt X Details, see section 3.5
for other technologies
without changing the user
code (e.g. switching to
OpenCL)

Allows arbitrary access X X
patterns in parallel
domains

Allows multiple parallel X (X) HF: Only OpenACC backend.
regions per subroutine

Generated GPU code remains X OpenACC compiles to CUDA C
easily human (PGI), introduces new
readable functions for device kernels.

Hybrid Fortran can translate to
CUDA Fortran, code remains
easily readable.

Allows debugging of X X
device data

Framework Sourcecode X
available

Table 1.2: Feature Comparison OpenACC vs. Hybrid Fortran



Chapter 2

Usage of the Hybrid Fortran
Framework

This chapter is intended to give the informations necessary for installing and
using the Hybrid Fortran framework.

2.1 Framework Dependencies

Hybrid Fortran requires the following software components:

1. A compiler for either OpenACC Fortran or CUDA Fortran (PGI Acceler-
ator v15.7 recommended).

2. An x86 Fortran compiler.

3. Python v2.6.x, Python v2.7.x or compatible.

4. GNU Make 3.81.

5. GNU gcc or clang (aliased to gcc).

6. A POSIX compatible operating system.

7. (optional) valgrind is recommended if you would like to use the test sys-
tem shipped with this framework (accessible through make tests).

8. (optional) Allinea DDT if you need parallel debugging on the device.

9. (optional) For the graphical callgraph representation using make graphs:
“pydot” python library1 as well as the “Graphviz” program package2.

10. (optional) NetCDF4-Python and numpy in case you’d like to use Hybrid
Fortran’s automated testing together with NetCDF Output.

1http://code.google.com/p/pydot/
2http://www.graphviz.org/Download..php

23
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2.2 User Defined Components

The following files displayed in figure 3.1 are defined by the user:

h90(H90) Fortran sources A source directory that contains Hybrid Fortran
files (h90/H90 extension). It may also contain files with f90 or F90 exten-
sions. The source directory is by default located at path-to-project/source/*
(this can be changed in the path-to-project/config/MakesettingsGeneral
file).

Makefile Used to define module dependencies. The Makefile is by default lo-
cated at path-to-project/buildtools/Makefile. Note: All source files
are being copied into flat source folders before being compiled - the build
system is therefore source directory structure agnostic, i.e. files can be
placed into arbitrary subdirectores below the source directory.

MakesettingsCPU CPU compiler settings are specified in MakesettingsCPU,
located at path-to-project/buildtools/.

MakesettingsGPU GPU compiler settings are specified in MakesettingsGPU,
located at path-to-project/buildtools/.

MakesettingsGeneral Common settings, such as executable file names, the
choice Hybrid Fortran preprocessor implementation class, or files and fold-
ers being excluded from compilation. With the helper comments these
settings should be self explanatory.

storage order.F90 This fortran file contains fortran preprocessor statements
in order to define the storage order for both CPU and GPU implementation.
It can be placed anywhere in the source directory or its subdirectories (see
above).

2.3 Build Interface

make builds both cpu and gpu versions of the codebase situated in
path-to-project/source/*.

make build cpu builds the cpu version of the codebase situated in path-to-project/source/*.

make build gpu builds the gpu version of the codebase situated in path-to-project/source/*.

make install builds both cpu and gpu versions of the codebase situated in
path-to-project/source/* and installs the executables into the test folder
defined in path-to-project/buildtools/MakesettingsGeneral.

make install cpu Like make install, but only for the cpu version.
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make install gpu Like make install, but only for the gpu version.

make clean Removes the build directories as well as cpu executables from the
test folders.

make clean cpu Like make clean, but only for the cpu version.

make clean gpu Like make clean, but only for the gpu version.

make tests Executes make install and runs the automatic tests (see sec. 2.4)
for all executables.

make tests cpu Like make tests, but only for the cpu version.

make tests gpu Like make tests, but only for the gpu version.

make TARGETS DEBUG=1 builds TARGETS in debug mode (use any of
the targets defined above). Uses the DebugCUDAFortranImplementation

in case of GPU compilation (by default), which prints predefined data
points for every kernel parameter after every kernel execution. See also the
flag DEBUG_MODE in MakesettingsGeneral which allows to use the debug
mode by default.

make TARGETS VERBOSE=1 builds TARGETS with more detailed out-
put.

make graphs creates the graphical callgraph representations in the
path-to-project/build/callgraphs/ directory.

