
1 | P a g e

Data Standards Body
Technical Working Group

Decision Proposal 99 – Finalisation of concurrent consent
Contact: Mark Verstege

Publish Date: 26/03/2020

Feedback Conclusion Date: 09/04/2020

Context

This decision is an amendment to previous decisions related to Concurrent Consent, specifically
Decision Proposal 085 and Decision Proposal 099. Community feedback in response to those
decision proposals have also been taken into account for this decision.

After the approval of Decision Proposal 085 the Consumer Data Right (CDR) standards support a
path for the establishment of multiple active consents between a data recipient, customer and data
holder that would minimise implementation impact for July 2020. This decision does not seek to
alter that position.

In Decision Proposal 085 a new existing_refresh_token claim was added to the request object. In
response to consultation feedback it was identified that this was not a preferred solution due to the
sharing of a token via the front channel. In addition, the regime has been examining the likely future
need for additions to consent such as re-authorisation and fine-grained authorisation.

In response to these needs consultation was conducted under Decision Proposal 099 to determine a
solution for November 2020 that would resolve concerns regarding the existing_refresh_token
claim and lay foundations for the possible future adoption of re-authorisation and fine-grained
authorisation.

This solution provides the foundations for a richer consent and authorisation model without pre-
supposing a solution before CX research.

Decision To Be Made

Determine a secure and extensible amendment to the solution for concurrent consent which
addresses the key concerns and feedback from community consultation. This solution must:

• Be adequately secure
• Allow ADRs to communicate that a new consent is a replacement for an existing consent
• Ensure that the establishment of the new consent and the revocation of the existing consent

is atomic
• Provides a technical position that will facilitate future sectors and future use cases

Note that a solution for re-authorisation and for fine grained authorisation is not included in this
decision.

2 | P a g e

Feedback Provided

The feedback leading this decision can be found at:
https://github.com/ConsumerDataStandardsAustralia/open-banking/issues/99

Feedback provided previously on decision proposal 85 was also considered. This can be found at:
https://github.com/ConsumerDataStandardsAustralia/open-banking/issues/85

Based on the consultation there was broad support for:

• Adoption of a Sharing Identifier to represent sharing agreements
• Removal of existing_refresh_token claim as a solution
• Adopting Pushed Authorisation Requests (PAR) for making authorisation requests.

During consultation, several concerns were raised where changes were recommended to improve
security and useability. These concerns included:

Issue # Concern / feedback Mitigation
DP #99 Use of existing_refresh_token is not

supported
Adoption of a Sharing ID and
deprecation of
existing_refresh_token

Issue #57 Using an authorisation token for
managing business concerns

Adoption of a Sharing ID and Sharing
Agreement Management API for Data
Holder and Data Recipient instead of
existing_refresh_token

Issue #57,
Issue #74

Handling of sensitive information is
conducted in the front-channel and
should be moved to the backchannel

Adoption of Pushed Authorisation
Requests by reference to move
communication to the backchannel

Issue #57 Use of oAuth endpoints for managing
business concerns

Token revocation endpoint must only
be used for token management not
consent management

Issue #74 Passing request objects by value has
known security and header size issues

Adoption of Pushed Authorisation
Requests and JWT Secured
Authorization Request (JAR) obviate
both issues

In addition to the feedback described above the community provided feedback that was not directly
relevant for this consultation but may be useful for consideration in the future when additional
consent functionality is considered.

This includes:

• Use of a Consent API to manage consent: Currently the CDR regime does not permit the
sharing of consent as a resource or the amendment of consent post-authorisation.

• Rich Authorisation Request (OIDF): This is an emerging draft to represent rich authorisation
permissions. This decision does not seek to address fine-grained authorisation, but this may
be considered in future. The decision outlined in this document does not preclude the
potential future adoption of this draft specification.

• Grant Management API (OIDF): This is an emerging draft to manage grants. Given its draft
status it is likely to change. Changes to the draft will be monitored and reviewed from time
to time. This may be considered in the future.

3 | P a g e

• Client-initiated backchannel authentication (CIBA): This decision does not require CIBA to
meet its requirements. This may be considered in the future.

Decision For Approval

In summary, the standards will be amended as follows:
• Adoption of a sharing_id claim returned in the ID Token and accessible via the Data Holder

Token endpoint
• Removal of the use of the existing_refresh_token claim. This is deprecated and retired in

favour of a sharing_id claim which would have the same purpose
• Adoption of Pushed Authorisation Requests (PAR) and JWT Secured Authorization Request

(JAR)
• A new Sharing Agreement Management API to allow Data Recipients to revoke consent at

the Data Holder and vice versa
• Data Holders publishing discovery metadata for PAR and Sharing Agreement Management

API support

These changes have a November 2020 Future Dated Obligation.

