
April 9, 2020

Data Standards Body
Data61
5/13 Garden St
Eveleigh NSW 2015
Australia

RE: Decision Proposal 99 - Concurrent Consent

The Financial-Grade API Working Group (FAPI WG) thanks the Australian Data Standards Body
for the opportunity to respond to ​Decision Proposal 099 - Concurrent Consent (DP99) 1

published by the Data Standards Body published on 26th of March 2020. As previously
communicated we welcome the opportunity to participate in an open collaboration that
leverages the combined experiences of the FAPI WG to deliver a world leading open data
outcome as part of the Australian Consumer Data Right (CDR) and the Consumer Data
Standards (CDS).

In order to provide concise feedback on the proposal we provide comment on a number of key
topics:

1. FAPI WG & Data61 Proposal Comparison
2. Adoption of the FAPI 2.0 profile
3. Adoption of Pushed Authorisation Request (PAR)
4. Adoption of JWT Secured Authorization Request
5. Non adoption of Rich Authorisation Request (RAR)
6. Non Adoption of Grant Management Extension & API
7. Sharing Agreement API Proposal
8. Pathway for adoption in the context of the existing Consumer Data Standards

1
https://github.com/ConsumerDataStandardsAustralia/standards/files/4384751/Decision.Proposal.99.-.Con
current.Consent.pdf

https://github.com/ConsumerDataStandardsAustralia/standards/files/4384751/Decision.Proposal.99.-.Concurrent.Consent.pdf
https://github.com/ConsumerDataStandardsAustralia/standards/files/4384751/Decision.Proposal.99.-.Concurrent.Consent.pdf

FAPI WG & Data61 Proposal Comparison

Feature FAPI WG Target
State proposal

https://github.com/
ConsumerDataSta
ndardsAustralia/st
andards/issues/99
#issuecomment-59
2320557

New decision
proposal
Change
proposed by
Data61
(“November”
Release)

https://github.co
m/ConsumerDat
aStandardsAustr
alia/standards/iss
ues/99#issueco
mment-6041969
43

FAPI WG New proposal for Stage 1
(“November” Release)

1 Consent
identifier to
support
concurrent
consent

✅Grant
Management’s
grant_id as ​OAuth
parameter

☝New
sharing_id
OIDC ​claim

✅Adopt Grant Management’s grant_id as
OAuth parameter

Grant Management already defines grant_id,
how it should be issued and used. Vendors
supporting Australian Data Holders are actively
contributing to the specification. sharing_id is
custom and limited to OIDC use cases. ‘Grant’
works better for other use cases (e.g. ‘write’ and
etc).

2 Backchannel
Request
lodgement

✅Adoption of
PAR

✅Adoption of
PAR

☝Defer PAR adoption till Stage 2* (for
fine-grained consent) - continue using existing
signed Request Objects in Authorisation
Request until Stage 2.

PAR is still in OIDF target state.

3 Rich
(fine-grained)
Authorisation
Request

✅Adoption of
RAR

❌Non Adoption
of RAR

☝Adopt RAR but use simple RAR until Stage 2
(for fine-grained consent).

Simple RAR object to be expanded in the later
release minimises the amount of change on the
data holders and data recipients in the future.

4 Signed and
Encrypted
JWT request

✅JAR is not
required (Covered
by PAR+RAR)

☝Adoption of
JAR

❌Don’t adopt JAR for Stage 1 - continue using
existing signed Request Object in Authorisation
Request until Stage 2* (when PAR is adopted).

✅Adopt JAR in Stage 2 if non-repudiation is
required after PAR is introduced or standard

https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-592320557
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-592320557
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-592320557
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-592320557
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-592320557
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-592320557
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issuecomment-604196943

signed request object is required.

5 “Consent
API”

✅Data Holder:
Grant
Management API
(GET and
DELETE)

❌Not adopting
Grant
Management API
☝New Sharing
Agreement
Management API
for revocation
(DELETE only)

☝Defer Grant Management API (GET &
DELETE) until Stage 2*.