2.4 Test Interface

Hybrid Fortran comes with an automated test system that - once set up -
is intended to find all errors in your code, each time a build completes. This
includes

• Program errors - e.g. use stop 2 in your code in order to signal Hybrid
Fortran that your program has reached a failure condition. This will lead
make tests to fail.

• Initialization errors (symbols / arrays being read without initializing them
first), using valgrind.

• Memory handling errors (in case you forget to deallocate arrays), using
valgrind.

• Computational errors, using reference data. Currently supported for this
validation is output in NetCDF format as well as standard Fortran .DAT

files. For NetCDF, up to five data dimensions per variable are supported,
for .DAT files it is up to three dimensions.
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2.4.1 Remote Execution

It is possible to run your tests remotely by putting the hostname or IP address
into the environment variable HF_RUN_OVER_SSH. This will run executables with
the command ssh ${HF_RUN_OVER_SSH} [command] instead of directly.

2.4.2 Output Validation

If you would like to integrate the provided output validation system, please do
the following:

1. Choose between the following options for your output.

(a) Have your program output in NetCDF format. In that case you
will need numpy as well as NetCDF-Python installed as additional de-
pendencies. It is recommended to install these dependencies into a
virtualenv such that you can use a different compilers for the post
processing as for the program itself (you will need NetCDF compiled
in both versions). Compiling the entire post processing stack with PGI
compilers (all of python, numpy) is not recommended. You can then
use the SOURCE_THIS_BEFORE_TESTING and SOURCE_THIS_AFTER_TESTING

options in MakesettingsGeneral to specify the activate and deac-
tivate scripts for your virtualenv. In case of NetCDF, the Hybrid
Fortran test system will automatically pick up any variable in your
output and test it against the reference.

(b) Add calls to the helper_functions module procedures write1DToFile,
write2DToFile and write3DToFile to your program to be tested in
order to write your data to the .dat files in the test\your-executable\out
folder. The helper_functions module is part of the Hybrid Fortran
libraries and it is always included in Hybrid Fortran builds - in fact
it gets copied into your build directories for consistancy reasons. You
may choose any filename for the .dat files, the allAccuracy.py script
will find them automatically in the test\your-executable\out folder.

2. Compile (make; make install in project directory) and run your program
to make sure the files are being created. Make sure that they actually
contain data, for example by checking the file size.

3. Repeat steps 1, 2 in your reference source code in case you go for the
.DAT-files option.

4. Compress the reference data created by your reference program into
./test/your-executable/ref.tar.gz. See also the description of runTest.sh
in conjunction with the validation command below to understand the
correct format.
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5. During development of your hybrid codebase, set the flags TEST_WITH_EVERY_BUILD
and DEBUG_MODE to true in the file MakesettingsGeneral. This ensures
that your tests will run with every build of Hybrid Fortran.

2.4.3 Interface

The following files are part of the sample test interface provided with Hybrid
Fortran. They are located in the framework’s binary directory. In order to set
up the test system correctly, what’s relevant for you is the information provided
for the files runTest.sh and runTests.sh. The other files are described here for
completeness and in case you’d like to adapt the system for different use cases.

accuracy.py Compares one NetCDF - or Fortran 90 .dat file with a reference
file. Endianness, number of bytes per floating point value can be specified
for the .dat case using command line parameters. See --help for usage.

allAccuracy.sh Compares all Fortran 90 .dat files or NetCDF files according
that match a filename pattern. By default, the pattern ./out/*.dat is
used - you can override this by defining TEST_OUTPUT_FILE_PATTERN in
MakesettingsGeneral.

