
1 | P a g e

Data Standards Body
Technical Working Group

Decision 99 – Finalisation of concurrent consent
Contact: Mark Verstege

Publish Date: 14th April 2020

Decision Approved By Chairman: 17th April 2020

Context

This decision is an amendment to previous decisions related to Concurrent Consent, specifically
Decision Proposal 085 and Decision Proposal 099. Community feedback in response to those
decision proposals have also been taken into account for this decision.

After the approval of Decision Proposal 085 the Consumer Data Right (CDR) standards support a
path for the establishment of multiple active consents between a data recipient, customer and data
holder that would minimise implementation impact for July 2020. This decision does not seek to
alter that position.

In Decision Proposal 085 a new existing_refresh_token claim was added to the request object. In
response to consultation feedback it was identified that this was not a preferred solution due to the
sharing of a token via the front channel. In addition, the regime has been examining the likely future
need for additions to consent such as re-authorisation and fine-grained authorisation.

In response to these needs consultation was conducted under Decision Proposal 099 to determine a
solution for November 2020 that would resolve concerns regarding the existing_refresh_token
claim and lay foundations for the possible future adoption of re-authorisation and fine-grained
authorisation.

This solution provides the foundations for a richer consent and authorisation model without pre-
supposing a solution before CX research.

Decision To Be Made

Determine a secure and extensible amendment to the solution for concurrent consent which
addresses the key concerns and feedback from community consultation. This solution must:

• Be adequately secure
• Allow ADRs to communicate that a new consent is a replacement for an existing consent
• Ensure that the establishment of the new consent and the revocation of the existing consent

is atomic
• Provides a technical position that will facilitate future sectors and future use cases

Note that a solution for re-authorisation and for fine grained authorisation is not included in this
decision.

2 | P a g e

Feedback Provided

Feedback has been provided over the course of three consultations:

1. 22nd September 2019: Decision Proposal 085
https://github.com/ConsumerDataStandardsAustralia/standards/issues/85

2. 4th February 2020: Decision Proposal 099 request for feedback
https://github.com/ConsumerDataStandardsAustralia/standards/issues/99#issue-
559369359

3. 26th March 2020: Decision Proposal 099 solution proposal document and 2 week
consultation
https://github.com/ConsumerDataStandardsAustralia/standards/files/4384751/Decision.Pro
posal.99.-.Concurrent.Consent.pdf

Feedback for consultations the first two consultations have previously been summarised in Decision
Proposal 099. This decision document summarises feedback provided during the last two-week
consultation period.

Changes supported:

1. Broad recognition and support of CDR’s intent to move towards FAPI 2.0 target state
2. Strong support for removing the use of the existing_refresh_token and removal of sensitive

communications in the front channel
3. There is broad support for an identifier to represent consent but disagreement on the use of

a CDR-specific “CDR Arrangement Identifier” because it does not support future write-
operation extensibility

4. Leveraging the PAR industry standard is supported but does not currently have vendor
availability and banks do not support implementation within November 2020 timeframes

5. A Consent API in some form is generally supported for querying the status of consent and
revoking consent

6. There is strong support for adoption of PKCE in future phases to replace OIDC Hybrid Flow,
noting that this aligns to a future roadmap for FAPI 2.0 supportability

Changes unsupported:

1. Vendors and banks provided feedback that the November 2020 dates would be difficult to
meet in the current climate because of COVID19

2. There is limited support of a Sharing Agreement API for Data Recipients because of the
complexity to Data Recipients

3. Whilst participants support an identifier to represent consent there is disagreement on the
use of a CDR-specific “CDR Arrangement Identifier” because it does not support future
write-operation extensibility.
Specifically feedback was received that the CDR Arrangement ID is limiting from the
perspective that it only supports read operations within the CDR without being suitably
flexible for future use cases (E.g. write operations) that have been earmarked as part of the
second Farrell Review into the Future Directions of the CDR.