- GET - when multi-party consent is
required or it’s used for consent change
/ revocation notification).

- DELETE - see #7

Proposed grant management API covers all
functionality of Sharing Agreement Management
API and more.

By adopting this specification early, Australia
can maximise the chance for future standards
alignment, vendor support and leverage
expertise of OIDF and its community.

Grant Management API is still in OIDF target
state.

6 Decoupled
re-authorisati
on request

✅Adopt CIBA ☝Defer CIBA
adoption till later

☝Defer CIBA adoption until Stage 2*+ (when
re-authorisation is required).

CIBA is still in OIDF target state.

7 Data
Holder​’s
consent
revocation
API

✅Grant
Management API
(DELETE)

☝New Sharing
Agreement
Management API
for revocation
(DELETE only)

☝Continue using Token Revocation endpoint
with intent to migrate to Grant Management API
DELETE (Stage 2*).

8 Data
Recipient’s
consent
revocation
notification by
Data Holder

N/A (not covered) ☝Data
Recipient:
Consent
revocation by
Data Holder is
done using New
Sharing
Agreement
Management API
for revocation
(DELETE only)

☝Find alternative way to notify Data Recipient
of consent revocation without complicating the
ecosystem (multi-directional communication)
and imposing API hosting, availability and client
authentication requirements on Data Recipients
and additional complexity on Data Holders.

* Stage 2 elements can be designated as OPTIONAL (“MAY”) elements within earlier specifications.

Adoption of the FAPI 2.0 Profile

The FAPI WG welcomes the Data Standards Body’s steps towards adoption of the FAPI 2.0
Baseline profile. As the leading solution for high security and enhanced integrity of data transfer
FAPI 2.0 combines a significant number of lessons learned in numerous jurisdictions over more
than 5 years, a well defined attacker model , a deep analysis of potential attack scenarios as 2 3

well as a feature rich framework for building security sensitive applications based on multiple
established or emerging international standards including Pushed Authorization Request (PAR),
Rich Authorization Requests (RAR) and Proof Key for Code Exchange (PKCE).

With respect to DP99 we wish to make the following observations:

● PAR is mandated within this profile which, when coupled with Mutual TLS for client
authentication, may remove the necessity for armoured (ie. signed) Request Objects
being required. This could provide a measurable improvement in ease of implementation
for Data Recipients.

● PKCE is mandated within the profile as the code challenge method. This eliminates the
requirement for front channel ID Tokens to be exchanged resulting in:

○ Removal of ID Token exchange in front channel simplifying the developer
experience

○ ID Tokens which convey Personally Identifiable Information (PII) can continue to
be passed via the backchannel removing the requirement for encrypted ID
Tokens to be used as is currently the case within CDS

○ Simplification for user agent initiation by allowing for ​HTTP GET​ calls to the
/authorize ​endpoint without potential exposure to query string length limits

● Resource Servers are mandated to verify access, including permissions conveyed within
RAR based ​authorization_details

Adoption of Pushed Authorisation Request (PAR)

The FAPI WG is encouraged by the DSB’s proposal to adopt PAR as part of DP99. With 5
known implementations (but still formally a OAuth Working Group Draft) PAR represents a
simple solution with respect to large requests being dispatched via the front channel.

2 ​https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Attacker_Model.md
3
https://www.google.com/url?q=https://docs.google.com/spreadsheets/d/1PtG4f-Svils7wHBa7cGaZubbh-6l
Gifce38c_oShSss/edit?usp%3Dsharing&sa=D&ust=1586354639378000&usg=AFQjCNG7-lXEUj6FLPRV
GMajGliETO8Wmg

https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Attacker_Model.md
https://docs.google.com/spreadsheets/d/1PtG4f-Svils7wHBa7cGaZubbh-6lGifce38c_oShSss/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1PtG4f-Svils7wHBa7cGaZubbh-6lGifce38c_oShSss/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1PtG4f-Svils7wHBa7cGaZubbh-6lGifce38c_oShSss/edit?usp=sharing

Adoption of PAR results in a significant reduction in complexity for Data Recipients with regards
to application design during user-agent authorisation initiation. Further, PAR requires client
authentication facilitating enhanced Data Recipient verification by Data Holders, increasing the
security of the overall flow.