runTest.sh Executes a series of tests for one executable. In order to use this,
please cd into the executable’s test directory first. This script takes three
mandatory and three optional command line arguments :

1. The path to the executable as seen from its working directory.

2. The architecture name for which the tests should be performed (cur-
rently either cpu or gpu).

3. The postfix of the command line argument specification file. These
files with filename testConfig_[postfix].txt should be placed in
the executable’s test directory for this matter. Each line in these text
files will be interpreted as follows:
arg_name1 arg_value1 arg_name2 arg_value2 .... All lines need
to have the same number of command line arguments specified. The
executables to be used with this test system are assumed to have a
unix-style command line interface. This can easily be achieved using
the kracken Fortran module, already provided with Hybrid Fortran
(for its documentation, see [2]). As an example, the following com-
mand line argument specification file will call the executable once with
arguments -nx 1 -ny 2 and once with -nx 2 -ny 3:

1 nx 1 ny 2

2 nx 2 ny 3

Listing 2.1: A sample command line argument specification file
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. By using different postfixes you can define any number of configu-
ration files that can then be used together with runTest.sh. Please
note that the following postfixes have a special meaning:

validation attempts to extract the reference data from the file ref.tar.gz
(which is to be located inside the executable’s test directory) and
runs allAccuracy.sh with matching reference directories named
using the schema ./ref_[arg_name1][arg_value1]_[...]/. As
an example, if you’d like to use the specification file as shown in
lst. 2.1, you will need to provide a file ref.tar.gz that con-
tains the following reference data directories: ref_nx1_ny2 and
ref_nx2_ny3. Use the command tar -cvzf ref.tar.gz ref_*

to create this file once you have the reference data ready. In order
to create

valgrind calls valgrind tests with these command line specifications.
This should only be used for cpu executables that have been com-
piled using debug flags (-g).

4. (optional) The output file pattern for your executable. See also the
setting TEST_OUTPUT_FILE_PATTERN in config/MakesettingsGeneral.

5. (optional) The path to a script that is to be sourced before running
validation tests (see also step 1 in section 2.4.2).

6. (optional) The path to a script that is to be sourced after running
validation tests.

runTests.sh This script cd’s into the test directories and runs validation as
well as valgrind tests (for cpu executables when the debug argument is
being passed to this script) for all specified executables. This assumes that
you have specified command line argument specification files for those two
test cases (see above). runtests.sh takes the following arguments:

1. A list of paths to executables.

2. The mode in which the executables should be run - currently debug

or production.

3. The architecture name for which the tests should be performed (cur-
rently either cpu or gpu).

4. (optional) The output file pattern for your executable. See also the
setting TEST_OUTPUT_FILE_PATTERN in config/MakesettingsGeneral.

5. (optional) The path to a script that is to be sourced before running
validation tests (see also step 1 in section 2.4.2).

6. (optional) The path to a script that is to be sourced after running
validation tests.

By setting the TEST_WITH_EVERY_BUILD flag to true in the file config/MakesettingsGeneral,
every build will automatically run runTests.sh with the executable list
used for compilation as well as the correct debug flag.
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2.5 Getting Started

1. Make sure your system meets the dependencies specified in section 2.1.

2. Make sure that at least your compiler is working correctly. The doc folder
provides a sample bashrc file that may help you setting up your environ-
ment for both the required and optional dependencies.

3. Clone http://github.com/muellermichel/Hybrid-Fortran to your com-
puter used for development.

4. Set the environment variable HF_DIR to the location under which you have
installed Hybrid Fortran.

5. cd into the Hybrid Fortran directory you’ve now installed on your com-
puter.

6. Run make example. This creates a new project directory named example.

7. Run cd example.

8. Run make; make install. If everything worked you should now have
a test subdirectory containing the example subdirectory containing two
executables, one for CPU and one for GPU execution. Otherwise it is
likely that some dependencies are missing, please reconsider section 2.1.

