
IGM-330 Rich Media Web Application Development I

 1 of 20

Boomshine D

Overview:
Up to now we’ve spent quite a bit of time building out a skeleton of a game, but it
doesn’t do much yet. This time we’ll add levels, explosions, circle collisions, a HUD, and
game states to our Boomshine clone.

We’ll also talk about the academic definitions that try to answer the question “What is a
game”, as well as get you to think about what Boomshine ICE needs to becoming
something playable that is compelling to at least some people.

Part I - Getting ready for levels and explosions

Make a copy of the Boomshine-C folder and name it Boomshine-D

1) Add three new properties to app.main:

 gameState : undefined,

 roundScore : 0,

 totalScore : 0,

2) Initialize main.gameState in main.init()

this.gameState = this.GAME_STATE.BEGIN;

3) Add a new method named reset() to app.main() - put it right after init():

// creates a new level of circles

reset: function(){

 this.numCircles += 5;

 this.roundScore = 0;

 this.circles = this.makeCircles(this.numCircles);

},

IGM-330 Rich Media Web Application Development I

 2 of 20

4) Now call this.reset() in init() - it should now appear as follows:

5) Reload the page - it should function identically as before (except there are now 5
more circles at the start.

Basically, init() is only going to be called once, and reset() will be called whenever it’s
time to load a new level.

IGM-330 Rich Media Web Application Development I

 3 of 20

6) In app.main, create an empty implementation of checkForCollisions()

 checkForCollisions: function(){

 // TODO

 }

7) Call it in app.main.update(), right after the “move circles” call:

 // CHECK FOR COLLISIONS

 this.checkForCollisions();

8) Make a few additions to app.main.drawCircles() so that it looks like this:

Reload the page - it should work as before.

IGM-330 Rich Media Web Application Development I

 4 of 20

Part II - HUD!

1) Let’s lower the opacity of the circles we’re drawing so they are semi-transparent:

 // ii) draw circles

 this.ctx.globalAlpha = 0.9; // NEW

 this.drawCircles(this.ctx);

2) In app.main, implement an initial version of drawHUD():

3) Add the following to app.main.update(), right after the drawCircles() call:

 // iii) draw HUD

 this.ctx.globalAlpha = 1.0;

 this.drawHUD(this.ctx);

4) Reload the page, it should work as before, and now show scoring.

IGM-330 Rich Media Web Application Development I

 5 of 20

5) Your app.main.update() method should now appear as follows:

IGM-330 Rich Media Web Application Development I

 6 of 20

Part III - Exploding Circles!

1) Let’s change the .state of the circle, the .gameState of the game, and the score

whenever a circle is clicked. Modify checkCircleClicked() to appear as follows:

Reload the page. Clicking circles makes them stop, turn red, and the round score goes
up by 1.

IGM-330 Rich Media Web Application Development I

 7 of 20

2) To get circles exploding:

A) Now we need to modify moveCircles() to monitor and transition between the

various states of the circles:

- CIRCLE_STATE.NORMAL
- CIRCLE_STATE.EXPLODING
- CIRCLE_STATE.MAX_SIZE
- CIRCLE_STATE.IMPLODING
- CIRCLE_STATE.DONE

B) Modify app.main.moveCircles() to appear as it does below (see mycourses for

code):

IGM-330 Rich Media Web Application Development I

 8 of 20

Reload the page and test it. Clicking the circles should cause them to balloon up to

CIRCLE_STATE.MAX_SIZE, wait for CIRCLE.MAX_LIFETIME seconds, and then

shrink down to CIRCLE.MIN_RADIUS. At this point, the circle’s .state is transitioned

to CIRCLE_STATE.DONE

drawCircles() already has code that will skip drawing a circle if its .state is

CIRCLE_STATE_DONE.

IGM-330 Rich Media Web Application Development I

 9 of 20

3) To make it so we can only click one circle per level, and fix a possible pausing issue,

add the following to the top of app.main.doMouseDown():

// ugh - the 'this' issue - should have planned ahead better

var main = app.main;

// unpause on a click

// just to make sure we never get stuck in a paused state

if(main.paused){

 main.paused = false;

 main.update();

 return;

};

// you can only click one circle

if(main.gameState == main.GAME_STATE.EXPLODING) return;

Reload the page and test it. Now you can only click one circle.

Discussion:

Note that we never delete a circle out of the circles array when it’s done exploding -

we just leave it in the array, and don’t draw it to the screen.

IGM-330 Rich Media Web Application Development I

 10 of 20

Part IV - Colliding Circles!

1) Now we want other circles to explode whenever they collide with a circle that is
already exploding.

A) Add this helper method to your utilities.js:

 function circlesIntersect(c1,c2){

 var dx = c2.x - c1.x;

 var dy = c2.y - c1.y;

 var distance = Math.sqrt(dx*dx + dy*dy);

 return distance < c1.radius + c2.radius;

 }

B) Now implement checkForCollisions() - and unless you’re a typing junky, check
mycourses for the copy-paste version:

IGM-330 Rich Media Web Application Development I

 11 of 20

Test it. Collisions and explosions should now be working, but you’re only getting 1 level.