On a related note this specification is mandatory for FAPI 2.0 compliance and consequently its
adoption progresses the CDR towards adoption of the next evolution of this highly secure
profile.

Finally, the examples provided within DP99 include mixed content parameters. PAR does not
support mixed content parameters and consequently the example supplied should include either
a reference ​or​ body parameters (ie. client_id)

Adoption of JWT Secured Authorization Request (JAR)

The FAPI WG supports the decision to adopt JAR long term but doesn’t believe it is required for
Stage 1 (November release) if Data61 needs to prioritise standards to be adopted.

Non-adoption of Rich Authorization Request (RAR)

The FAPI WG notes that while RAR was considered within DP99 it was not adopted on the
basis that it is an ​“emerging draft”​ and that the decision proposal does not seek to address
fine-grained authorisation.

The FAPI WG wishes to highlight that while the Rich Authorization Request specification is
formally in ​Draft​ status, the specification itself is now in its 3rd iteration and is considered by its 4

authors to be stable with no significant changes in over 6 months. This is a similar status to the
current status of DSB adopted specifications of PAR and JAR which all have overlapping 5 6

authors.

Within the context of DP99 and the broader Consumer Data Standards, FAPI WG members feel
that there is significant additional value gained through its immediate adoption when considered
in the context of the current approach of adding “processed” claims to the root of the underlying
request object. This includes:

● Dynamic definition of jurisdictionally specific requirements within a defined framework
(​authorization_details​)

● Centralisation of authorization details into a single location for interrogation by both
Operating Parties (for Resource Server introspection) and Relying Parties (for
permission discovery)

● Support inherited through the FAPI 2.0 profile

4 ​https://tools.ietf.org/html/draft-ietf-oauth-rar
5 ​https://tools.ietf.org/html/draft-ietf-oauth-par
6 ​https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-20

https://tools.ietf.org/html/draft-ietf-oauth-rar-01
https://tools.ietf.org/html/draft-ietf-oauth-par
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-20

● Strong enrichment support through subsequent versions which can be defined, at the
DSBs discretion, in future versions of authorization requests using the
specification-defined ​type​ field

● Future-proofing for what are already clear future requirements including:
○ Joint Account support including for progressive Consent Lifecycle
○ Fine Grained Authorisation via multiple dimensions dependent on industry

specific (ie. energy, telco etc) requirements

Given its stability and emerging use cases currently being implemented by working group
participants the working group strongly feels that the adoption of RAR is of no larger complexity,
and indeed due to global vendor support quite possibly less complexity, than the currently
proposed approach taken by the DSB with respect to the use of claims which convey “business
process” constraints as evidenced by the use of ​sharing_duration​.

To further articulate how RAR could be incorporated into the Consumer Data Standards the
working group includes sample payloads which seek to align with the current requirements the
Consumer Data Standards currently specify.

Sharing Agreement API Proposal

The FAPI WG read with interest the proposal for a Sharing Agreement API within DP99. This
proposal appears to be primarily targeted as an alternative to the Revocation of Consent
method defined in the existing Standards.

The FAPI Working Group wishes to highlight that the proposed Sharing Agreement API is very
similar to the UK Open Banking’s (OBIE) Web Hook Revocation method. In addition to this
method OBIE also makes available a Bulk Consent Status API and the Lodged Intent Consent
Management API.

Observationally an overwhelming majority of participants prefer the Lodged Intent Consent
Management API. The primary reason for this is driven by the multitude of failure scenarios
introduced through the requirement for reliable bi-directional communication between the TPP
(Holder) and ASPSP (Recipient).