9. Run ./test/example/example_cpu; ./test/example/example_gpu. This
should execute and validate both versions.

10. Review the example source files located in ./source and get a feel for the
Hybrid Fortran directive syntax. Notice the storage_order.F90 file which
is used as a central point for specifying the data storage orders. Please refer
to the documentation for details.

11. Review the preprocessed source files located in ./build/cpu/source and
./build/gpu/source. Notice the OpenMP and CUDA code that has been
inserted into the example codebase. These files are important for debugging
as well as when you want to do manual performance optimizations (but you
should usually never change anything there, since it will get overwritten
with the next preprocessor run).

12. Review the config files located in ./config. The most important file for
integrating your own codebase will be ./config/Makefile. This file spec-
ifies the dependency tree for your source files. Please note that vpath’s
are not necessary, the Hybrid Fortran build system will find your source
files automatically, as long as you use the source directory specified in
./config/MakesettingsGeneral as the root of your sources (i.e. you

http://github.com/muellermichel/Hybrid-Fortran


2. Usage of the Hybrid Fortran Framework 30

may place your sources in an arbitrarily deep subdirectory structure). The
MakesettingsCPU and MakesettingsGPU are used to define the compilers
and compiler flags. You may use any CPU compiler, however only pgf90

is currently supported for CUDA compilation.

13. Run make clean; make DEBUG=1; make install in your example project
directory. This replaces the previously compiled executables with debug
mode executables.

14. The CPU version can be debugged with a compatible debugger.

15. Run ./test/example/example_gpu and notice how this executable now
prints debug information for every input and output at a specific data point
after every kernel run. You can change the data point in storage_order.F90.

16. Rename the example project directory to your project name and start
integrating your codebase. You can move it to any directory you’d like.

2.6 Migration to Hybrid Fortran with CUDA Fortran
Backend

Assuming that the starting point is a Fortran 90 source code for CPU, use the
following guidance in order to port your codebase to Hybrid Fortran with the
CUDA Fortran Backend. Please note: If you have many tight parallel loops in
the same subroutine, you may want to start with the OpenACC backend, since
it allows multiple parallel regions per subroutine. You can at a later point still
easily migrate to the CUDA Fortran backend by splitting up your kernels into
their own subroutine, if you find the OpenACC performance to be poor.

1. Run make example in the Hybrid Fortran root directory.

2. Rename the new example project directory to your project name. You can
also move it to any location you’d like.

3. Delete source/example.h90 and copy in the sourcecode you’d like to hy-
bridize using Hybrid Fortran. Please note that all loops that are to be run
in parallel on CPU or GPU and their entire callgraph should be visible to
the compiler in the source subdirectory. Your hybrid sources may be in
an arbitrary subdirectory structure below the source directory and may
consist of f90 and F90 files. The buildsystem will find all your source-
files recursively and copy them into the respective build directory in a flat
hierarchy.

4. When it comes to integrating your hybrid sourcecode into a larger codebase,
there are essentially two recommended options.
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Figure 2.1: Best practices for a source code migration to Hybrid Fortran
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(a) Move the entire codebase over into the Hybrid Fortran build system.
This is recommended if your build dependencies are specified in (or
can easily ported to) one central Makefile.

(b) (new since version 0.9) Move one (or later more) module of your
sourcebase over into the Hybrid Fortran build system. In this case it is
recommended to create a separate source directory for hybrid sources,
move your code there and link its path using the SRC_DIR_COMMON

setting in MakesettingsGeneral. Then, specify your other frame-
work source directories using the setting FRAMEWORK_DIRS and specify
your previous main Makefile using the setting FRAMEWORK_MAKEFILE.
You should use the Makefile coming with Hybrid Fortran in the root
project folder in order to interface with your build (no changes should
be required other than the settings you specify in MakesettingsGeneral.
This will create separate build directories for the CPU and GPU
case, copy in your FRAMEWORK_DIRS, generate and compile the hybrid
sources and then call FRAMEWORK_MAKEFILE within the build direc-
tory. You will also need the settings FRAMEWORK_EXECUTABLE_PATHS

and FRAMEWORK_INSTALLED_EXECUTABLE_PATHS in order to tell Hy-
brid Fortran which executables are being created by your build system
and where you’d like them installed afterwards for testing purposes.
You will need to adapt your previous build system for having moved
your hybrid sources.