4. Some banks prefer not to support request objects by value for consistency and simplicity
5. There is limited support of the JAR industry standard and advice is to remove this

requirement until it is known to be required in the future

3 | P a g e

Additional feedback provided
1. Replace use of cdr_arrangement_id and adopt Grant Management standard’s grant_id
2. Adopt MTLS for the PAR endpoint
3. Feedback has also been provided where it makes the new statements to support concurrent

consent clearer for implementation
4. Adoption of a simplified RAR approach to manage CDR-specific claims in a standards-aligned

structure

Executive summary of changes adopted from feedback to Decision Proposal 099

The changes adopted based on feedback from the community do not materially change the
conceptual architecture and broad support for the foundations of concurrent consent. The changes
provide solution equivalence with closer alignment to industry standards that will reduce
implementation costs for the CDR in the long term.

1. Sharing Agreement Management API

o Data Holders and Data Recipients adopt basic consent management API DELETE operation
only for consent revocation

o Sharing Agreement Management API is renamed CDR Arrangement Management API to
allow for use beyond read-only data sharing

2. Use CDR Arrangement ID not Sharing Identifier
o Adopt “cdr_arrangement_id” to support use cases beyond data sharing arrangements such

as write-operations in future.

3. Pushed Authorisation Requests

o Continue to support requirement of PAR
o Require MTLS for PAR endpoint
o Remove adoption of JAR for concurrent consent other than the introduction of ‘request_uri’

functionality that allows clients to send a reference to a request object instead of the
request object itself

4. Backwards compatibility for existing consents
o Remove sharing_id from the ID Token
o Include cdr_arrangement_id in Token and Token Introspection JWTs instead of sharing_id in

ID Token

Consideration of feedback not adopted
It is acknowledged that good feedback was provided on the phasing in of RAR and the Grant
Management API, both drafts being developed by the OpenID Foundation. The DSB will continue to
review these with the intent to move towards these standards in the future.

Whilst they are not supported within the concurrent consent timeframes and scope, consultation on
their phased introduction as part of a broader FAPI 2.0 alignment and CDR Consent roadmap will
commence in future.

It was felt that adopting RAR as an aspect of the concurrent consent solution did not have sufficient
prior consultation and consideration of all implications to production rollout.

4 | P a g e

Similarly, with the Grant Management API, it was determined that both Grant Management and
CDR’s consent model requirements are still emerging and further testing of both solutions together
is required.

Decision For Approval

The standards will be amended to change the mechanisms that allow concurrent consents to exist.

In addition, the data recipient will be provided with the ability to specify the CDR arrangement
identifier for an existing consent in the authorisation request object in the same way that sharing
duration is currently specified. This will provide a mechanism for data recipients to differentiate
between a new, concurrent consent, and an amended consent that is intended to supersede a
previously established consent.

To be clear, if a cdr_arrangement_id is not provided then a new, concurrent consent is established in
addition to any existing consents. Existing consents are unaffected.

If a cdr_arrangement_id is provided then, upon successful authorisation, the data holder would
revoke the existing consent associated with the provided refresh token. In addition, the expiration of
sharing would be calculated as the addition of the specified sharing duration to the expiration time
of the current consent rather than to the time of authorisation. This would allow for an existing
consent to be extended for the full twelve-month allowable period.

Future Dated Obligations

Decision 085 – Concurrent Consent introduced a Future Dated Obligation of November 2020. This
obligation date has been retained in alignment with other obligation dates and the existing
advertised implementation schedule for the CDR regime. It is acknowledged, however, that the
ACCC is currently reviewing the CDR implementation schedule in light of the recent COVID19
pandemic. The Future Dated Obligations for the data standards will be revised to align with the
ACCC’s determinations in this regard when they are made known.

CDR Arrangement ID (previously Sharing Identifier)

The standards introduce a new CDR Arrangement ID (previously referred to as a Sharing Identifier) in
the form of a 'cdr_arrangement_id' claim.

Introduction of a CDR Arrangement ID is used to represent an ongoing sharing arrangement
between a data recipient and data holder for a given consumer. The CDR Arrangement ID would be
issued by Data Holders when a new sharing arrangement is established.

For any active consents before concurrent consent obligations, a Data Holder will be required to
retrospectively generate a ‘cdr_arrangement_id’. This would mean that all active consents in the
CDR ecosystem will have a Grant ID.