Non-Adoption of Grant Management Extension & API

The Decision Proposal states that the Grant Management Extension & API is an ​emerging draft
and ostensibly this appears to be the reason for limited consideration at this stage. While the
specification itself is nascent, it is the culmination of three years of experiences across multiple
jurisdictions including UK Open Banking, Polish, Czech and other PSD2 governed jurisdictions.

Specifically related to the UK Open Banking ecosystem (which CDR was intended to be guided

by) the Grant Management API incorporates a large number of improvements to resolve
shortfalls of Intent Lodgement pattern and anti-patterns observed within the UK ecosystem.

Finally, the working group wishes to highlight that notwithstanding evolution of the Grant
Management API the same holds true for any CDR specific solution with the key difference
being that a CDR specific solution would evolve without the support of the broad community of
the OpenID Foundation (OIDF).

The Data Standards Body is welcome, and indeed encouraged, to contribute to the evolution of
the Grant Management API specification.

FAPI WG members also wish to highlight that the discovery of consent status can be solved, in
a more reliable and architecturally simplified way through the use of the Grant Management
API’s query functionality.

Grant Management vs. Sharing Agreement

In addition to this existing ecosystem observation the FAPI WG wishes to note the following:

● The proposed ​sharing_id​ is not a universal consent identifier as it appears to require
OpenID Connect to function. Conversely, ​grant_id​ is an OAuth2 extension which can be
uniformly used by all OAuth2 based applications

● The mechanics for the Sharing Agreement AI assumes that the OP is authoritative for
consent decisions with respect to disclosure. The Grant Management API enhances
interoperability by providing capability for the RP (Data Recipient) to explicitly request
components they wish to request exposure on

● The Sharing Agreement API does not consider use cases beyond sharing limiting its
utility as the CDR expands to other capabilities

● The Sharing Agreement API appears to attempt to abstract live authorisations (ie.
“consents”) away from the authorisation server itself. This has flow-on impacts when
considered in the context of data security domains.

● The Grant Management API supports requesting of grant status which significantly
reduces the complexity required for notification of consent revocations

● The Grant Management API has an established security baseline, is authored by those
with background experience in active deployments and has registered interest from
established vendors/implementers of industry leading software toolsets

Pathway for adoption in the context of the existing Consumer
Data Standards

The FAPI Working Group understands that the DSB wishes to deliver a solution for Concurrent
Consent by November 2020. Not-withstanding the viability of this timeline with respect to the
existing Decision Proposal, the Working Group believes that the most prudent course of action
towards an eventual FAPI 2.0 compliant adoption while considering communicated delivery
timelines would be as follows:

1. Stage 1 (Currently November 2020):
a. Adopt Rich Authorisation Request and migrate existing custom claims into a

cdr_sharing_v1 ​authorization_details. Retain existing Request Object signing as
currently defined within the Consumer Data Standards.

b. Adopt initial grant_management_mode of ​create​ facilitating the delivery of
concurrent consents and Grant identifiers

c. Retain the existing Token Revocation call between Data Holder and Data
Recipient

2. Stage 2:
a. Adopt Grant Management API with ​query​ capability to allow for Data Recipients

to regularly poll for Consent Status and therefore detect revocation events
removing the need for bi-directional communication

b. Decommission the Token Revocation requirement between Data Holder and
Data Recipient

c. Convert to S256 code challenge method thereby removing;
i. ID Token exchange on Front Channel
ii. Requirement for Signed and Encrypted ID Tokens

3. Stage 3:
a. Transition the existing Request Object to be loaded via Pushed Authorisation

Request
b. Introduce grant management API modes of ​revoke​ to enable Recipients to

revoke individual grants without forcibly terminating a session
c. Introduce Grant Management Modes of ​update ​and ​replace​ to facilitate inline

consent upgrade/downgrade capability

Appendix 1: Sample Payloads

Stage 1
Initial adoption of RAR within existing Request Object structure with a request sharing duration
of 90 days, a request for ​sharing_expires_at ​and ​sharing_status​ to be returned.