5. In case you went with option 4a, adapt your filenames containing main
routines. The filename of your file(s) containing main routines need to cor-
respond to the executable names you have specified in the EXECUTABLES

variable in MakesettingsGeneral. E.g. if you want executables named
production_exec, test1_exec and test2_exec, the corresponding main
files need to be named production_exec.f90, test1_exec.f90 and test2_exec.f90.

6. Adjust config/MakesettingsGeneral - the configuration options should
be self explanatory.

7. Adjust config/Makefile by adding your hybrid source dependencies (and
deleting the example). If your previous build system was already built
on GNU Make it should be possible to cut and paste your dependency def-
initions without change. If you would like to exclude some files or fold-
ers in your source directory from compilation (in order to integrate mod-
ules one by one), you can do this by editing the EXCEPTIONS variable in
MakesettingsGeneral.

8. Adjust the FFLAGS and LDFLAGS variables in config/MakesettingsGPU

and config/MakesettingsCPU to reflect the compiler and linker options
that are needed to compile your codebase. Please note that currently only



2. Usage of the Hybrid Fortran Framework 33

CUDA Fortran with the Portland Group compiler pgf90 is supported and
tested as the GPU implementation.

9. Adjust the source/storage_order.F90 file according to the comments
you find there. This defines storage order macros and a few other variables
that Hybrid Fortran will use at the preprocessor stage. Make sure that
the storage order matches a scheme that is performant on the respective
target architecture - as the example shows, the GPU variable can be used to
differentiate between GPU and CPU architecture. For the GPU case, the
first dimension should be the one that gets mapped to X on the thread-
blocks, in order for memory accesses to be coalesced. This is in turn the
first dimension you specify in the domName and domSize attributes in your
@parallelRegion directives.

10. Run make; make install and run your program in order to test whether
the integration of your sourcecode into the Hybrid Fortran build system
has been successful. It should create the cpu and gpu executable versions
of your program in the test directory, however the gpu version will not run
on the GPU yet, since no directives have been defined so far.

11. Integrate a test system. You can use the test scripts that have been pro-
vided with this framework (see sec. 2.4) or use any other test system.

12. Define the parallel regions that are to be accelerated by CPU3 using a
@parallelRegion{appliesTo(CPU), ...} directive. See sec. 1.3.1 for de-
tails. Rename all files that (a) contain such regions or (b) contain subrou-
tines that are part of the call hierarchy inside those regions from *.f90 or
*.F90 to *.h90.

13. Make sure your program still compiles and runs correctly on CPU by exe-
cuting make clean; make install_cpu; [run your tests].

14. (optional, you will need graphviz and pydot) Run make graphs. You
should now have a graphical representation of your call hierarchy as “seen”
from your parallel regions upwards and downwards in the call tree.

15. Define the subprocedures within that call hierarchy that are to be ported
as GPU kernels. Fig. 2.1 is designed to help you with that process. Kernel
subprocedures should have the following properties:

(a) They only call subprocedures from the same module.

(b) They only call one more level of subprocedures (rule of thumb).

3For example “do” loops that are already executed on multicore CPU using OpenMP state-
ments.
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(c) The set of these subprocedures is self enclosed for all data with de-
pencies in your parallel domains, i.e. your data is only directly read
or written to inside these to-be kernels and their callees. If this is not
the case it will be necessary to restructure your codebase, e.g. put
pre- and postprocessing tasks that are defined inline within higher
level subprocedures into subprocedures and put them into your set of
kernels.

16. Make sure that callgraphs within GPU kernel subprocedures as well as
kernel subprocedure callers are all defined in h90/H90 files (rename from
f90/F90 where necessary).

