
1 | P a g e

Data Standards Body
Technical Working Group
Decision Proposal 121 – Enhanced Error Handling – Application of HTTP Response
Codes

Contact: Mark Verstege
Publish Date: 3rd June 2020
Feedback Conclusion Date:3rd July 2020

Context

The Data Standards define a subset of the allowable HTTP Status Codes and their applicability to the
standards and CDR Register. Additional HTTP status codes have been identified under Decision
Proposal 122 as part of a dependent consultation on enhanced error handling.

This proposal specifically relates to the use of HTTP Response Codes across the Data Standards and
CDR Register.

This proposal includes the consideration of new HTTP status codes considered under Decision
Proposal 122 - Extension of Supported HTTP Response Codes for Enhanced Error Handling.

It is considered in conjunction with a group of decision proposals under the Enhanced Error Handling
problem space:

• Decision Proposal 119 - Enhanced Error Handling Payload Conventions

• Decision Proposal 120 - CDR Error Codes for Enhanced Error Handling

• Decision Proposal 121 - Application of existing HTTP Error Response Codes to Enhanced
Error Handling (this proposal)

• Decision Proposal 122 - Extension of Supported HTTP Response Codes for Enhanced Error
Handling

• Decision Proposal 127 - CX Guidelines for Enhanced Error Handling

Decision To Be Made

• Which HTTP response codes map to given error scenarios

Current recommendation

The recommendations of the Data Standards Body are supplied as a series of tables defining the
HTTP status codes as applicable to the Data Standards and CDR Register, mapping the HTTP status
codes to API endpoints and mapping high level error scenarios to HTTP status codes.

The DSB is seeking feedback on this recommendation. In particular, feedback on whether the
recommendations provide sufficient detail for implementing complex error scenarios.

https://github.com/ConsumerDataStandardsAustralia/standards/issues/119
https://github.com/ConsumerDataStandardsAustralia/standards/issues/120
https://github.com/ConsumerDataStandardsAustralia/standards/issues/121
https://github.com/ConsumerDataStandardsAustralia/standards/issues/121
https://github.com/ConsumerDataStandardsAustralia/standards/issues/122
https://github.com/ConsumerDataStandardsAustralia/standards/issues/122
https://github.com/ConsumerDataStandardsAustralia/standards/issues/127

2 | P a g e

HTTP Response Codes

The following are the HTTP status codes for the different HTTP methods, across all Read/Write API endpoints. Additions to the existing data standards are
included in green.

Situation HTTP Status Notes POST GET DELETE

Query completed successfully 200 OK Includes when a request is made to a Scheduled
Payments or Direct Debits API, the Data Holder must
respond with a 200 OK and an empty response.

Yes Yes No

Normal execution. The request has succeeded. 201 Created The operation results in the creation of a new
resource.

Yes No No

Delete operation completed successfully 204 No
Content

 No No Yes

The response is not modified since last call 304 Not
Modified

May be returned if standard caching headers such as
ETag or If-modified-since are utilised

Yes Yes No

Request has invalid, malformed, missing or non-
compliant JSON body or URL parameters

400 Bad
Request

The requested operation will not be carried out. Yes Yes Yes

Authorization header missing or invalid token 401
Unauthorized

The operation was refused access. Re-authenticating
may result in an appropriate token that may be used.

Yes Yes Yes

Token has incorrect scope or a security policy was
violated.

403 Forbidden The operation was refused access. Re-authenticating is
unlikely to remediate the situation. It is expected that
this error will result in an error payload

Yes Yes Yes

The requested URL does not exist, is not defined in the
data standards or has not been implemented by the
server. Equally, a requested resource identifier in the URL
path does not exist or the server is not willing to disclose
for business reasons.

404 Not
Found

*Applies to the URL for POST and DELETE methods
only. If a resource identifier is supplied in the request
body and it does not exist or unable to be disclosed a
422 Unprocessable Entity applies.

Yes* Yes Yes*

https://consumerdatastandardsaustralia.github.io/standards/#error_payload
https://consumerdatastandardsaustralia.github.io/standards/#error_payload
https://consumerdatastandardsaustralia.github.io/standards/#error_payload

3 | P a g e

The consumer tried to access the resource with a method
that is not supported.

