
JAVA-JWT Documentation

Java-JWT is a library that provides a simple way to create, parse, and validate JSON Web

Tokens (JWT) in Java applications. JWT is a compact and URL-safe means of representing

claims to be transferred between 2 parties. It is used for authentication and data exchange and

their security depends on properly protecting the secret key and verifying the token signatures

on the server side.

This document will guide you through the installation, basic usage, and important concepts of

java-jwt library.

Table of Contents

1. Installation

2. Creating a JWT

3. Parsing and Validating a JWT

4. JWT claims

5. JWT Algorithms

6. Token Expiration and Refreshing

7. Security Consideration

8. Examples

1. Installation

To use Java-JWT in your Java project, you can add the library as a dependency using your build

tool. For Maven, add the following to your ‘pom.xml’ file:

<dependency>

<groupId>com.auth0</groupId>
<artifactId>java-jwt</artifactId>

<version>4.4.0</version>

</dependency>

For Gradle, add the following to your ‘build.gradle’ file:

implementation 'com.auth0:java-jwt:4.4.0'

Make sure to check the official Maven Central or other repositories for the latest version of the

library.

2. Creating a JWT

To create a JWT, you need to use the ‘com.auth0.jwt.JWT’ class and the

‘com.auth0.jwt.JWTCreator.Builder’ class to set the claims and sign the token with a secret key

or an RSA private key. Here's a basic example

import com.auth0.jwt.JWT;
import com.auth0.jwt.JWTCreator;

// Build the JWT with claims

String secretKey = "your-secret-key";
String jwt = JWT.create()

 .withIssuer("your-issuer")

 .withSubject("your-subject")
 .withClaim("customClaim", "custom-value")

 .sign(Algorithm.HMAC256(secretKey));

3. Parsing and Validating a JWT

To parse and validate a JWT, you use the ‘com.auth0.jwt.JWT’ class along with the

‘com.auth0.jwt.interfaces.DecodedJWT’ interface. You'll also need to specify the algorithm used

to sign the token (the same algorithm used during token creation). Here's an example of how to

validate a JWT:

import com.auth0.jwt.JWT;
import com.auth0.jwt.JWTVerifier;

import com.auth0.jwt.algorithms.Algorithm;

import com.auth0.jwt.interfaces.DecodedJWT;

String secretKey = "your-secret-key";

String token = "your-jwt-token";

// Verify and decode the token

JWTVerifier verifier=JWT.require(Algorithm.HMAC256(secretKey))

 .build();
DecodedJWT decodedJWT = verifier.verify(token);

// Access the claims from the decoded JWT
String issuer = decodedJWT.getIssuer();

String subject = decodedJWT.getSubject();

String customClaim = decodedJWT.getClaim("customClaim").asString();

The ‘JWT.require()’ method sets up the verification requirements and ‘build().verify(token)’

performs the actual verification. If the JWT signature and claims are valid, a ‘DecodedJWT’

object is returned, which allows you to access the payload and header of the token.

4. JWT Claims

JWT claims are pieces of information added to the token payload. Some common claims include:

 ‘iss’ (Issuer): Identifies the entity that issued the token.

 ‘sub’ (Subject): Identifies the subject of the token, typically the user.

 ‘exp’ (Expiration Time): Indicates the time at which the token will expire.

 ‘nbf’ (Not Before): Indicates the time before which the token cannot be accepted.

 ‘iat‘(Issued At): Indicates the time at which the token was issued.

 ‘jti’ (JWT ID): A unique identifier for the token.

JWT can also be integrated by custom payload and header claims, by using the withHeader and

withClaim methods. The statement with set the header of JWT and there should be a map which is to

be initialized in the parameter such as the signing algorithm, token type,etc.

Claims can be of various types like String, numbers, Booleans, etc. Another claim of current

timestamp can be added for example ‘Instant.now()’ . After adding the desired claims, the ‘sign()’

method is called on the ‘JWT Builder’ object. It will take as an argument to sign the JWT and produce

the final token as a String. Same will go with ‘withIsssuer()’ method as it will set the issuer claim in

the JWT.

5. JWT Algorithms

Java-JWT supports various cryptographic algorithms to sign and verify tokens. Some common

algorithms include:

 ‘Algorithm.HMAC256(secretKey)’: HMAC SHA-256 algorithm using a shared secret

key.

 ‘Algorithm.RSA256(publicKey, privateKey)’: RSA SHA-256 algorithm using an RSA

public and private key pair.

An algorithm instance is created with RSA256 as signing algorithm, using both the RSA public

key and the RSA Private Key as arguments.

If the code is implemented by using a KeyProvider then a JwkProvider is created using the

JwkProvider Builder. The jwkProvider is responsible for fetching and caching JSON Web

Keys(Jwks) needed for validating JWT signatures. It specifies the URL where the Jwks are

available, sets up caching and rate limiting to avoid excessive request to the JWK Provider.

A custom implementation of RSA Key Provider is created. This interface provides methods for

obtaining the public key corresponding to a specific key ID, the private key used for signing ,and

the ID of private key.

6. Token Expiration and Refreshing

JWTs can have an expiration time (exp claim) set to make them valid for a specific duration.

After the token expires, clients need to request a new one. You can issue a refreshed token when

the old one is about to expire, usually using the refresh token mechanism.

7. Security Considerations

 Always use a strong and secure secret key or private key for signing tokens.

 Ensure that tokens are transmitted over secure channels (e.g., HTTPS) to prevent

interception or tampering.

 Be cautious with including sensitive information in the JWT payload as it can be easily

decoded (use encryption for sensitive data).

8.Examples

For more comprehensive examples and advanced usage, refer to the official Java-JWT

documentation and the library's GitHub repository: https://github.com/auth0/java-jwt

Please note that this documentation provides a basic overview of the Java-JWT library. For

detailed and up-to-date information, refer to the official documentation and the library's

repository.

	JAVA-JWT Documentation