For any active consents before concurrent consent obligations, a Data Recipient will be required to
proactively obtain the ‘cdr_arrangement_id’ for all active consents using either the token or token
introspection end point.

5 | P a g e

Implications:

• The CDR Arrangement ID is used instead of existing_refresh_token
• Use of existing_refresh_token is deprecated and must not be supported
• For concurrent consent, ONLY the Data Holder may generate a cdr_arrangement_id

Adoption of Pushed Authorisation Requests (PAR)

To facilitate concurrent consent and also be able to move sensitive communications out of the front-
channel into the backchannel, PAR must be supported by Data Holders by their concurrent consent
obligation dates. This also provides the foundations for a richer consent model in future when fine-
grained consent and re-authorisation are in scope.

Data Holders publish their support of PAR as per the PAR normative references by using the OIDC
Metadata Discovery endpoint.
Implications:

• Data Holders must support PAR as part of concurrent consent obligations
• The presence of PAR support indicates to Data Recipients that a Data Holder can support

concurrent consent
• This support is a substitute for FAPI Pushed Request Object. FAPI Pushed Request Object will

not be supported by the CDR standards

Adoption of JWT Secured Authorization Request (JAR) to allow Request Objects by
reference

Based on community feedback, inclusion of some aspects of JAR are not required and would create
additional implementation complexity. It is noted that the aspect of JAR that are considered
important and necessary is the introduction of the "request_uri" parameter that allows clients to
send a reference to a request object instead of the request object itself.

Data Holders must continue to support request objects sent by value because not all use cases
require complex authorisation. A Data Recipient may still send a request object by value in the
authorisation flow in situations such as one-time consents where a refresh token is not provisioned
and new consent establishment where no existing sharing arrangement exists.

Implications:

• Communication of staged authorisation now occurs via backchannel
• Required dependency for PAR support
• Avoids known header size issues with passing authorisation request objects by value
• Data Holders must support both pushed request objects by value and by reference which

introduces their implementation burden

CDR Arrangement Management API

At present, as the refresh token is being used as a proxy to identify the sharing arrangement the
data standards only allow for token revocation not sharing arrangement revocation. Effectively this

6 | P a g e

meets the requirements of the rules: A Data Recipient cannot complete a data sharing request after
the customer revokes consent. It does, however, represent an overload of the use of the token
revocation endpoint.

Introduction of a CDR Arrangement Management API allows Data Recipients and Data Holders to
revoke consent via their dashboards along with revoking authorisation tokens.

Moving to a CDR Arrangement Management API allows for more mature notification services related
to a sharing arrangement between both parties in the future.

Implications:

• Data Recipients must call the Data Holder CDR Arrangement Management API instead of the
oAuth Token revocation endpoint to revoke consent

• Data Holders must call the Data Recipient CDR Arrangement Management API where they
previously called the Data Recipient Revocation endpoint

• Data Holders and Data Recipients must implement a new API
• Data Recipients must publish a RecipientBaseURI in their Software Statement Assertion
• RecipientBaseURI is a new claim introduced for Data Recipient endpoints

Authorisation Server Metadata & Discoverability

Data Recipients require a way to discover, and in some instances, negotiate with Data Holders. This
is handled by the Data Holder making important metadata available via their OpenID Provider
discovery endpoint. As per the standards on Pushed Authorisation Requests, Data Holders must
publish their PAR endpoint. Similarly, Data Holders will be required to publish their CDR
Arrangement Management API endpoint to allow Data Recipients to discover and connect to the
endpoint.

Implications:

• Data Holders must publish new claims in their OIDC metadata discovery endpoint
Data Recipients can infer a Data Holder’s support for concurrent consent through the OIDC
discovery metadata

Changes to existing standards

Removed Statements
The following statements will be removed from the standards:

Section
reference

Statement Change

Request
Object

Request Object references SHALL NOT be
supported

Request Object references MUST
be supported if the Data Holder
supports Pushed Authorisation
Requests (PAR).