Authorise Request and Request Object JWT

GET /authorise?

 response_type=code%20id_token

 &client_id=12345

 &redirect_uri=https%3A%2F%2Fwww.recipient.com.au%2Fcoolstuff

 &scope=openid%20profile

 &nonce=n-0S6_WzA2Mj

 ​&grant_management_mode=create
 &state=af0ifjsldkj

 &request=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyMyJ9.ey ...

Host: www.holder.com.au

Decoded Request JWT

{

 "alg": "PS256",

 "typ": "JWT",

 "kid": "123"

}

{

 "aud": " ​https://www.recipient.com.au ​",
 "response_type": "code id_token",

 "client_id": "12345",

 "redirect_uri": " ​https://www.recipient.com.au/coolstuff ​",
 "scope": "openid",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 ​"authorization_details": [
 ​{
 ​"type": "cdr_sharing_v1",
 ​“actions”:[bank:accounts:basic:read],
 ​“sharing_duration”: 7776000,
 ​“sharing_expires_at”: “”
 ​}
 ​]
 "claims": {

 …

 }

 }

}

https://www.recipient.com.au/
https://www.recipient.com.au/coolstuff

Token Response

POST /token HTTP/1.1

Host: www.holder.com.au

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

 code=i1WsRn1uB1&

 client_id=s6BhdRkqt3&

 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&

 client_assertion=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyNDU2In0.ey ...

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

{

 {

 "access_token": "2YotnFZFEjr1zCsicMWpAA……..",

 "token_type": "bearer",

 "expires_in": 3600,

 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA…..",

 "refresh_token_expires_at": "1311281970",

 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1311281970"

 }

]

 ​" ​grant_id”:”TSdqirmAxDa0_-DB_1bASQ ​"
 }

}

Decoded JWT

{

 "iss": "https://www.holder.com.au",

 "sub": "a9ebbef6-1f0b-44eb-96cf-0c5b51b37ab2",

 "aud": "a7AfcPcsl2",

 "exp": 1311281970,

 …

 ​"scope": "openid bank:accounts.basic:read", # Maintained for compatibility
 ...

}

Stage 2
Adopt Grant Management ​query​ API and convert to PKCE S256 code challenge mechanism.

Stage 2 - Authorise Request and Request Object JWT with PKCE

GET /authorise?

 ​response_type=code
 &client_id=12345

 &redirect_uri=https%3A%2F%2Fwww.recipient.com.au%2Fcoolstuff

 &scope=openid%20profile

 &code_challenge=af0ifjsldkj

 &code_challenge_method=S256

 ​&grant_management_mode=create
 &request=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyMyJ9.ey ...

Host: www.holder.com.au

Decoded Request JWT

{

 "alg": "PS256",

 "typ": "JWT",

 "kid": "123"

}

{

 "aud": " ​https://www.recipient.com.au ​",
 "response_type": "code id_token",

 "client_id": "12345",

 "redirect_uri": " ​https://www.recipient.com.au/coolstuff ​",
 "scope": "openid",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 ​"authorization_details": [
 ​{
 ​"type": "cdr_sharing_v1",
 ​“actions”:[bank:accounts:basic:read],
 ​“sharing_duration”: 7776000,
 ​“sharing_expires_at”: “”,
 ​“sharing_status”: “”
 ​}
 ​]
 "claims": {

 …

 }

 }

}

https://www.recipient.com.au/
https://www.recipient.com.au/coolstuff

Stage 2 - Token Request and Response with introduction of ​sharing_status

POST /token HTTP/1.1

Host: www.holder.com.au

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

 code=i1WsRn1uB1&

 code_verifier=iWsBrn1uBR

 client_id=s6BhdRkqt3&

HTTP/1.1 200 OK

Content-Type ​:​ application/json
Cache-Control ​:​ no-cache, no-store

{

 {

 "access_token": "2YotnFZFEjr1zCsicMWpAA……..",

 "token_type": "bearer",

 "expires_in": 3600,

 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA…..",

 "refresh_token_expires_at": "1311281970",

 ​" ​grant_id”:”TSdqirmAxDa0_-DB_1bASQ ​"
 }

}

Decoded JWT

{

 "iss": "https://www.holder.com.au",

 "sub": "a9ebbef6-1f0b-44eb-96cf-0c5b51b37ab2",

 "aud": "a7AfcPcsl2",

 "exp": 1311281970,

 …

 ​"scope": "openid bank:accounts.basic:read", # Maintained for compatibility
 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1311281970"