17. Make sure that at least the kernel callers have all the array arguments
defined using intent statements (in, out, inout). It is recommended
that all arguments in all your subroutines are defined this way, since the
compiler will pick up some logical errors for you with this information.
This includes pointer types as well.

18. Analyse for all kernels which data structures they require and which of
those structures are dependant on your parallel domain. Define @domainDependant
directives for those data structures within all kernels, kernel subprocedures
and all intermediate subprocedures between your kernels and your CPU
parallel region. See sec. 1.3 for details. In kernel subroutines and inside
kernel subroutines you will need to declare local scalars and imported data
as well. See sec. 1.3.2 for details. See also fig. 2.1.

19. If your kernels use arrays from the local module or imported arrays, pass
them to the kernel subroutine using parameters. Use appropriate @domainDependant
directives. See sec. 1.3.2 for details.

20. Imported arrays that are used in kernel subroutines and inside kernel sub-
routines also need to be input parameters of the kernel caller itself for ap-
propriate automatic device data handling. That is, they need to be passed
down to the kernels on two levels. Use appropriate @domainDependant

directives.

21. Wrap the implementation sections of all your kernels with
@parallelRegion{appliesTo(GPU), ...} / @end parallelRegion direc-
tives. See sec. 1.3.1 for details.

22. Test and debug on CPU by executing
make clean;make build_cpu DEBUG=1 with automatic tests enabled. You
can use any compatible x86 debugger here, such as PGI debugger, Intel
debugger, Totalview or Allinea DDT. Please note that the debuggers will
show you the line numbers of the respective F90 files, not your h90 or H90
files. The F90 files have been kept as readable as possible however, and
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they can all be inspected in ./build/cpu/source. Fig. 2.2 is designed to
help you with this process.

23. Switch to GPU tests debug on GPU using
make clean;make build_gpu DEBUG=1; make install_gpu; [run your tests].
Fig. 2.2 is designed to help you with this process. The print output will
help you identify problems that only exist in the GPU version. Hint: Most
of the bugs that persist after having a correct CPU implementation are
usually related to data dimensionalities specified using @domainDependant

directives. You should be able to trace back the error by comparing the
printed output with the CPU version opened in a separate debugger win-
dow and thus identify the kernels responsible for the errors. Once you’ve
found the offending kernels, make sure the data is correctly formatted in
the specification part of the F90 file in ./build/gpu/source. If the printed
output does not show the error (whose index point should be recognized
in your validation / test system you’ve integrated before), you can change
the debug data indexes in storage_order.F90.

24. Congratulations, you have just completed a CPU/GPU hybrid portation
using Hybrid Fortran.
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Figure 2.2: Best practices for debugging Hybrid Fortran code



Chapter 3

Framework Implementation

In this chapter the design of the Hybrid Fortran framework is presented from
the implementation perspective. It will discuss the architecture that has been in-
troduced for implementing the Hybrid Fortran framework, in order to achieve
the goals and behaviour outlined in sec. 1.1 and sec. 1.3. If you’d like to adjust
the framework for your own purposes, this chapter is a good place to start.

3.1 Overview and Build Workflow

The Hybrid Fortran build system involves the following components (depicted
in fig. 3.1):

project-dir/Makefile offers a convenient interface to the build system. Please
refer to appendix 2.3 for the usage of this build interface. It performs the
following operations (assuming a clean rebuild):

1. Creates a build directory containing subdirectories for CPU and GPU
builds.

2. Copies all f90 and F90 source files (pure Fortran 90 sources without
Hybrid Fortran directives) into the CPU and GPU build directories
using a flat file hierarchy.

3. Creates the callgraph xml file as well as the colored CPU and GPU
callgraph versions in the callgraph subdirectory within the build di-
rectory.

4. Creates the graphical callgraph representations in the callgraph direc-
tory using Graphviz libraries.

5. Converts each h90 source file into F90 source files, using different
implementations and callgraph colorings for the CPU and GPU case.
The F90 files are created in their respective build subdirectories (CPU
or GPU).