IGM-330 Rich Media Web Application Development I

 12 of 20

Part V - Levels and Game State Transitions!

1) To get levels working, we now need to add code that will handle transitioning

between our various game states:

A) Modify doMousedown() to appear as follows:

IGM-330 Rich Media Web Application Development I

 13 of 20

Test the code. When the explosions are finished, you can click to load a new level. Note
that the number of circles increments by 5, and that the scoring works properly.

IGM-330 Rich Media Web Application Development I

 14 of 20

Part VI - Screens Baby, Game Screens!

1) So we know are using a few different game states (the first 4 in our GAME_STATE

“enumeration”) - but how does the user know which state they are in? Mostly by
guessing at this point. This is poor usability - which will make the end product a lot
less fun to play - let’s fix that with having the HUD give them more information.

A) Make drawHUD() look like this (check myCourses for code):

IGM-330 Rich Media Web Application Development I

 15 of 20

Reload the page. Note that we have a starting screen, and a “level done” screen with
any remaining circles faded out but still moving in the background. Nice!
(We also got to do this without making any buttons - you might not be so lucky in your
game.)

IGM-330 Rich Media Web Application Development I

 16 of 20

Part VII - Are we done yet?

Now walk through our completed code - and be sure to attempt to understand what’s
going on. Please ask about anything you are not sure at our next meeting.

In Boomshine-E will do a little re-factoring, but that’s it, no more features.

Are YOU done - is this a game?

Here’s a comparative chart of “Elements of a game definition” according to various authors and
game theoreticians:

IGM-330 Rich Media Web Application Development I

 17 of 20

A)When did Boomshine ICE become a game according to the third column (Huizinga) above?

- Proceeds according to rules that limit players
- Not Serious and Absorbing
- Never associated with material gain
- Artificial/Safe/Outside normal life
- Creates Special Social Groups

Where is our Boomshine ICE falling short?

B)When did Boomshine ICE become a game according to the second column (Abt) above?

- Proceeds according to rules that limit players
- Goal Oriented/Outcome Oriented
- Activity, process, or event
- Involves decision making

Where is our Boomshine ICE falling short?

C) Better yet, when did Boomshine ICE become a game a significant number of “someone’s”
might want to play? i.e.The non-academic definition of a game.

Boomshine ICE A: one bouncing circle

Boomshine ICE B: multiple bouncing circles

Boomshine ICE C: multiple bouncing circles that stop and turn red when we click them

Boomshine ICE D:
 - multiple bouncing circles
 - clicking a circle starts a chain reaction
 - scoring keeps track of how many circles exploded
 - when the explosions stops, load a new level
 - more circles appear on each level
 - continues forever, or until the browser crashes

My Take:
Boomshine ICE D is still not really (yet) what we like to call a game - it rewards repetitive and
addictive behaviors like FourSquare, Cookie Clicker, 3DS Streetpass, …

IGM-330 Rich Media Web Application Development I

 18 of 20

D) What does the original version of Boomshine add to the Boomshine ICE make it more
of a game that people would actually like to play?

(Think about it, we’ll discuss this in class)

E) For Boomshine-E, we’re going to refactor some of the code, but we’re not going to
add any features.

You will soon be asked to finish up this Boomshine, and add some of the features it
needs to become a real game that at least some people want to play (hint: it actually
won’t take too much code more to do this)

Part VIII - Break this code

Just for fun, change NUM_CIRCLES_START to a large number, like 1000, 5000, or
10000 and reload the page.

IGM-330 Rich Media Web Application Development I

 19 of 20

Here we can see that the app still runs at 15 FPS with 10,000 circles (on a 2015 Mac
laptop). Note that the relative speed of the circles remains the same even as the frame

rate drops - this is because of our use of delta time (dt) to smooth out the circle motion.

(But if you click, the browser will really start hurting. Use a number more like 1000 to
test the explosion behavior!)

IGM-330 Rich Media Web Application Development I

 20 of 20

That’s pretty good performance for 2d canvas, but you could actually do even better,
here are some ideas:

- Copying a bitmap is faster than creating shapes using the canvas API. So draw each

circle only once (with the ctx.arc()… code) to an offscreen canvas, then save that

bitmap and use ctx.drawImage() to blit the circle image to the screen.

- For super-fast iteration, store the circle data in byte and float arrays, or in a struct-like
format. See the Working with Complex Data Structures section of this page:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

- Use WebGL, which is video hardware accelerated, to draw your sprites. A library can
help with this. The pixi.js library uses WebGL to draw sprites: http://www.pixijs.com

Part IX - Submission

Now walk through our completed code - and be sure to attempt to understand what’s
going on - if you don’t ask!

ZIP and Post. Include a link to your code on Banjo in the submission comments.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
http://www.pixijs.com/

