Skip to content

ColasGael/Machine-Learning-for-Solar-Energy-Prediction

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
May 6, 2018 13:56
May 6, 2018 13:56
May 6, 2018 13:56
November 7, 2019 10:37
May 28, 2019 10:48
June 11, 2019 14:13

Machine-Learning-for-Solar-Energy-Prediction

by Adele Kuzmiakova, Gael Colas and Alex McKeehan, graduate students from Stanford University

This is our final project for the CS229: "Machine Learning" class in Stanford (2017). Our teachers were Pr. Andrew Ng and Pr. Dan Boneh.

Language: Python, Matlab, R

Goal: predict the hourly power production of a photovoltaic power station from the measurements of a set of weather features.

This project could be decomposed in 3 parts:

  • Data Pre-processing: we processed the raw weather data files (input) from the National Oceanographic and Atmospheric Administration and the power production data files (output) from Urbana-Champaign solar farm to get meaningful numeric values on an hourly basis ;
  • Feature Selection: we run correlation analysis between the weather features and the energy output to discard useless features, we also implemented Principal Component Analysis to reduce the dimension of our dataset ;
  • Machine Learning : we compared the performances of our ML algorithms. Implemented models include Weighted Linear Regression with and without dimension reduction, Boosting Regression Trees, and artificial Neural Networks with and without vanishing temporal gradient

Our final report and poster are available at the root.

About

Predict the Power Production of a solar panel farm from Weather Measurements using Machine Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published