 “sharing_status”: “ACTIVE”

 }

],

 ...

}

Stage 2 - Authorization Details with Grant Management GET (ACTIVE)

GET /grants/TSdqirmAxDa0_-DB_1bASQ

Host: as.example.com

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store

Content-Type: application/json

{

 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1311281970"

 “sharing_status”: “ACTIVE”

 }

]

}

Stage 2 - Authorization Details with Grant Management GET (REVOKED)

GET /grants/TSdqirmAxDa0_-DB_1bASQ

Host: as.example.com

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store

Content-Type: application/json

{

 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1586353683", # “now”

 “sharing_status”: “REVOKED”

 }

]

}

Stage 3
Move to Pushed Request Object, introduce Grant Management API Revoke. All body
parameters are within a Signed Request Object.

Stage 3 - PAR with RAR and PKCE (FAPI 2 style)

POST /as/par

HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

request=eyJhbGciOiJI1sInR5cCI6IkpXVCIsImtpZCI6IjEyMyJ9.ey

Decoded JWT

{

 "iss": "https://www.holder.com.au",

 "aud": "a7AfcPcsl2",

 "exp": 1311281970,

 “client_id”: s6BhdRkqt3,

 “code_challenge”: af0ifjsldkj,

 “code_challenge_method”: S256,

 ​ “grant_management_mode”: create,
 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1311281970"

 “sharing_status”: “ACTIVE”

 }

],

 ...

}

HTTP/1.1 201

Created Cache-Control: no-cache, no-store

Content-Type: application/json

{

 "request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",

 "expires_in": 90

}

Stage 3 - Authorise Request and Request Object JWT

GET /authorize?

 ​request_uri= urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1C2

Host: www.holder.com.au

HTTP/1.1 200 OK

Stage 3 - Token Request and Response

POST /token HTTP/1.1

Host: www.holder.com.au

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&

 code=i1WsRn1uB1&

 code_verifier=iWsBrn1uBR

 client_id=s6BhdRkqt3&

HTTP/1.1 200 OK

Content-Type ​:​ application/json
Cache-Control ​:​ no-cache, no-store
{

 {

 "access_token": "2YotnFZFEjr1zCsicMWpAA……..",

 "token_type": "bearer",

 "expires_in": 3600,

 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA…..",

 "refresh_token_expires_at": "1311281970",

 ​"grant_id”:”TSdqirmAxDa0_-DB_1bASQ",
 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1311281970"

 “sharing_status”: “ACTIVE”

 }

],

 }

}

Decoded JWT

{

 "iss": "https://www.holder.com.au",

 "sub": "a9ebbef6-1f0b-44eb-96cf-0c5b51b37ab2",

 "aud": "a7AfcPcsl2",

 "exp": 1311281970,

 ...

}

Stage 3 - Authorization Details with Grant Management GET (ACTIVE)

GET /grants/TSdqirmAxDa0_-DB_1bASQ

Host: as.example.com

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store

Content-Type: application/json

{

 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1311281970"

 “sharing_status”: “ACTIVE”

 }

]

}

Stage 3 - Grant Management Revoke

DELETE /grants/TSdqirmAxDa0_-DB_1bASQ

Host: as.example.com

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 201 OK

Cache-Control: no-cache, no-store

Content-Type: application/json

Stage 3 - Authorization Details with Grant Management GET (REVOKED status)