405 Method
Not Allowed

 Yes Yes Yes

The request contained an Accept header other than
permitted media types, a character set other than UTF-8
or a version that was not supported

406 Not
Acceptable

 Yes Yes Yes

The operation was refused because the payload is in a
format not supported by this method on the target
resource.

415
Unsupported
Media Type

 Yes No No

The request was well formed but was unable to be
processed due to business logic specific to the request

422
Unprocessable
Entity

If applicable to the HTTP method it is expected that
this error will result in an error payload

Yes Yes No

The operation was refused as too many requests have
been made within a certain timeframe.

429 Too Many
Requests

Throttling is an NFR. The data holder should include a
Retry-After header in the response indicating how long
the data consumer must wait before retrying the
operation.

Yes Yes Yes

Something went wrong on the API gateway or micro-
service

500 Internal
Server Error

The operation failed. Yes Yes Yes

Service is currently unavailable 503 Service
Unavailable

 Yes Yes Yes

The server was unable to respond in a timely manner 504 Gateway
Timeout

Returned if a timeout has occurred but a resend of the
original request is viable (otherwise use 500 instead)

Yes Yes Yes

https://consumerdatastandardsaustralia.github.io/standards/#error_payload
https://consumerdatastandardsaustralia.github.io/standards/#error_payload

4 | P a g e

High level error scenarios

Scenarios are listed in order of precedence however it is not a hard and fast rule. There are situations where the logic (e.g. rate limiting or signature
validation) may be implemented at one of many layers in front of the API’s application logic.

Area Issue Situation HTTP Status Code

#1 Authorisation Invalid Signature The signature used to sign a private JWT or other data is invalid or not
recognised

401 (Unauthorised)

#2 Authorisation Security Condition Failed A security condition prevents the request but the reason will not be exposed. 403 (Forbidden)

#3 Data Request Not Found The URL requested is not defined by the data standards or CDR Register, or it
is not implemented by the server.

404 (Not Found)

#4 Authorisation Invalid ADR The ADR or ADR software product is invalid or not active in the CDR Register. 403 (Forbidden)

#5 Authorisation Invalid DH The DH is invalid or not active in the CDR Register. 403 (Forbidden)

#6 Authorisation No Consent Established Data is requested without valid consent, or an invalid (or missing) token is
provided.

401 (Unauthorised)

#7 Authorisation Invalid Token or
Credential

The contents of the signed JWT, SSA or other client assertion is invalid or
malformed.

401 (Unauthorised)

#8 All Service Unavailable The server is partially or wholly unavailable and the requested endpoint is
currently not available.

503 (Service Unavailable)

#9 Authorisation Consent Withdrawn The ADR attempts to perform a request however the consent related to the
token is withdrawn, expired or revoked

401 (Unauthorised)

#10 Authorisation Invalid Consent The ADR attempts to request data without the necessary scope or consent
permissions

403 (Forbidden)

#11 Data Request,
Authorisation

Too Many Requests An ADR requests data or attempts to establish consent however one of the
rate limiting NFR thresholds is reached.

429 (Too Many Requests)

5 | P a g e

Area Issue Situation HTTP Status Code

#12 Data Request,
Authorisation

Method Not Allowed The URL is valid but the method is not supported (e.g. a PUT is requested for
a GET-only endpoint)

405 (Method Not
Allowed)

#13 Data Request,
Authorisation

Requested Response
Format Is Not Supported

The requested response format is not supported by the server (e.g. requested
application/xml but the endpoint only supports application/json).

406 (Not Acceptable)

#14 Data Request,
Authorisation

Requested Response
Charset is Not Supported

The requested character set is not supported by the server. 406 (Not Acceptable)

#15 Data Request,
Authorisation

Unsupported Media Type The URL is valid but the payload is an unsupported format not accepted or
not recognised by the server

415 (Unsupported Media
Type)

#16 Data Request Invalid Field

Invalid Header

Invalid Body Parameter

A field, header or request body parameter is malformed or an incorrect type. 400 (Bad Request)

#17 Data Request Unsupported Version A version is requested that is well-formed but unsupported by the server (i.e.
positive integer but lower or higher than the supported version implemented
by the server).

