# Capturing scope ambiguity with Tier-Local Syntax

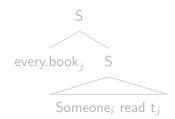
#### Lei Liu

Stony Brook University lei.liu.1@stonybrook.edu

CompPhon workshop Dec 12, 2016

## Outline

- 1 Puzzle: C-Command vs. TSL syntax
  - C-Command
  - TSL Syntax
- 2 Proposal: TSL with proper C-Command domain
- 3 Prediction: wh-in-situ and QP-domain correlation


#### Example

(1) Someone read every book

$$E \prec \forall, \forall \prec E$$

▶ The scope of  $\alpha =$  the C-Command domain of  $\alpha$ . (May 1985)

$$\begin{array}{c|c} \exists \succ \forall & \forall \succ \exists \\ \\ \mathsf{Someone}_i & \mathsf{every.book}_j \\ \mathbb{C} & \mathbb{C} \\ \\ \mathsf{every.book}_i & \mathsf{Someone}_i \end{array}$$



C-Command 
$$\sqrt{\frac{\text{Syntax}}{-\sqrt{(9)}}}$$

## Example

(1) Someone read every book.

$$\exists \succ \forall, \forall \succ \exists$$

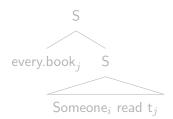
▶ The scope of  $\alpha =$  the C-Command domain of  $\alpha$ . (May 1985)

$$\begin{array}{c|c} \exists \succ \forall & \forall \succ \exists \\ \\ \mathsf{Someone}_i & \mathsf{every.book}_j \\ \mathbb{C} & \mathbb{C} \\ \\ \mathsf{every.book}_i & \mathsf{Someone}_i \end{array}$$

$$S$$
every.book $_j$   $S$ 

Someone $_i$  read  $t_i$ 

$$\begin{array}{c|c} & \mathsf{Syntax} & \mathsf{TSL} \\ \mathsf{C\text{-}Command} & \checkmark & \lnot \diagdown ( ) \_/ \lnot \end{array}$$


#### Example

(1) Someone read every book.

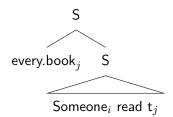
$$\exists \succ \forall$$
,  $\forall \succ \exists$ 

▶ The scope of  $\alpha=$  the C-Command domain of  $\alpha.$  (May 1985)

| $\forall \prec E$ | $\forall \succ \exists$ |
|-------------------|-------------------------|
| $Someone_i$       | every.book $_i$         |
| $\mathbb{C}$      | $\mathbb{C}$            |
| every.book $_i$   | $Someone_i$             |



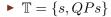
C-Command 
$$\sqrt{\frac{\text{Syntax}}{-(9)}}$$

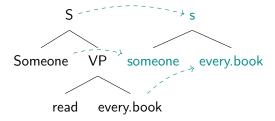

#### Example

(1) Someone read every book.

$$\exists \succ \forall, \forall \succ \exists$$

▶ The scope of  $\alpha =$  the C-Command domain of  $\alpha$ . (May 1985)


| $\forall \prec \vdash$ | $\forall \succ \exists$ |
|------------------------|-------------------------|
| $Someone_i$            | every.book $_{i}$       |
| $\mathbb{C}$           | $\mathbb{C}$            |
| every. $book_i$        | $Someone_i$             |



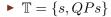

Puzzle Proposal Prediction References

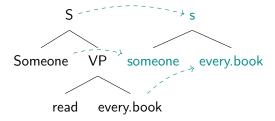
# TSL syntax

▶ Dependencies of syntax captured by Tier-based Strictly Local (TSL) grammars over trees (Graf 2016)






On the tier...


- ► C-Command gone
- ► Locality gained

Can TSL handle scope interpretation without C-Command? Yes!

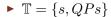
# TSL syntax

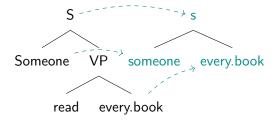
▶ Dependencies of syntax captured by Tier-based Strictly Local (TSL) grammars over trees (Graf 2016)





On the tier...


- ► C-Command gone
- ► Locality gained


Can TSL handle scope interpretation without C-Command? Yes!

Puzzle Proposal Prediction References

# TSL syntax

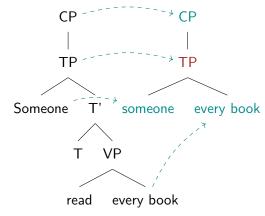
▶ Dependencies of syntax captured by Tier-based Strictly Local (TSL) grammars over trees (Graf 2016)





On the tier...