Sharing Identifier

Introduction of a Sharing Identifier is used to represent an ongoing sharing agreement between a
data recipient and data holder for a given consumer. This sharing identifier is represented as a
'sharing_id' claim that would be issued by Data Holders when a new sharing agreement is
established.

For any active consents before concurrent consent obligations, a Data Holder will be required to
retrospectively generate a ‘sharing_id’. This would mean that all active consents in the CDR
ecosystem would have a sharing identifier.

For any active consents before concurrent consent obligations, a Data Recipient will be required to
proactively obtain the ‘sharing_id’ for all active consents using the token end point.

Implications:

• The sharing identifier is used instead of existing_refresh_token
• Use of existing_refresh_token is deprecated and must not be supported

Adoption of Pushed Authorisation Requests (PAR)

To facilitate concurrent consent and also be able to move sensitive communications out of the front-
channel into the backchannel, PAR must be supported by Data Holders by their concurrent consent
obligation dates. This also provides the foundations for a richer consent model in future when fine-
grained consent and re-authorisation are in scope.

Data Holders publish their support of PAR as per the PAR normative references by using the OIDC
Metadata Discovery endpoint.

4 | P a g e

Implications:
• Data Holders must support PAR by November 2020 as part of concurrent consent obligations
• The presence of PAR support indicates to Data Recipients that a Data Holder can support

concurrent consent
• This support is a substitute for FAPI Pushed Request Object. FAPI Pushed Request Object will

not be supported by the CDR standards

Adoption of JWT Secured Authorization Request (JAR) to allow Request Objects by
reference

In order to move existing authorisation requests from the front-channel into the backchannel, JAR
support allows the Data Recipient to stage an authorisation request and receive a unique
'request_uri' to complete authorisation.

Data Holders must continue to support request objects sent by value because not all use cases
require complex authorisation. A Data Recipient may still send a request object by value in the
authorisation flow in situations such as one-time consents where a refresh token is not provisioned
and new consent establishment where no existing sharing arrangement exists.

Implications:

• Communication of staged authorisation now occurs via backchannel
• Required dependency for PAR support
• Avoids known header size issues with passing authorisation request objects by value
• Data Holders must support both pushed request objects by value and by reference which

introduces their implementation burden

Sharing Agreement Management API

At present, as the refresh token is being used as a proxy to identify the sharing arrangement the
data standards only allow for token revocation not sharing arrangement revocation. Effectively this
meets the requirements of the rules: A Data Recipient cannot complete a data sharing request after
the customer revokes consent. It does, however, represent an overload of the use of the token
revocation endpoint.

Introduction of a Sharing Agreement Management API allows Data Recipients and Data Holders to
revoke consent via their dashboards along with revoking authorisation tokens.

Moving to a Sharing Agreement Management API allows for more mature notification services
related to a sharing agreement between both parties in the future.

Implications:

• Data Recipients must call the Data Holder Sharing Agreement Management API instead of
the oAuth Token revocation endpoint to revoke consent

• Data Holders must call the Data Recipient Sharing Agreement Management API where they
previously called the Data Recipient Revocation endpoint

• Data Holders and Data Recipients must implement a new API

5 | P a g e

• Data Recipients must publish a RecipientBaseURI in their Software Statement Assertion
• RecipientBaseURI is a new claim introduced for Data Recipient endpoints

Authorisation Server Metadata & Discoverability

Data Recipients require a way to discover, and in some instances, negotiate with Data Holders. This
is handled by the Data Holder making important metadata available via their OpenID Provider
discovery endpoint. As per the standards on Pushed Authorisation Requests, Data Holders must
publish their PAR endpoint. Similarly, Data Holders will be required to publish their Sharing
Agreement Management API endpoint to allow Data Recipients to discover and connect to the
endpoint.

Implications:

• Data Holders must publish new claims in their OIDC metadata discovery endpoint
Data Recipients can infer a Data Holder’s support for concurrent consent through the OIDC
discovery metadata

Changes to existing standards

Removed Statements
The following statements will be removed from the standards:

Section
reference

Statement Change

Request
Object

Request Object references SHALL NOT be
supported

Request Object references MUST
be supported if the Data Holder
supports Pushed Authorisation
Requests (PAR).

Specifying
An Existing
Refresh
Token

To allow for an existing consent to be
reliably revoked upon the establishment of a
new consent intended as a replacement data
holders MUST support an additional claim in
the authorisation request object named
existing_refresh_token that the data
recipient may optionally include with the
value set to the active refresh token for an
existing consent.