406 (Not Acceptable)

#18 Data Request Unexpected Field

Unexpected Header

Unexpected Body
Parameter

A field, header or request body parameter is provided but the endpoint
excludes it or excludes variations to the interface contract.

400 (Bad Request)

#19 Data Request Missing Field

Missing Header

Missing Body Parameter

A field, header or request body parameter is expected / mandatory however
it is not included in the request.

400 (Bad Request)

6 | P a g e

Area Issue Situation HTTP Status Code

#20 Data Request Invalid Field

Invalid Header

Invalid Body Parameter

A field, header or request body parameter’s value doesn’t comply with the
constraints of the field or is not an allowed value.

400 (Bad Request)

#21 Data request Invalid Account The account requested in the URL is invalid or the Data Holder is unwilling to
disclose for business reasons.

404 (Not Found)

#22 Data Request Invalid Industry The industry requested in path to the CDR Register or Data Holder is invalid,
does not exist and thus cannot be found.

404 (Not Found)

#23 Data Request Not Found The resource identifier requested in the URL does not exist or the server is
unwilling to disclose it.

404 (Not Found)

#24 Data request Invalid Account The account requested in the request body is invalid, does not exist or the
Data Holder is unwilling to disclose for business reasons.

422 (Unprocessable
Entity)

#25 Data Request Not Found The resource identifier requested in the request body is invalid, does not exist
or the Data Holder is unwilling to disclose for business reasons.

404 (Not Found)

#26 Data request Closed Account An ADR requests scheduled payment data or direct debits data for a closed
account.

200 (OK), empty response

#27 All Request Timeout A request was made however the server was not able to respond in a timely
manner.

504 (Gateway Timeout)

#28 All Unexpected Error Something went wrong at the server that was unexpected. 500 (Internal Server
Error)

7 | P a g e

HTTP Response Code Mapping to End Points

The following are the HTTP status codes applicable for each API endpoint in the Data Standards and
CDR Register not covered by a normative reference.

API Category Endpoint Applicable HTTP Response Codes

Banking Get Accounts • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Bulk Balances • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Balances For Specific Accounts • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 422 (Unprocessable Entity)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

8 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Banking Get Account Balance • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Account Detail • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 429 (Too Many Requests)
• 5xx

Banking Get Transactions For Account • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Transaction Detail • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

9 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Banking Get Direct Debits For Account • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Bulk Direct Debits • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Direct Debits For Specific
Accounts

• 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 422 (Unprocessable Entity)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Scheduled Payments for Account • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

10 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Banking Get Scheduled Payments Bulk • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Scheduled Payments For Specific
Accounts

• 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 422 (Unprocessable Entity)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Payees • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Payee Detail • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

11 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Banking Get Products • 200 (OK)
• 400 (Bad Request)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Banking Get Product Detail • 200 (OK)
• 400 (Bad Request)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Common Get Customer • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Common Get Customer Detail • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

12 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Common Get Status • 200 (OK)
• 400 (Bad Request)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 418 (I'm A Teapot)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Common Get Outages • 200 (OK)
• 400 (Bad Request)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Admin Get Metrics • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Admin Post Metadata Update • 200 (OK)
• 201 (Created)
• 304 (Not Modified)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

13 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Consent Delete CDR Arrangement • 204 (No Content)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Register Get Data Holder Brands • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Register Get Software Statement Assertion • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Register Get Software Product Status • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

14 | P a g e

API Category Endpoint Applicable HTTP Response Codes

Register Get Data Recipients Status • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

Register Get Data Recipients • 200 (OK)
• 400 (Bad Request)
• 401 (Unauthorized)
• 403 (Forbidden)
• 404 (Not Found)
• 405 (Method Not Allowed)
• 406 (Not Acceptable)
• 415 (Unsupported Media Type)
• 422 (Unprocessable Entity)
• 429 (Too Many Requests)
• 5xx

15 | P a g e

Options Identified

These considerations depend on the recommendations made in Decision Proposal 122 - Extension of
Supported HTTP Response Codes for Enhanced Error Handling.

Normative References

The handling of concerns such as oAuth token validation is handled by the normative references in
the standards. The data standards do not seek to define CDR Error Codes where the normative
standards apply. This ensures that normative references can be relied upon for interpretation and
implementation based on the underlying standards themselves.

