
1	|	P a g e 	
	

Data Standards Body
Technical Working Group
Decision	013	–	Primitive	Data	Types	
Contact:	James	Bligh	

Publish	Date:	23rd	September	2018	

Decision	Approved	By	Chairman:	4th	October	2018	

Context
To	ensure	consistent	implementation	and	to	increase	understanding	and	consumption	the	payloads	
of	the	API	end	points	should	be	strongly	typed.		It	should	be	clear	what	data	is	expected	in	every	
field	in	the	API	end	points.	
	
To	facilitate	this	a	series	of	primitive	data	types	that	will	be	commonly	used	should	be	defined.		
Fields	in	the	JSON	payloads	will	not	be	constrained	to	use	these	types	but	they	should	be	used	by	
preference	where	possible.	

Decision To Be Made
Determine	the	initial	set	of	primitive	data	types	to	be	used	for	defining	fields	in	JSON	payloads.	

Feedback Provided
The	original	proposal	and	the	associated	feedback	can	be	found	at:	
https://github.com/ConsumerDataStandardsAustralia/open-banking/issues/13	
	
Feedback	on	this	proposal	was	supportive	of	the	original	proposal	with	some	minor	additions	and	
amendments	that	have	been	accommodated	in	the	final	decision	below.	
	

	

2	|	P a g e 	
	

Decision For Approval
The	primitive	data	types	to	be	supported	are	described	below.	
	
Type	 Description	 Valid	Examples	

String	 Standard	UTF-8	string	but	unrestricted	in	
content.		Any	valid	Unicode	character	can	be	
used.	

	

ASCIIString	 Standard	UTF-8	string	but	limited	to	the	ASCII	
character	set.	

	

Boolean	 Standard	JSON	boolean	 true	

false	

Enum	 String	representing	an	option	from	a	defined	
list	of	value	

• All	possible	values	should	be	provided	

• Values	should	be	in	all	caps	

• Spaces	should	be	replaced	with	under	
bars	‘_’	

Values	should	be	limited	to	the	ASCII	character	
set	

“OPTION1”	

“ANOTHER_OPTION”	

“VAL_ABC_123”	

PositiveInteger	 A	positive	integer	inclusive	of	zero	 0	

1	

10000	

NegativeInteger	 A	negative	integer	inclusive	of	zero	 0	

-1	

-10000	

Integer	 Any	positive	or	negative	integer	inclusive	of	
zero	

1	

0	

-1	

Number	 A	standard	floating	point	number.		Can	be	
positive,	negative	or	zero	

0.1	

-100.09	

10	

90.09	

DateTimeString	 Combined	Date	and	Time	string	as	per	RFC-
3339	(labelled	date-time	in	the	RFC).	UTC	time	
should	always	be	used	

“2007-05-01T15:43:00.12345Z”	

“2012-12-25T15:43:00-08:00”	

“1997-01-12T15:43:00.121Z”	

3	|	P a g e 	
	

DateString	 Date	string	as	per	RFC-3339	(labelled	full-date	
in	the	RFC).	UTC	time	should	always	be	used	

“2007-05-01”	

“2012-12-25”	

TimeString	 Time	string	as	per	RFC-3339	(labelled	full-time	
in	the	RFC).	UTC	time	should	always	be	used	

“15:43:00.12345Z”	

“15:43:00-12:00”	

CurrencyString	 Standard	3	character	currency	codes	as	per	ISO-
4217	

“AUD”	

“USD”	

“GBP”	

RateString	 A	string	representing	a	percentage	interest	rate	

• A	positive	number	(or	zero)	

• At	least	1	and	up	to	a	total	of	16	
significant	digits	before	decimal	point	

• Up	to	16	digits	following	the	decimal	
point	

• No	formatting,	eg	thousand	separating	
commas	

“82”	

“0.05”	

“12.3456789”	

“99.123456789123”	

	

AmountString	 A	string	representing	an	amount	of	currency.	

• A	positive,	zero	or	negative	number	

• Negative	numbers	identified	with	a	‘-‘	

• No	currency	symbols	should	be	
supplied	

• At	least	1	and	up	to	a	total	of	16	
significant	digits	before	decimal	point	

• Minimum	2	digits	following	a	decimal	
point	(more	digits	allowable	but	only	if	
required)	

• No	additional	formatting,	eg	thousand	
separating	commas	

“0.01”	

“10.00”	

“1234567.89”	

“-1001.23”	

“1.999”	

MaskedPANString	 Masked	credit	card	number.		Lower	case	‘x’	
should	be	used	to	mask	numbers	and	only	the	
last	four	digits	should	be	exposed	to	facilitate	
identification.	

xxxxxxxxxxxx1234	

	

