diff --git a/Prince_2401109217.ipynb b/Prince_2401109217.ipynb
new file mode 100644
index 0000000..4683f99
--- /dev/null
+++ b/Prince_2401109217.ipynb
@@ -0,0 +1,573 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "id": "ne7_9YsSzCHr"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df=pd.read_csv('/content/irisdata.csv')"
+ ],
+ "metadata": {
+ "id": "xkIAvVFD01pe"
+ },
+ "execution_count": 21,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "df"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 423
+ },
+ "id": "v69usZUG1B1b",
+ "outputId": "e18c3534-6b56-48e3-999e-67e14fef32d8"
+ },
+ "execution_count": 22,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " 5.1 3.5 1.4 0.2 Iris-setosa\n",
+ "0 4.9 3.0 1.4 0.2 Iris-setosa\n",
+ "1 4.7 3.2 1.3 0.2 Iris-setosa\n",
+ "2 4.6 3.1 1.5 0.2 Iris-setosa\n",
+ "3 5.0 3.6 1.4 0.2 Iris-setosa\n",
+ "4 5.4 3.9 1.7 0.4 Iris-setosa\n",
+ ".. ... ... ... ... ...\n",
+ "144 6.7 3.0 5.2 2.3 Iris-virginica\n",
+ "145 6.3 2.5 5.0 1.9 Iris-virginica\n",
+ "146 6.5 3.0 5.2 2.0 Iris-virginica\n",
+ "147 6.2 3.4 5.4 2.3 Iris-virginica\n",
+ "148 5.9 3.0 5.1 1.8 Iris-virginica\n",
+ "\n",
+ "[149 rows x 5 columns]"
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " 5.1 | \n",
+ " 3.5 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " Iris-setosa | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 4.9 | \n",
+ " 3.0 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " Iris-setosa | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 4.7 | \n",
+ " 3.2 | \n",
+ " 1.3 | \n",
+ " 0.2 | \n",
+ " Iris-setosa | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 4.6 | \n",
+ " 3.1 | \n",
+ " 1.5 | \n",
+ " 0.2 | \n",
+ " Iris-setosa | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 5.0 | \n",
+ " 3.6 | \n",
+ " 1.4 | \n",
+ " 0.2 | \n",
+ " Iris-setosa | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5.4 | \n",
+ " 3.9 | \n",
+ " 1.7 | \n",
+ " 0.4 | \n",
+ " Iris-setosa | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 144 | \n",
+ " 6.7 | \n",
+ " 3.0 | \n",
+ " 5.2 | \n",
+ " 2.3 | \n",
+ " Iris-virginica | \n",
+ "
\n",
+ " \n",
+ " 145 | \n",
+ " 6.3 | \n",
+ " 2.5 | \n",
+ " 5.0 | \n",
+ " 1.9 | \n",
+ " Iris-virginica | \n",
+ "
\n",
+ " \n",
+ " 146 | \n",
+ " 6.5 | \n",
+ " 3.0 | \n",
+ " 5.2 | \n",
+ " 2.0 | \n",
+ " Iris-virginica | \n",
+ "
\n",
+ " \n",
+ " 147 | \n",
+ " 6.2 | \n",
+ " 3.4 | \n",
+ " 5.4 | \n",
+ " 2.3 | \n",
+ " Iris-virginica | \n",
+ "
\n",
+ " \n",
+ " 148 | \n",
+ " 5.9 | \n",
+ " 3.0 | \n",
+ " 5.1 | \n",
+ " 1.8 | \n",
+ " Iris-virginica | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
149 rows × 5 columns
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ],
+ "application/vnd.google.colaboratory.intrinsic+json": {
+ "type": "dataframe",
+ "variable_name": "df",