The counter position to this would make it hard to maintain the data standards because there would
be highly coupled dependencies to the version of the normative references as well as the fact that it
is unlikely to be practical to implement where organisations use off the shelf technologies to provide
components of their solution such as Identity and Access Management or API Gateway software. In
these cases error handling typically has limited flexibility to customise.

When to use 404 vs 501 vs 405

There are three situations where a requested resource does not exist, and it is worth informing the
client of this situation:

1. The requested resource is not implemented. Perhaps the implementation compliance
obligation is still in the future or the endpoint is optional to implement.

2. The requested resource is not part of the data standards. Perhaps the client is incorrectly
requesting an endpoint but there is a typo in the URL or the API has been decommissioned
and is no longer part of the data standards.

3. The requested resource does not exist. The URI path may be valid but a path parameter (e.g.
resource Id) may not exist or perhaps it cannot be disclosed for business reasons. In this
instance it has the same effect as the resource not being implemented.

To respond correctly, there are three HTTP status codes which may imply a resource has not been
implemented in some fashion:

1. 404 Not Found when the resource does not exist.
2. 405 Method Not Allowed when the request method (e.g. GET, POST, etc.) is not allowed for

the requested resource.
3. 501 Not Implemented when the request method is not implemented by the resource server

(e.g. the resource server cannot support the OPTIONS method).

501s should only be used when "the server does not support the functionality required to fulfil the
request", e.g. the client is requesting a PATCH on an endpoint but the server does not support that
operation at all.

A 501 status can also send a Retry-After header, telling the client when to check back to see if the
functionality is supported by then.

501 is the appropriate response when the server does not recognise the request method and is
incapable of supporting it for any resource. The only methods that servers are required to support
(and therefore that must not return 501) are GET and HEAD.

https://github.com/ConsumerDataStandardsAustralia/standards/issues/122
https://github.com/ConsumerDataStandardsAustralia/standards/issues/122

16 | P a g e

If the server does recognise the method, but intentionally does not support it, the appropriate
response is 405 Method Not Allowed.

On the other hand, 404s are designed for situations when the server does not offer the
representation requested for a target resource. 404s should clearly be used when a given resource
endpoint has not been implemented or does not exist (e.g. it is not part of the standards).

 6.6.2. 501 Not Implemented

 The 501 (Not Implemented) status code indicates that the server does

 not support the functionality required to fulfill the request. This

 is the appropriate response when the server does not recognize the

 request method and is not capable of supporting it for any resource.

 A 501 response is cacheable by default; i.e., unless otherwise

 indicated by the method definition or explicit cache controls (see

 Section 4.2.2 of [RFC7234]).

 6.5.4. 404 Not Found

 The 404 (Not Found) status code indicates that the origin server did

 not find a current representation for the target resource or is not

 willing to disclose that one exists. A 404 status code does not

 indicate whether this lack of representation is temporary or

 permanent; the 410 (Gone) status code is preferred over 404 if the

 origin server knows, presumably through some configurable means,

 that the condition is likely to be permanent.

 A 404 response is cacheable by default; i.e., unless otherwise

 indicated by the method definition or explicit cache controls (see

 Section 4.2.2 of [RFC7234]).

 6.5.5. 405 Method Not Allowed

 The 405 (Method Not Allowed) status code indicates that the method

 received in the request-line is known by the origin server but not

 supported by the target resource. The origin server MUST generate

 an Allow header field in a 405 response containing a list of the

 target resource's currently supported methods.

 A 405 response is cacheable by default; i.e., unless otherwise

 indicated by the method definition or explicit cache controls (see

 Section 4.2.2 of [RFC7234]).

https://tools.ietf.org/html/rfc7234#section-4.2.2
https://tools.ietf.org/html/rfc7234#section-4.2.2
https://tools.ietf.org/html/rfc7234#section-4.2.2

17 | P a g e

Error Conditions

Situation Example Error Handling

1 Resource is not valid GET data.holder.com.au/

 cds-au/v1/banking/foo/bar

If the Client tries to access a URL for a resource that is not defined by
the CDS specification, the Resource Server should choose to respond
with a 404 (Not Found) and must be consistent with how they handle all
other 404 (Not Found) conditions.