The existing_refresh_token claim MUST
be handled as follows:

Until November 2020 data holders are not
required to take any action if
existing_refresh_token is supplied but
MUST NOT respond with an error.
From November 2020 data holders MUST
revoke a token provided in the
existing_refresh_token claim in the
request object once the new consent is
successfully established and a new set of

The existing_refresh_token
must not be supported.
This solution is deprecated in
favour of sharing_id and the
solution components described in
this Decision.

6 | P a g e

tokens has been provided to the data
recipient.
Until November 2020 data recipients MUST
NOT implement scenarios that support
concurrent consent. Only single, extant
consent scenarios should be implemented
until this date.
Until November 2020 data recipients MUST
actively revoke previously supplied refresh
tokens, immediately after receiving the
tokens for a newly established consent,
using the revocation end point.

Revocation
End Point

Data Holders and Data Recipients MUST
implement a Token Revocation End Point as
described in section 2 of [RFC7009].

Data Holders MUST implement a
Token Revocation End Point as
described in section 2 of
[RFC7009].

Revocation
End Point

Requirements for Data Recipient
implementations
The Revocation End Point, when
implemented by the Data Recipient allows a
Data Holder to notify the Data Recipient of
the revocation of a sharing arrangement by
the Customer in totality as required by the
ACCC CDR Rules. This revocation will have
been actioned by the Customer via the Data
Holder’s consent dashboard as described in
the ACCC CDR Rules.
Revocation of Access Tokens MUST not be
supported.
Revocation of Refresh Tokens MUST be
supported and will be used to notify the
Data Recipient of sharing revocation
If consent is withdrawn by a Customer in
writing or by using the Data Recipient’s
dashboard the Data Recipient MUST use the
Data Holder’s implementation of the
revocation end point with the current
Refresh Token to notify the Data Holder.

Data Recipients must implement
the Sharing Agreement
Management API

7 | P a g e

Normative references
PAR - OAuth 2.0 Pushed Authorization Requests (draft-ietf-oauth-par-01)
JAR - The OAuth 2.0 Authorization Framework: JWT Secured Authorization Request (JAR)
RFC8414 - OAuth 2.0 Authorization Server Metadata
IANA.OAuth.Parameters - OAuth Parameters Registry

Sharing Identifier
Statements

• The Sharing ID is a string representing a unique sharing agreement between a data recipient
and data holder for a given consumer

• The Sharing ID is represented as a claim "sharing_id" in the ID Token
• The Sharing ID MUST be unique to a Data Holder
• The Sharing ID MUST be non-guessable and must not identify a consumer
• A Sharing ID MUST be bound to only one active consent at a time but may have no active

consent
• A Sharing ID can span multiple historical consents which are not active
• A Sharing ID SHOULD be generated using an algorithm that reduces the chances of collision
• A Sharing ID MUST be static across consents within the one sharing agreement (e.g. across

consent renewal and re-authorisation)
• A Sharing ID MUST be used to revoke consent

Examples:

1. The Issuer creates a Globally Unique Identifier (GUID) [RFC4122] for the pair of Sector
Identifier and local sharing ID and stores this value.

2. The local sharing ID and a salt value that is kept secret by the Data Holder. The concatenated
string is then hashed using an appropriate algorithm.
Calculate sharing_id = SHA-256 (local_sharing_id || salt).

3. If the Data Holder only provides products to one commercial sector, the Sector Identifier can
be concatenated with a local sharing ID and a salt value that is kept secret by the Provider.
The concatenated string is then encrypted using an appropriate algorithm.
Calculate sharing_id = AES-128 (sector_identifier || local_sharing_id || salt).

Obtaining a Sharing Identifier
The Data Holder must provide the Sharing ID as a claim in the ID Token as part of a Token endpoint
response.

A Data Recipient can call this endpoint at any point post-consent to hydrate an ID Token with the
Sharing ID using a valid refresh token.

The sharing ID will be supplied in the ID Token as the claim "sharing_id".