Specifying
An Existing
Refresh
Token

To allow for an existing consent to be
reliably revoked upon the establishment of a
new consent intended as a replacement data
holders MUST support an additional claim in

The existing_refresh_token
must not be supported.
This solution is deprecated in
favour of cdr_arrangement_id

7 | P a g e

the authorisation request object named
existing_refresh_token that the data
recipient may optionally include with the
value set to the active refresh token for an
existing consent.

The existing_refresh_token claim MUST
be handled as follows:

Until November 2020 data holders are not
required to take any action if
existing_refresh_token is supplied but
MUST NOT respond with an error.
From November 2020 data holders MUST
revoke a token provided in the
existing_refresh_token claim in the
request object once the new consent is
successfully established and a new set of
tokens has been provided to the data
recipient.
Until November 2020 data recipients MUST
NOT implement scenarios that support
concurrent consent. Only single, extant
consent scenarios should be implemented
until this date.
Until November 2020 data recipients MUST
actively revoke previously supplied refresh
tokens, immediately after receiving the
tokens for a newly established consent,
using the revocation end point.

and the solution components
described in this Decision.

Revocation
End Point

Data Holders and Data Recipients MUST
implement a Token Revocation End Point as
described in section 2 of [RFC7009].

Data Holders MUST implement a
Token Revocation End Point as
described in section 2 of
[RFC7009].

Revocation
End Point

Requirements for Data Recipient
implementations
The Revocation End Point, when
implemented by the Data Recipient allows a
Data Holder to notify the Data Recipient of
the revocation of a sharing arrangement by
the Customer in totality as required by the
ACCC CDR Rules. This revocation will have
been actioned by the Customer via the Data
Holder’s consent dashboard as described in
the ACCC CDR Rules.
Revocation of Access Tokens MUST not be
supported.
Revocation of Refresh Tokens MUST be
supported and will be used to notify the
Data Recipient of sharing revocation

Data Recipients must implement
the CDR Arrangement
Management API

8 | P a g e

If consent is withdrawn by a Customer in
writing or by using the Data Recipient’s
dashboard the Data Recipient MUST use the
Data Holder’s implementation of the
revocation end point with the current
Refresh Token to notify the Data Holder.

Normative references
PAR - OAuth 2.0 Pushed Authorization Requests (draft-ietf-oauth-par-01)
JAR - JWT Secured Authorization Request (draft-ietf-oauth-jwsreq-20)
RFC8414 - OAuth 2.0 Authorization Server Metadata
IANA.OAuth.Parameters - OAuth Parameters Registry

CDR Arrangement ID
Statements

• The CDR Arrangement ID is a string representing a unique sharing arrangement between a
data recipient and data holder for a given consumer

• The CDR Arrangement ID is represented as a claim "cdr_arrangement_id" in the ID Token
• The CDR Arrangement ID MUST be unique to a Data Holder
• The CDR Arrangement ID MUST be non-guessable and must not identify a consumer
• A CDR Arrangement ID MUST be bound to only one active consent at a time but may have

no active consent
• A CDR Arrangement ID can span multiple historical consents which are not active
• A CDR Arrangement ID SHOULD be generated using an algorithm that reduces the chances

of collision
• A CDR Arrangement ID MUST be static across consents within the one sharing arrangement

(e.g. across consent renewal and re-authorisation)
• A CDR Arrangement ID MUST be used to revoke consent

Retrospectively obtaining a CDR Arrangement ID
The Data Holder must provide the CDR Arrangement ID as a claim in the Token endpoint response
and Token Introspection endpoint response.

A Data Recipient can call either the Token or Token Introspection endpoints at any point post-
consent to obtain the CDR Arrangement ID using a valid refresh token.

The CDR Arrangement ID will be supplied in the response JSON as the claim "cdr_arrangement_id".