It is noted that making this a MUST may not always be feasible where an
API Gateway could be generically handling these issues.

2 Resource has not been
implemented

DELETE data.recipient.com.au/

 apis/cds-au/sharing-arrangement

If a Resource Server has not implemented an API endpoint,
it should respond with a 404 (Not Found) for requests to that URL
and must be consistent with how they handle all other 404 (Not Found)
conditions.

e.g. a Data Recipient only supports token revocation for consent
management (revocation_endpoint) and has not yet implemented the
CDR Arrangement API endpoint for concurrent consent.

It is noted that making this a MUST may not always be feasible where an
API Gateway could be generically handling these issues.

18 | P a g e

Situation Example Error Handling

3 Resource URL does not
exist or cannot be found

GET data.holder.com.au/

 banking/accounts/19b8ec7809

GET data.holder.com.au/

 banking/products/ab829ef189

When a Client tries to requests a resource URL with a resource Id that
does not exist, the Resource Server should respond with a 404 (Not
Found), rather than respond with a 422 (Unprocessable Entity)
and must be consistent with how they handle all other 404 (Not Found)
conditions.

e.g. if the ADR tries to GET /banking/accounts/19b8ec7809
where 19b8ec7809 is not a valid accountId.

Based on guidance provided in Issue #174

It is noted that making this a MUST may not always be feasible where an
API Gateway could be generically handling these issues.

4 Resource in Request Body
does not exist or cannot
be found

POST data.holder.com.au/banking/

 accounts/balances

{

 "data": {

 "accountIds": [

 "19b8ec7809"

]

 },

 "meta": {}

}

When a Client tries to requests a resource within a request body but the
requested resource does not exist, the Resource Server must respond
with a 422 (Unprocessable Entity), rather than a 404 (Not Found).

e.g. if the ADR tries to GET /banking/accounts/balances
where accountId=19b8ec7809 is provided in the request body and is not
a valid accountId.

https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/174#issuecomment-616920325

19 | P a g e

Situation Example Error Handling

5 Resource in URL exists
but business rules
prevent sharing

GET data.holder.com.au/banking/

 accounts/9fe8717ca89

When a Client tries to request a resource URL with a resource Id that
exists but business rules prevent sharing the data for some reason, the
Resource Server should choose to respond with a 404 (Not Found),
rather than respond with a 422 (Unprocessable Entity) and must be
consistent with how they handle all other 404 (Not Found) conditions.

e.g. if the ADR tries to GET
/banking/accounts/0da594ec where 0da594ec has an Account Frozen
status or a fraud lock flag.

6 Resource in Request
Body exists but business
rules prevent sharing

POST data.holder.com.au/banking/

 accounts/direct-debits

{

 "data": {

 "accountIds": [

 "9fe8717ca89"

]

 },

 "meta": {}

}

When a Client tries to requests a resource within a request body which
exists but business rules prevent sharing the data for some reason, the
Resource Server must respond with a 422 (Unprocessable Entity), rather
than a 404 (Not Found).

e.g. if the ADR tries to GET /banking/accounts/direct-debits
where accountId=0da594ec is provided in the request body has an
Account Frozen status or a fraud lock flag.

20 | P a g e

Situation Example Error Handling

7 Resource in URL or
Request Body exists but
there is no business data
associated with the
resource

GET data.holder.com.au/banking/

 accounts/0da594ec/transactions/

 86ea2570-57af-4a86-917c-

 87b9b7d2be72

When a Client tries to request a resource URL that results in no business
data being returned the Resource Server must respond with a 200 (OK)
and set the data object to be empty.

e.g. An ADR requests the transaction details for a transaction Id that
exists but there is no detail for the transaction, GET
/banking/accounts/{accountId}

21 | P a g e

When to use 422 vs 404 vs 400 vs 200

There are a variety of considerations that factor into the correct response:

• security considerations where a resource server may choose not to tell a client that the
resource couldn't be found or be processed

• whether the resource is a protected resource (authenticated) or unprotected
(unauthenticated)

• the resource exists but there are other conditions preventing the sharing of data

• the request was well formed but was unable to be processed due to business logic specific
to the request

• the resource doesn't exists because it has not been implemented

• the resource isn't part of the data standards

• the method with which the resource is requested

In simple terms, the proposed change to the standards to is make clear where the request is a GET
then 404 applies to the scenarios where the URI path is not found. This includes where a resource is
requested using an identifier in the path (e.g Get Account Details).