8 | P a g e

Sequence diagram

Non-normative example
Request
POST /token HTTP/1.1
Host: https://data.holder.com.au
Content-Type: application/x-www-form-urlencoded

client_id=s6BhdRkqt3
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&client_assertion=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyNDU2In0.ey ...
&grant_type=refresh_token
&refresh_token=8xLOxBtZp8
&scope=openid%20profile

Decoded client assertion JWT
{
 "alg": "PS256",
 "typ": "JWT",
 "kid": "12456"
}
{
 "iss": "12345",
 "sub": "12345",
 "iat": 1516239022,
 "exp": 1516239322,
 "aud": "https://data.holder.com.au/token",
 "jti": "37747cd1-c105-4569-9f75-4adf28b73e31"
}

Response
{
 "iss": "https://data.holder.com.au",
 "sub": "a9ebbef6-1f0b-44eb-96cf-0c5b51b37ab2",
 "aud": "12345",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "nbf": 1311280970,
 "auth_time": 1311280969,
 "acr": "urn:cds.au:cdr:3",
 "refresh_token_expires_at": "1311281970",
 "sharing_expires_at": "1311281970",
 "sharing_id": "02e7c9d9-cfe7-4c3e-8f64-e91173c84ecb"
}

9 | P a g e

Supporting Pushed Authorisation Requests by reference
Data Holders must support Pushed Authorisation Requests (PAR) and JWT Secured Authorization
Request (JAR).
Data Recipients must send authorisation request objects by reference by calling the Data Holder’s
pushed authorisation request endpoint if:

• The request object is likely to be too large to be sent as a URI parameter
• The request object contains a sharing_id parameter

The Data Holder response provides the Data Recipient with a Request URI in the response. The
Request URI is then passed to the Data Holder’s Authorisation endpoint to initiate an authorisation
flow. In this way, the Data Recipient has staged their authorisation intent with the Data Holder and
can then proceed via the backchannel.

Sequence diagram

10 | P a g e

Endpoint

Description Value

Hosted By Data Holder

Transport Security TLS

Client Authentication Required No

Bearer Token Required No

Statements
• Data Holders MUST support Pushed Authorisation Requests
• Data Holders MUST support JAR
• Data Holders MUST support request objects sent by reference
• Data Holders MUST publish their support for PAR as per the specification using OAuth/OpenID

Provider Metadata parameters in discovery responses
• The Request URI MUST expire between 10 seconds and 90 seconds
• Data Recipients MAY provide an existing sharing_id as a hint in an authorisation request object
• Data Holders MUST revoke existing authorisation tokens and consents when a sharing_id is

provided as a hint in the authorisation request object
• Data Recipients MUST observe data deletion and de-identification requirements for revoked

consent
• If the sharing_id is not related to the consumer being authenticated it MUST be rejected
• If the sharing_id is not related to the Data Holder it MUST be rejected

11 | P a g e

Sequence diagram

Non-normative example
Request
Request

POST /par HTTP/1.1
 Host: data.holder.com.au
 Content-Type: application/x-www-form-urlencoded

response_type=code%20id_token
 &client_id=12345
 &redirect_uri=https%3A%2F%2Fwww.recipient.com.au%2Fcoolstuff
 &scope=openid%20profile%20bank:accounts.basic:read
 %20bank:accounts.detail:read
 &nonce=n-0S6_WzA2Mj
 &state=af0ifjsldkj
 &request=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyMyJ9.ey...

12 | P a g e

Response
Response

HTTP/1.1 201 Created
Content-Type: application/json
Cache-Control: no-cache, no-store

{
 "request_uri": "urn:data.holder.com.au:bwc4JK-ESC0w8acc191e-Y1LTC2",
 "expires_in": 3600
}

Sharing Agreement Management API and consent revocation
If a Data Recipient wishes to revoke consent, it must do so by calling the Data Holder's sharing
agreement revocation endpoint.

Data Recipients must use a valid Access Tokens as specified in section 10.3 of [OAUTH2]

Endpoint

VERBs DELETE

API https://data.holder.com.au/sharing/{sharing_id}
https://data.recipient.com.au/sharing/{sharing_id}

Description Value

Hosted By Data Holder and Data Recipient

Transport Security MTLS

Client Authentication Required No

Bearer Token Required Yes

Race conditions and handling consent revocation with Data Recipients
Because single-consent sharing agreements will be established before concurrent consent future
dated obligations, there is the chance that a consumer may revoke consent with a Data Holder
before a Data Recipient has obtained a Sharing ID. In this instance, a Data Holder will call the Data
Recipient’s Sharing Agreement Management API with a Sharing ID that is not recognised by the Data
Recipient. The Data Recipient would return an error which signifies to the Data Holder that the
sharing_id is not recognised.

In this instance, a Data Holder must attempt to call the Data Recipient’s revocation endpoint to
notify the Data Recipient that a sharing agreement has ended. If the Data Recipient has chosen to no
longer support a revocation endpoint, the absence of support will be inferred through the absence
of the revocation_endpoint in the Data Recipients software statement assertion (SSA).

13 | P a g e

Statements
• Consent management MUST be managed though the new Sharing Agreement Management API.