+ "summary": "{\n \"name\": \"df\",\n \"rows\": 149,\n \"fields\": [\n {\n \"column\": \"5.1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8285940572656172,\n \"min\": 4.3,\n \"max\": 7.9,\n \"num_unique_values\": 35,\n \"samples\": [\n 6.2,\n 4.5,\n 5.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3.5\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4334988777167477,\n \"min\": 2.0,\n \"max\": 4.4,\n \"num_unique_values\": 23,\n \"samples\": [\n 2.3,\n 4.4,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"1.4\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.7596511617753423,\n \"min\": 1.0,\n \"max\": 6.9,\n \"num_unique_values\": 43,\n \"samples\": [\n 6.7,\n 3.8,\n 3.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0.2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7612920413899608,\n \"min\": 0.1,\n \"max\": 2.5,\n \"num_unique_values\": 22,\n \"samples\": [\n 0.2,\n 1.2,\n 1.3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Iris-setosa\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Iris-setosa\",\n \"Iris-versicolor\",\n \"Iris-virginica\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
+ }
+ },
+ "metadata": {},
+ "execution_count": 22
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "\n",
+ "print(\"This is mean\")\n",
+ "\n",
+ "mean = df.mean(numeric_only=True)\n",
+ "print(f\"Mean Values =\\n {mean} \\n\\n\" )\n",
+ "\n",
+ "\n",
+ "print(\"This is median\\n\")\n",
+ "median = df.median(numeric_only=True)\n",
+ "print(f\"Median Values=\\n{median}\\n\")\n",
+ "\n",
+ "print(\"This is mode\")\n",
+ "mode = df.mode(numeric_only=True).iloc[0]\n",
+ "print(f\" Mode Values=\\n{mode}\\n\")\n",
+ "\n",
+ "print(\"This is standard deviation\\n\")\n",
+ "std = df.std(numeric_only=True)\n",
+ "print(f\"Standard Deviation =\\n{std}\\n\")\n",
+ "\n",
+ "print(\"Correlation Matrix\\n\")\n",
+ "corr_mat = df.corr(numeric_only=True)\n",
+ "print(f\"Correlation Matrix =\\n{corr_mat}\\n\")\n",
+ "\n",
+ "print(\"Covariance Matrix\\n\")\n",
+ "cov_mat = df.cov(numeric_only=True)\n",
+ "print(f\" Covariance Matrix =\\n{cov_mat}\\n\")\n",
+ "\n"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Uxpa9TxdT3XI",
+ "outputId": "195b0c33-59cf-4274-fd0b-2d78b488fc2e"
+ },
+ "execution_count": 23,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "This is mean\n",
+ "Mean Values =\n",
+ " 5.1 5.848322\n",
+ "3.5 3.051007\n",
+ "1.4 3.774497\n",
+ "0.2 1.205369\n",
+ "dtype: float64 \n",
+ "\n",
+ "\n",
+ "This is median\n",
+ "\n",
+ "Median Values=\n",
+ "5.1 5.8\n",
+ "3.5 3.0\n",
+ "1.4 4.4\n",
+ "0.2 1.3\n",
+ "dtype: float64\n",
+ "\n",
+ "This is mode\n",
+ " Mode Values=\n",
+ "5.1 5.0\n",
+ "3.5 3.0\n",
+ "1.4 1.5\n",
+ "0.2 0.2\n",
+ "Name: 0, dtype: float64\n",
+ "\n",
+ "This is standard deviation\n",
+ "\n",
+ "Standard Deviation =\n",
+ "5.1 0.828594\n",
+ "3.5 0.433499\n",
+ "1.4 1.759651\n",
+ "0.2 0.761292\n",
+ "dtype: float64\n",
+ "\n",
+ "Correlation Matrix\n",
+ "\n",
+ "Correlation Matrix =\n",
+ " 5.1 3.5 1.4 0.2\n",
+ "5.1 1.000000 -0.103784 0.871283 0.816971\n",
+ "3.5 -0.103784 1.000000 -0.415218 -0.350733\n",
+ "1.4 0.871283 -0.415218 1.000000 0.962314\n",
+ "0.2 0.816971 -0.350733 0.962314 1.000000\n",
+ "\n",
+ "Covariance Matrix\n",
+ "\n",
+ " Covariance Matrix =\n",
+ " 5.1 3.5 1.4 0.2\n",
+ "5.1 0.686568 -0.037279 1.270362 0.515347\n",
+ "3.5 -0.037279 0.187921 -0.316731 -0.115749\n",
+ "1.4 1.270362 -0.316731 3.096372 1.289124\n",
+ "0.2 0.515347 -0.115749 1.289124 0.579566\n",
+ "\n"
+ ]
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file