37
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Figure 3.1: Hybrid Fortran Components and Information Flow.
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6. Copies the project-dir/buildtools/Makefile into the CPU and
GPU source directories.

7. Copies either project-dir/buildtools/MakesettingsCPU and
project-dir/buildtools/MakesettingsGPU into the respective build
subdirectory.

8. Executes make within the build subdirectories.

9. Installs the resulting executables into the test directory, using cpu or
gpu as a postfix in the executable filename.

project-dir/buildtools/Makefile defines the dependencies between the Fortran
90 and Hybrid Fortran sources.

project-dir/buildtools/MakesettingsCPU defines the compiler name, com-
piler flags and linker flags for the CPU case.

project-dir/buildtools/MakesettingsGPU defines the compiler name, com-
piler flags and linker flags for the GPU case.

Figure 3.2: Screenshot of the Hybrid Fortran build system in action.

3.2 Python Build Scripts

The following python command line interface programs are part of the Hybrid
Fortran build system:
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annotatedCallGraphFromH90SourceDir.py goes through all h90 files in a
given source directory and builds an xml file containing meta information
about that source tree. The extracted meta information includes the call-
graph visible from h90 files as well as a parsed version of the Hybrid
Fortran directives inserted by the user. Figure 3.1 depicts this program
in node python 1.

loopAnalysisWithAnnotatedCallGraph.py takes the meta information xml
file from the previous script as its input and analyses the positioning of the
user defined parallel regions relative to all subprocedures. Depending on
its input arguments it performs this analysis for either the CPU or GPU
version of the program in order for the framework to support compile time
defined positioning of loops (kernel regions in the CUDA implementation).
Figure 3.1 depicts this program in node python 2.

generateF90fromH90AndAnalyzedCallGraph.py takes one h90 source file
as well as the analyzed meta information xml file as its inputs. It goes
through the source file line by line and rewrites it in order to create com-
patible versions for CPU and GPU. The following operations are most
essential to this module:

• Rewriting of parallel region definitions to conventional loops for the
CPU or CUDA Fortran kernels for the GPU.

• Mutation of declarations and accesses of domain dependant arrays
according to their position relative to the currently active parallel
region.

• Insertion of statements to copy array data to and from the device in
the GPU case.

Parallel domain dependant Figure 3.1 depicts this program in node python 3.

graphVizGraphWithAnalyzedCallGraph.py This program has been cre-
ated in order to make debugging easier and to give the user an overview
over the codebase and the involved parallel regions. It creates a graphical
representation of the call graph from the analyzed meta information. The
nodes in these call graphs are colored according to their relative position to
the parallel regions. Figure 3.3 shows a sample of such a programmatically
created call graph representation.

3.3 User Defined Files

The following files, depicted figure 3.1, are defined by the user:



3. Framework Implementation 41

Figure 3.3: Condensed version of a simple callgraph, programmatically created
by graphVizGraphWithAnalyzedCallGraph.py.

h90 Fortran sources A source directory that contains Hybrid Fortran files
(h90 extension). It may also contain files with f90 or F90 extensions. The
source directory is by default located at path-to-project/source/*.

Makefile Used to define module dependencies. The Makefile is by default lo-
cated at path-to-project/buildtools/Makefile. Note: All source files
are being copied into flat source folders before being compiled - the build
system is therefore agnostic to the source directory structure implemented
by the framework user.

storage order.F90 This fortran file contains fortran preprocessor statements
in order to define the storage order for both CPU and GPU implementation.
This file is located at

path-to-project/source/

hybrid_fortran_commons/storage_order.F90.

3.4 Class Hierarchy

Figure 3.4 shows the classes created to implement the functionality described
in section 3.2. For a full list of the implementation classes, please see also sec.
1.3.3.

H90Parser parses Hybrid Fortran (h90) files. The parser uses a mixture of
state machine and regular expression design patterns. More specifically:
Each line is matched against a set of regular expressions. The set of regular
expressions being used is determined by a state machine and the outcomes
of the regular expression matches in turn determine the state transitions.