9 | P a g e

Sequence diagram

Non-normative example: Token Endpoint hydration
Request
POST /token HTTP/1.1
Host: https://data.holder.com.au
Content-Type: application/x-www-form-urlencoded

client_id=s6BhdRkqt3
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&client_assertion=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyNDU2In0.ey ...
&grant_type=refresh_token
&refresh_token=8xLOxBtZp8
&scope=openid%20profile

Decoded client assertion JWT
{
 "alg": "PS256",
 "typ": "JWT",
 "kid": "12456"
}
{
 "iss": "12345",
 "sub": "12345",
 "iat": 1516239022,
 "exp": 1516239322,
 "aud": "https://data.holder.com.au/token",
 "jti": "37747cd1-c105-4569-9f75-4adf28b73e31"
}

Response
{
 "access_token": "2YotnFZFEjr1zCsicMWpAA",
 "expires_in": 3600,
 "refresh_token": "tGzv3JOkF0XG5Qx2TlKWIA",
 "id_token": "eyJraWQiOiIxZTlnZGs3IiwiYWxnIjoiUl...",

DECISION PROPOSAL 099
 "cdr_arrangement_id": "02e7c9d9-cfe7-4c3e-8f64-e91173c84ecb"
}

Decoded JWT

10 | P a g e

{
 "iss": "https://data.holder.com.au",
 "sub": "a9ebbef6-1f0b-44eb-96cf-0c5b51b37ab2",
 "aud": "12345",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "nbf": 1311280970,
 "auth_time": 1311280969,
 "acr": "urn:cds.au:cdr:3",
 "refresh_token_expires_at": "1311281970",
 "sharing_expires_at": "1311281970",

DECISION PROPOSAL 099
 "cdr_arrangement_id": "02e7c9d9-cfe7-4c3e-8f64-e91173c84ecb"
}

Non-normative example: Token Introspection Endpoint hydration
Request
POST /token/introspect HTTP/1.1
Host: https://data.holder.com.au
Content-Type: application/x-www-form-urlencoded

client_id=s6BhdRkqt3
&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer
&client_assertion=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyNDU2In0.ey ...
&grant_type=refresh_token
&refresh_token=8xLOxBtZp8
&scope=openid

Decoded client assertion JWT
{
 "alg": "PS256",
 "typ": "JWT",
 "kid": "12456"
}
{
 "iss": "12345",
 "sub": "12345",
 "iat": 1516239022,
 "exp": 1516239322,
 "aud": "https://data.holder.com.au/token/introspect",
 "jti": "37747cd1-c105-4569-9f75-4adf28b73e31"
}

Response
{
 "iss": "https://data.holder.com.au",
 "sub": "a9ebbef6-1f0b-44eb-96cf-0c5b51b37ab2",
 "aud": "12345",
 "nonce": "n-0S6_WzA2Mj",
 "exp": 1311281970,
 "iat": 1311280970,
 "nbf": 1311280970,
 "auth_time": 1311280969,

11 | P a g e

 "acr": "urn:cds.au:cdr:3",
 "refresh_token_expires_at": "1311281970",
 "sharing_expires_at": "1311281970",

DECISION PROPOSAL 099
 "cdr_arrangement_id": "02e7c9d9-cfe7-4c3e-8f64-e91173c84ecb"
}

Supporting Pushed Authorisation Requests by reference
Data Holders must support Pushed Authorisation Requests (PAR).
Data Recipients must send authorisation request objects by reference by calling the Data Holder’s
pushed authorisation request endpoint if:

• The request object is likely to be too large to be sent as a URI parameter
• The request object contains a cdr_arrangement_id parameter

The Data Holder response provides the Data Recipient with a Request URI in the response. The
Request URI is then passed to the Data Holder’s Authorisation endpoint to initiate an authorisation
flow. In this way, the Data Recipient has staged their authorisation intent with the Data Holder and
can then proceed via the backchannel.

Sequence diagram

12 | P a g e

Endpoint

Description Value

Hosted By Data Holder

Transport Security MTLS

Client Authentication Required No

Bearer Token Required No

Statements
• Data Holders MUST support Pushed Authorisation Requests
• Data Holders MUST support request objects sent by reference for Pushed Authorisation

Requests
• Request Object references SHALL NOT be supported in any mode of use other than Pushed

Authorisation Requests (PAR). If a Data Holder does not support Pushed Authorisation Requests
(PAR), it MUST NOT support Request Object references.