GET /grants/TSdqirmAxDa0_-DB_1bASQ

Host: as.example.com

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA

HTTP/1.1 200 OK

Cache-Control: no-cache, no-store

Content-Type: application/json

{

 "authorization_details": [

 {

 "type": "cdr_sharing_v1",

 “sharing_duration”: 7776000,

 “actions”:[“bank:accounts:basic:read”],

 "sharing_expires_at": "1586353683", # “now”

 “sharing_status”: “REVOKED”

 }

]

}

References
Specification Description Status

FAPI 1​ - Read profile (Part 1)
https://openid.net/specs/openid-financial-api-part-1
-ID2.html

Part 1 of ​Financial-grade API is a profile of
OAuth that is suitable to be used in the access of
read-only financial data and similar use cases.

Adopted by Australian
CDR and Open
Banking UK.

FAPI 1 ​- Read / Write profile (Part 2)
https://openid.net/specs/openid-financial-api-part-2
-ID2.html

Part 2 of Financial-grade API is a profile of
OAuth that is suitable to be used in write access
to financial data (also known as transaction
access) and other similar higher risk access.

Adopted by Australian
CDR and Open
Banking UK.

PAR ​- Pushed Authorization Request
https://tools.ietf.org/html/draft-ietf-oauth-par

Providing an interoperable way to push the
payload of a request object directly to the AS in
exchange for a "request_uri".

Active IETF OAuth
WG draft (stable)

RAR ​- Rich Authorization Request
https://tools.ietf.org/html/draft-ietf-oauth-rar

New OAuth parameter "authorization_details"
that allows clients to specify their fine-grained
authorization requirements using the
expressiveness of JSON data structures.

Active IETF OAuth
WG draft

Base RAR support can
be done before
vendors fully support
RAR

Grant Management ​for OAuth 2.0
https://bitbucket.org/openid/fapi/src/master/Financi
al_API_Grant_Management.md

OAuth extension to expose grant_id and APIs t​o
query the status of and revoke grants.

Active FAPI WG draft

FAPI CIBA​ - Client Initiated
Backchannel Authentication
https://openid.net/specs/openid-financial-api-ciba-I
D1.html

A profile of the OpenID Connect Client Initiated
Backchannel Authentication Flow [CIBA] that
supports this decoupled interaction method.

Implementer’s Draft
(stable)

JAR ​- ​JWT Secured Authorization
Request

https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-20

The ability to send request parameters in a
JSON Web Token (JWT) instead, which allows
the request to be signed with JSON Web
Signature (JWS) and encrypted with JSON Web
Encryption (JWE) so that the integrity, source
authentication and confidentiality property of the
Authorization Request is attained.

Active IETF OAuth
WG draft

FAPI 2.0 ​Baseline Profile
https://bitbucket.org/openid/fapi/src/master/FAPI_2
_0_Baseline_Profile.md
FAPI 2.0 ​Attacker Model
https://bitbucket.org/openid/fapi/src/master/FAPI_2
_0_Attacker_Model.md

Next Generation FAPI specification. Active FAPI WG draft

https://openid.net/specs/openid-financial-api-part-1-ID2.html
https://openid.net/specs/openid-financial-api-part-1-ID2.html
https://openid.net/specs/openid-financial-api-part-2-ID2.html
https://openid.net/specs/openid-financial-api-part-2-ID2.html
https://tools.ietf.org/html/draft-ietf-oauth-par
https://tools.ietf.org/html/draft-ietf-oauth-rar
https://bitbucket.org/openid/fapi/src/master/Financial_API_Grant_Management.md
https://bitbucket.org/openid/fapi/src/master/Financial_API_Grant_Management.md
https://openid.net/specs/openid-financial-api-ciba-ID1.html
https://openid.net/specs/openid-financial-api-ciba-ID1.html
https://tools.ietf.org/html/draft-ietf-oauth-jwsreq-20
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Baseline_Profile.md
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Baseline_Profile.md
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Attacker_Model.md
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Attacker_Model.md