The Sharing Agreement Management API only supports DELETE for revocation of consent for the
scope of concurrent consent.

• Data Recipients and Data Holders MUST revoke consent by calling the Sharing Agreement
Management API with a valid sharing identifier

• Data Holders MUST publish their Sharing Agreement Management API using their OpenID
Provider Metadata discovery endpoint

• Data Recipients MUST publish their Sharing Agreement Management API under their InfoSec
Base URI published in the CDR Register

• If the Sharing Agreement Management API is called for revocation, it MUST delete associated
authorisation tokens

• Data Recipients MAY deprecate support of the revocation endpoint. This MUST be inferred
through the absence of the revocation_endpoint in the Data Recipients SSA.

• The Data Recipient’s Revocation endpoint MUST ONLY revoke authorisation tokens

Sequence diagrams

14 | P a g e

Non-normative example
Request

DELETE https://data.holder.com.au/sharing/5a1bf696-ee03-408b-b315-97955415d1f0
HTTP/1.1
Host: data.holder.com.au
Authorization: Bearer
eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyNDU2In0.ey...
x-v: string
x-min-v: string
x-fapi-interaction-id: string
x-fapi-auth-date: string
x-fapi-customer-ip-address: string
x-cds-client-headers: string
Response
The Data Holder responds with HTTP status code 204 if the sharing agreement has been revoked
successfully or if the client submitted an invalid token.

Refresh Token management
Currently, consent revocation is handled by calling the Data Holder's oAuth token revocation
endpoint. From November 2020, this will only be allowed by using an existing_refresh_token and
the overloaded use of the Data Holder's oAuth token revocation endpoint. Because the token
revocation endpoint should only be used for oAuth token management, revocation of consent
cannot rely on token revocation because this couples business and security concerns. As a result, a
solution that decouples these concerns is necessary. The Sharing ID in conjunction with a Sharing
Agreement Management API supports the decoupling of these concerns such that consent
revocation can be performed independent of token management.

Effect of token expiry on a sharing agreement’s state
A Data Holder may issue an access token and refresh token for a long-lived consent. These tokens
may expire before the consent expires. In such a situation, the state of the consent's intent does not
change, and the Data Holder must not modify the state of the intent.

Practically, an ADR presenting a stale access token and/or refresh token would be denied by the
Data Holder because their access to the protected resource(s) is no longer current.
It is recommended that a Data Holder records a separate authorisation status for a consent that
represents the state of token validity in relation to the consent. The consent status would only
change if:

• It has been explicitly revoked (by a consumer either in writing, via the ADR dashboard or via
the DH dashboard)

• It has expired after the data sharing_duration
• The ADR's status in the register requires consents to be revoked

Statements

• Use of existing_refresh_token is deprecated and MUST NOT be implemented by Data
Holder's as part of November 2020 obligations

• oAuth Token Revocation endpoints MUST only be used for the purposes of token
management

15 | P a g e

Discovery Metadata
Data Recipients need a way to discover, and in some instances, negotiate with Data Holders. This is
handled by the Data Holder making important metadata available via their OpenID Provider
discovery endpoint.

Data Holder Statements
Data Holders MUST make their OpenID Provider Metadata available via a configuration end point as
outlined in Section 3 and 4 of the OpenID Connect Discovery standards [OIDD].

Data Holders MUST include the following parameters along with any requirements as part of
underlying specifications:

• sharing_agreement_endpoint: the location of the Data Holder's sharing API for consent
revocation
pushed_authorization_request_endpoint: the location of the Data Holder's PAR endpoint
per Pushed Authorisation Request

Non-normative example
Data Recipient Request
GET /.well-known/openid-configuration HTTP/1.1
Host: data.holder.com.au

Data Holder Response
HTTP/1.1 200 OK
Content-Type: application/json
{
 "issuer": "https://data.holder.com.au",
 "authorization_endpoint": "https://data.holder.com.au/authorise",

 ...

 ## Pushed Authorisation Request metadata - mandatory if concurrent
 consent is supported
 "pushed_authorization_request_endpoint":
 "https://data.holder.com.au/par",

 ## Location of the sharing API for consent management
 "sharing_agreement_endpoint":
 "https://data.holder.com.au/sharing-agreement/"
}

Data Recipient Statements

• Data Recipients MUST publish their Sharing Agreement Management API under the
ResourceBaseURI that is published on the CDR Register.

Non-normative example
Data Recipient Sharing Agreement Management API
https://<ResourceBaseUri>/sharing-agreement

Some example URIs that meet this standard are:
https://data.recipient.com.au/sharing-agreement
https://www.energycompare.com.au/cds-au/v1/api/sharing-agreement