• Data Holders MUST publish their support for PAR as per the specification using OAuth/OpenID
Provider Metadata parameters in discovery responses

• The Request URI MUST expire between 10 seconds and 90 seconds
• Data Recipients MAY provide an existing cdr_arrangement_id claim in an authorisation request

object
to establish a new consent under an existing arrangement

• Data Holders MUST revoke existing refresh tokens and access tokens when a
cdr_arrangement_id is provided in the authorisation request object but ONLY after successful
authorisation

• Data Recipients MUST observe data deletion and de-identification requirements for revoked
consent after successful authorisation

• If the cdr_arrangement_id is not related to the consumer being authenticated it MUST be
rejected

• If the cdr_arrangement_id is not related to the Data Holder it MUST be rejected

13 | P a g e

Sequence diagram

Non-normative example
Request
Request

POST /par HTTP/1.1
 Host: data.holder.com.au
 Content-Type: application/x-www-form-urlencoded

request=eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyMyJ9.ey...

Decoded Request
{
 "iss": "https://www.holder.com.au",
 "aud": "a7AfcPcsl2",
 "exp": 1311281970,
 “client_id”: s6BhdRkqt3,
 “grant_management_mode”: create,
 “response_type”: ”code id_token”,

14 | P a g e

 “client_id”: 12345,
 “redirect_uri”: ”https://www.recipient.com.au%2Fcoolstuff”,
 “scope”: “openid profile bank:accounts.basic:read
 bank:accounts.detail:read”,
 “nonce”: “n-0S6_WzA2Mj”,
 “state”: “af0ifjsldkj”
}

Response
Response

HTTP/1.1 201 Created
Content-Type: application/json
Cache-Control: no-cache, no-store

{
 "request_uri": "urn:data.holder.com.au:bwc4JK-ESC0w8acc191e-Y1LTC2",
 "expires_in": 3600
}

CDR Arrangement Management API and consent revocation
If a Data Recipient wishes to revoke consent, it must do so by calling the Data Holder's sharing
arrangement revocation endpoint.

Data Recipients must use a valid Access Tokens as specified in section 10.3 of [OAUTH2]

Endpoint

VERBs DELETE

API https://data.holder.com.au/arrangements/{cdr_arrangement_id}
https://data.recipient.com.au/arrangements/{cdr_arrangement_id}

Description Value

Hosted By Data Holder and Data Recipient

Transport Security MTLS

Client Authentication Required No

Bearer Token Required Yes

Race conditions and handling consent revocation with Data Recipients
Because single-consent sharing arrangements will be established before concurrent consent future
dated obligations, there is the chance that a consumer may revoke consent with a Data Holder
before a Data Recipient has obtained a Sharing ID. In this instance, a Data Holder will call the Data
Recipient’s CDR Arrangement Management API with a CDR Arrangement ID that is not recognised by

15 | P a g e

the Data Recipient. The Data Recipient would return an error which signifies to the Data Holder that
the cdr_arrangement_id is not recognised.

In this instance, a Data Holder must attempt to call the Data Recipient’s revocation endpoint to
notify the Data Recipient that a sharing arrangement has ended. If the Data Recipient has chosen to
no longer support a revocation endpoint, the absence of support will be inferred through the
absence of the revocation_endpoint in the Data Recipients software statement assertion (SSA).

Statements
• Consent management MUST be managed through the new CDR Arrangement Management API.

The CDR Arrangement Management API only supports DELETE for revocation of consent for the
scope of concurrent consent.

• Data Recipients and Data Holders MUST revoke consent by calling the CDR Arrangement
Management API with a valid CDR Arrangement Identifier

• Data Holders MUST publish their CDR Arrangement Management API using their OpenID
Provider Metadata discovery endpoint

• Data Recipients MUST publish their CDR Arrangement Management API under their Recipient
Base URI published in their Software Statement Assertion

• If the CDR Arrangement Management API is called for revocation, it MUST delete associated
refresh and/or access tokens

• The Data Recipient’s Revocation endpoint MUST ONLY be used for the purposes of revoke
refresh tokens and/or access tokens

• If the cdr_arrangement_id is not related to the consumer being authenticated it MUST be
rejected

