From fd3192ff0e80097e67cdd6f5810750eb71febb36 Mon Sep 17 00:00:00 2001 From: IS-22-206 Date: Tue, 7 Oct 2025 11:15:41 +0530 Subject: [PATCH] Add files via upload --- Prince_2401109217.ipynb | 573 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 573 insertions(+) create mode 100644 Prince_2401109217.ipynb diff --git a/Prince_2401109217.ipynb b/Prince_2401109217.ipynb new file mode 100644 index 0000000..4683f99 --- /dev/null +++ b/Prince_2401109217.ipynb @@ -0,0 +1,573 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + } + }, + "cells": [ + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "ne7_9YsSzCHr" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "source": [ + "df=pd.read_csv('/content/irisdata.csv')" + ], + "metadata": { + "id": "xkIAvVFD01pe" + }, + "execution_count": 21, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "df" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 423 + }, + "id": "v69usZUG1B1b", + "outputId": "e18c3534-6b56-48e3-999e-67e14fef32d8" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 5.1 3.5 1.4 0.2 Iris-setosa\n", + "0 4.9 3.0 1.4 0.2 Iris-setosa\n", + "1 4.7 3.2 1.3 0.2 Iris-setosa\n", + "2 4.6 3.1 1.5 0.2 Iris-setosa\n", + "3 5.0 3.6 1.4 0.2 Iris-setosa\n", + "4 5.4 3.9 1.7 0.4 Iris-setosa\n", + ".. ... ... ... ... ...\n", + "144 6.7 3.0 5.2 2.3 Iris-virginica\n", + "145 6.3 2.5 5.0 1.9 Iris-virginica\n", + "146 6.5 3.0 5.2 2.0 Iris-virginica\n", + "147 6.2 3.4 5.4 2.3 Iris-virginica\n", + "148 5.9 3.0 5.1 1.8 Iris-virginica\n", + "\n", + "[149 rows x 5 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
5.13.51.40.2Iris-setosa
04.93.01.40.2Iris-setosa
14.73.21.30.2Iris-setosa
24.63.11.50.2Iris-setosa
35.03.61.40.2Iris-setosa
45.43.91.70.4Iris-setosa
..................
1446.73.05.22.3Iris-virginica
1456.32.55.01.9Iris-virginica
1466.53.05.22.0Iris-virginica
1476.23.45.42.3Iris-virginica
1485.93.05.11.8Iris-virginica
\n", + "

149 rows × 5 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 149,\n \"fields\": [\n {\n \"column\": \"5.1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.8285940572656172,\n \"min\": 4.3,\n \"max\": 7.9,\n \"num_unique_values\": 35,\n \"samples\": [\n 6.2,\n 4.5,\n 5.6\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"3.5\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.4334988777167477,\n \"min\": 2.0,\n \"max\": 4.4,\n \"num_unique_values\": 23,\n \"samples\": [\n 2.3,\n 4.4,\n 3.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"1.4\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.7596511617753423,\n \"min\": 1.0,\n \"max\": 6.9,\n \"num_unique_values\": 43,\n \"samples\": [\n 6.7,\n 3.8,\n 3.7\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"0.2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.7612920413899608,\n \"min\": 0.1,\n \"max\": 2.5,\n \"num_unique_values\": 22,\n \"samples\": [\n 0.2,\n 1.2,\n 1.3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Iris-setosa\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 3,\n \"samples\": [\n \"Iris-setosa\",\n \"Iris-versicolor\",\n \"Iris-virginica\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "\n", + "print(\"This is mean\")\n", + "\n", + "mean = df.mean(numeric_only=True)\n", + "print(f\"Mean Values =\\n {mean} \\n\\n\" )\n", + "\n", + "\n", + "print(\"This is median\\n\")\n", + "median = df.median(numeric_only=True)\n", + "print(f\"Median Values=\\n{median}\\n\")\n", + "\n", + "print(\"This is mode\")\n", + "mode = df.mode(numeric_only=True).iloc[0]\n", + "print(f\" Mode Values=\\n{mode}\\n\")\n", + "\n", + "print(\"This is standard deviation\\n\")\n", + "std = df.std(numeric_only=True)\n", + "print(f\"Standard Deviation =\\n{std}\\n\")\n", + "\n", + "print(\"Correlation Matrix\\n\")\n", + "corr_mat = df.corr(numeric_only=True)\n", + "print(f\"Correlation Matrix =\\n{corr_mat}\\n\")\n", + "\n", + "print(\"Covariance Matrix\\n\")\n", + "cov_mat = df.cov(numeric_only=True)\n", + "print(f\" Covariance Matrix =\\n{cov_mat}\\n\")\n", + "\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Uxpa9TxdT3XI", + "outputId": "195b0c33-59cf-4274-fd0b-2d78b488fc2e" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "This is mean\n", + "Mean Values =\n", + " 5.1 5.848322\n", + "3.5 3.051007\n", + "1.4 3.774497\n", + "0.2 1.205369\n", + "dtype: float64 \n", + "\n", + "\n", + "This is median\n", + "\n", + "Median Values=\n", + "5.1 5.8\n", + "3.5 3.0\n", + "1.4 4.4\n", + "0.2 1.3\n", + "dtype: float64\n", + "\n", + "This is mode\n", + " Mode Values=\n", + "5.1 5.0\n", + "3.5 3.0\n", + "1.4 1.5\n", + "0.2 0.2\n", + "Name: 0, dtype: float64\n", + "\n", + "This is standard deviation\n", + "\n", + "Standard Deviation =\n", + "5.1 0.828594\n", + "3.5 0.433499\n", + "1.4 1.759651\n", + "0.2 0.761292\n", + "dtype: float64\n", + "\n", + "Correlation Matrix\n", + "\n", + "Correlation Matrix =\n", + " 5.1 3.5 1.4 0.2\n", + "5.1 1.000000 -0.103784 0.871283 0.816971\n", + "3.5 -0.103784 1.000000 -0.415218 -0.350733\n", + "1.4 0.871283 -0.415218 1.000000 0.962314\n", + "0.2 0.816971 -0.350733 0.962314 1.000000\n", + "\n", + "Covariance Matrix\n", + "\n", + " Covariance Matrix =\n", + " 5.1 3.5 1.4 0.2\n", + "5.1 0.686568 -0.037279 1.270362 0.515347\n", + "3.5 -0.037279 0.187921 -0.316731 -0.115749\n", + "1.4 1.270362 -0.316731 3.096372 1.289124\n", + "0.2 0.515347 -0.115749 1.289124 0.579566\n", + "\n" + ] + } + ] + } + ] +} \ No newline at end of file