3. Framework Implementation 42

Figure 3.4: Hybrid Fortran Python Class Hierarchy.

See section 3.6 for a more detailed look at the Hybrid Fortran parser
implementation.

H90XMLCallGraphGenerator (subclass of H90Parser) adds routine and
call nodes to a new or existing call graph xml document. This functionality
is used by
annotatedCallGraphFromH90SourceDir.py as described in section 3.2.

H90toF90Printer (subclass of H90Parser) prints a fortran 90 file in F90 for-
mat (including preprocessor statements) to POSIX standard output. The
configuration of this class includes

1. a Hybrid Fortran file as its main input (inherited from the parent
class).

2. an xml callgraph including parsed Hybrid Fortran directives and
the positions of parallel regions relative ot the routine nodes.

3. a FortranImplementation object which determines the parallel imple-
mentation.

generateF90fromH90AndAnalyzedCallGraph.py uses this functionality as
described in section 3.2.

BracketAnalyzer is used to determine whether a Fortran line ends with an
open bracket.

Symbol Stores array dimensions determined at the time of declaraton for later
use and includes functionality to print adapted declaration and access state-
ments.

FortranImplementation provides the concrete syntax for a standard Fortran
90 implementation of the Hybrid Fortran program.
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CUDAFortranImplementation (subclass of FortranImplementation) pro-
vides the syntax for a CUDA Fortran implementation, thus handling

• the conversion of parallel region directives into CUDA kernels,

• the conversion of subroutines called by kernels into device subroutines,

• the copying of data from and to the device,

• the synchronization of threads after CUDA kernels have finished exe-
cuting (asynchronous execution of kernels is currently not supported)
and

• error handling.

DebugCUDAFortranImplementation (subclass of CUDAFortranImplementation)
extends the CUDA Fortran implementation to include print statements to
POSIX standard error output for all kernel parameters at a user defined
data point after the execution of the kernel. This functionality enables de-
bugging of device code since barebone CUDA Fortran currently does not
offer printing or debugging for code executed on the GPU. (There is an em-
ulation mode available which runs CUDA Fortran programs on the CPU,
however it has been found to diverge too much from the device version).

3.5 Switching Implementations

Figure 3.5 shows the the most important class member functions of
FortranImplementation classes and their role with respect to the example
shown earlier in section 1.3.4. Each of these methods takes context informa-
tion objects (for example a set of symbols that are referenced on this line, or
a parallel region template containing the information users have passed with
the directives) and returns strings that will be inserted at the indicated places
into Fortran 90 files by the H90toF90Printer class. Introducing a new under-
lying technology such as OpenCL (for GPU implementations) or OpenMP (for
CPU implementations) is as simple as writing a new FortranImplementation

subclass containing these functions.
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Figure 3.5: Class member functions of “FortranImplementation” classes (Exam-
ple shown with CUDAFortranImplementation).
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3.6 Hybrid Fortran Parser

In order to interpret the directives introduced in cha 1 in the right context, it
was necessary to create the parser program outlined in this section. This parser is
used by the annotatedCallGraphFromH90SourceDir and
generateF90fromH90AndAnalyzedCallGraph.py python scripts (as described in
sec. 3.2) through subclasses.

This section gives a more detailed view of that parser. Figure 3.6 shows the
state machine pattern that has been used for the parser implementation.

Figure 3.6: H90 Parser State Machine.

The state machine design pattern being used here resembles that of a Mealy
machine. However, two changes have been applied to the Mealy machine prop-
erties:

1. The output is being detached from the machine. In other words the
H90Parser class does not produce any output itself. Its subclasses (as
described in sec. 3.4) are responsible for that task. This allows large parts
of the parser code to be reused for both python programs dealing with h90
source files as described in sec. 3.2
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2. A multiplexer is introduced as an additional element in order to reduce
the number of states (which matches the way code is being reused in the
actual implementation).
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