• If the cdr_arrangement_id is not related to the Data Holder it MUST be rejected

Sequence diagrams

16 | P a g e

17 | P a g e

Non-normative example
Request

DELETE https://data.holder.com.au/consent-arrangement/5a1bf696-ee03-408b-b315-
97955415d1f0
HTTP/1.1
Host: data.holder.com.au
Authorization: Bearer
eyJhbGciOiJQUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6IjEyNDU2In0.ey...
x-v: string
x-min-v: string
x-fapi-interaction-id: string
x-fapi-auth-date: string
x-fapi-customer-ip-address: string
x-cds-client-headers: string
Response
The Data Holder responds with HTTP status code 204 if the sharing arrangement has been revoked
successfully or if the client submitted an invalid token.

Refresh Token management
Currently, consent revocation is handled by calling the Data Holder's oAuth token revocation
endpoint. From November 2020, this will only be allowed by using an existing_refresh_token and
the overloaded use of the Data Holder's oAuth token revocation endpoint. Because the token
revocation endpoint should only be used for oAuth token management, revocation of consent
cannot rely on token revocation because this couples business and security concerns. As a result, a
solution that decouples these concerns is necessary. The CDR Arrangement ID in conjunction with a
CDR Arrangement ManagementAPI supports the decoupling of these concerns such that consent
revocation can be performed independent of token management.

Effect of token expiry on a sharing arrangement’s state
A Data Holder may issue an access token and refresh token for a long-lived consent. These tokens
may expire before the consent expires. In such a situation, the state of the consent's intent does not
change, and the Data Holder must not modify the state of the intent.

Practically, an ADR presenting a stale access token and/or refresh token would be denied by the
Data Holder because their access to the protected resource(s) is no longer current.
It is recommended that a Data Holder records a separate authorisation status for a consent that
represents the state of token validity in relation to the consent. The consent status would only
change if:

• It has been explicitly revoked (by a consumer either in writing, via the ADR dashboard or via
the DH dashboard)

• It has expired after the data sharing_duration
• The ADR's status in the register requires consents to be revoked

Statements

• Use of existing_refresh_token is deprecated and MUST NOT be implemented by Data
Holder's as part of November 2020 obligations

• oAuth Token Revocation endpoints MUST only be used for the purposes of token
management

18 | P a g e

Discovery Metadata
Data Recipients need a way to discover, and in some instances, negotiate with Data Holders. This is
handled by the Data Holder making important metadata available via their OpenID Provider
discovery endpoint.

Data Holder Statements
Data Holders MUST make their OpenID Provider Metadata available via a configuration end point as
outlined in Section 3 and 4 of the OpenID Connect Discovery standards [OIDD].

Data Holders MUST include the following parameters along with any requirements as part of
underlying specifications:

• cdr_arrangement_endpoint: the location of the Data Holder's sharing API for consent
revocation
pushed_authorization_request_endpoint: the location of the Data Holder's PAR endpoint
per Pushed Authorisation Request

Non-normative example
Data Recipient Request
GET /.well-known/openid-configuration HTTP/1.1
Host: data.holder.com.au

Data Holder Response
HTTP/1.1 200 OK
Content-Type: application/json
{
 "issuer": "https://data.holder.com.au",
 "authorization_endpoint": "https://data.holder.com.au/authorise",

 ...

 ## Pushed Authorisation Request metadata - mandatory if concurrent
 consent is supported
 "pushed_authorization_request_endpoint":
 "https://data.holder.com.au/par",
 ## Location of the sharing API for consent management
 "cdr_arrangement_endpoint":
 "https://data.holder.com.au/consent-arrangement/"
}

Data Recipient Statements

• Data Recipients MUST publish their CDR Arrangement ManagementAPI under the
ResourceBaseURI that is published on the CDR Register.

Non-normative example
Data Recipient CDR Arrangement ManagementAPI
https://<ResourceBaseUri>/consent-arrangement

Some example URIs that meet this standard are:
https://data.recipient.com.au/consent-arrangement
https://www.energycompare.com.au/cds-au/v1/api/consent-arrangement