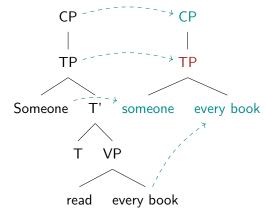
- ► C-Command gone
- ► Locality gained


Can TSL handle scope interpretation without C-Command? Yes!

# Proposal

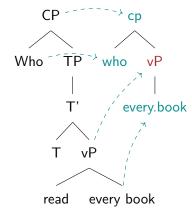
#### For a quantificational phrase:

- ► Higher on tier, higher in scope
- ► Ambiguous when mutual C-Command found in...
  - declarative sentences, within a TP
  - ▶ wh-questions, within a vP


## Declarative sentence



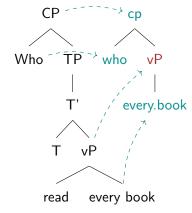
Ambiguous!


Puzzle Proposal Prediction References

## Declarative sentence



Ambiguous!


# Wh-questions



(2) Who read every book?

who ≻ every.book!

# Wh-questions



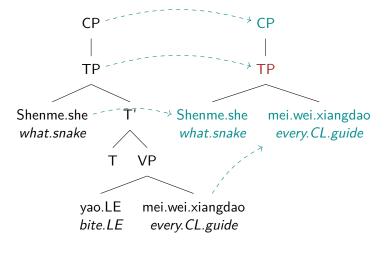
(2) Who read every book?

who ≻ every.book!

- ▶ subject wh-questions are ambiguous in wh-in-situ languages
  - (3) Shenme.she yao.LE mei.wei xiangdao? what.snake bite.LE every.CL guide "What snake bit every guide?"  $\exists \succ \forall, \ \forall \succ \exists$
- more "complex" the QPs, smaller the domain relevant for C-Command evaluation.
  - ▶ QP TP
  - ▶ wh, QP vF
  - ▶ double objects smaller than vF

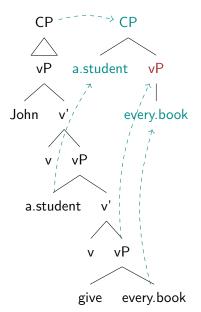
- ▶ subject wh-questions are ambiguous in wh-in-situ languages
  - (3) Shenme.she yao.LE mei.wei xiangdao? what.snake bite.LE every.CL guide "What snake bit every guide?"  $\exists \succ \forall, \ \forall \succ \exists$
- more "complex" the QPs, smaller the domain relevant for C-Command evaluation.
  - P OP TP
  - wh QP vF
  - ▶ double objects smaller than vF

- ▶ subject wh-questions are ambiguous in wh-in-situ languages
  - (3) Shenme.she yao.LE mei.wei xiangdao? what.snake bite.LE every.CL guide "What snake bit every guide?"  $\exists \succ \forall, \ \forall \succ \exists$
- more "complex" the QPs, smaller the domain relevant for C-Command evaluation.
  - ▶ QP TP
  - ▶ wh. QP vP
  - ► double objects smaller than vP


- ▶ subject wh-questions are ambiguous in wh-in-situ languages
  - (3) Shenme.she yao.LE mei.wei xiangdao? what.snake bite.LE every.CL guide "What snake bit every guide?"  $\exists \succ \forall, \ \forall \succ \exists$
- more "complex" the QPs, smaller the domain relevant for C-Command evaluation.
  - ▶ QP TP
  - ▶ wh. QP vP
  - double objects smaller than vP

- ▶ subject wh-questions are ambiguous in wh-in-situ languages
  - (3) Shenme.she yao.LE mei.wei xiangdao? what.snake bite.LE every.CL guide "What snake bit every guide?"  $\exists \succ \forall, \ \forall \succ \exists$
- more "complex" the QPs, smaller the domain relevant for C-Command evaluation.
  - ▶ QP TP
  - ▶ wh. QP vP
  - double objects smaller than vP

- ▶ subject wh-questions are ambiguous in wh-in-situ languages
  - (3) Shenme.she yao.LE mei.wei xiangdao? what.snake bite.LE every.CL guide "What snake bit every guide?"  $\exists \succ \forall, \ \forall \succ \exists$
- more "complex" the QPs, smaller the domain relevant for C-Command evaluation.
  - ▶ QP TP
  - ▶ wh, QP vP
  - ▶ double objects smaller than vP


Puzzle Proposal **Prediction** References

## Chinese subject wh-question



Ambiguous!

## Double Object Construction



(4) John gave a student every book.

a.student ≻ every.book!

#### Reference

Graf, T. (2016). Computational parallels across language modules. Invited talk, September 12, Department of Linguistics, Yale University, New Haven, CT.

May, R. (1985). Logical Form: Its structure and derivation, volume 12. MIT press.