Response Code handling

Method of
request

Resource Description Error Handling

GET

POST

PUT

DELETE

Path A resource is requested
in the URL path but it
does not exist.

Refer to error
conditions.

If the Client tries to request a resource by URL
that does not exist, the Resource
Server should choose to respond with a 404
(Not Found).

POST

PUT

DELETE

Request
Body

A resource is requested
but it does not exist
(refer to error
conditions below)
when it is supplied in
the request body.

Refer to error
conditions.

A resource server must respond with one of the
options below. In either option the resource
server must provide an error list with a separate
error item specifying each of the resources that
do not exist or cannot be provided.

When more than one resource Id is requested
(e.g. Account ID) but some of the resource Ids
are ok then the resource server may return a
200 (OK) with the response providing the list of
resources that can be found and can be
disclosed. The error object must be populated
with the list of resource Ids that cannot be
returned.

When one or more resource Ids are requested
the resource server may return a 422
(Unprocessable Entity). The error object must be
populated with the list of resource Ids that
cannot be returned.

22 | P a g e

Error Conditions

Situation Example Error Handling

1 Resource is not valid GET data.holder.com.au/cds-au/v1/

 banking/foo/bar

If the Client tries to access a URL for a resource that is not defined by the CDS
specification, the Resource Server should choose to respond with a 404 (Not
Found) and must be consistent with how they handle all other 404 (Not
Found) conditions.

It is noted that making this a MUST may not always be feasible where an API
Gateway could be generically handling these issues.

2 Resource has not
been implemented

DELETE data.recipient.com.au/

 apis/cds-au/v1/

 sharing-arrangement

If a Resource Server has not implemented an API endpoint, it should respond
with a 404 (Not Found) for requests to that URL and must be consistent with
how they handle all other 404 (Not Found) conditions.

e.g. a Data Recipient only supports token revocation for consent management
(revocation_endpoint) and has not yet implemented the CDR Arrangement API
endpoint for concurrent consent.

It is noted that making this a MUST may not always be feasible where an API
Gateway could be generically handling these issues.

3 Resource URL does
not exist or cannot be
found

GET data.holder.com.au/cds-au/v1/

 banking/accounts/19b8ec7809

GET data.holder.com.au/cds-au/v1/

 banking/products/ab829ef189

When a Client tries to requests a resource URL with a resource Id that does not
exist, the Resource Server should respond with a 404 (Not Found), rather
than respond with a 422 (Unprocessable Entity) and must be consistent with
how they handle all other 404 (Not Found) conditions.

e.g. if the ADR tries to GET /banking/accounts/19b8ec7809
where 19b8ec7809 is not a valid accountId.

Based on guidance provided in Issue #174

It is noted that making this a MUST may not always be feasible where an API
Gateway could be generically handling these issues.

https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/174#issuecomment-616920325

23 | P a g e

Situation Example Error Handling

4 Resource in Request
Body does not exist or
cannot be found

POST data.holder.com.au/cds-au/v1/

 banking/accounts/balances

{

 "data": {

 "accountIds": [

 "19b8ec7809"

]

 },

 "meta": {}

}

When a Client tries to requests a resource within a request body but the
requested resource does not exist, the Resource Server must respond with a
422 (Unprocessable Entity), rather than a 404 (Not Found).

e.g. if the ADR tries to GET /banking/accounts/balances
where accountId=19b8ec7809 is provided in the request body and is not a
valid accountId.

5 Resource in URL exists
but business rules
prevent sharing

GET data.holder.com.au/cds-au/v1/

 banking/accounts/9fe8717ca89

When a Client tries to request a resource URL with a resource Id that exists but
business rules prevent sharing the data for some reason, the Resource
Server should choose to respond with a 404 (Not Found), rather than respond
with a 422 (Unprocessable Entity) and must be consistent with how they
handle all other 404 (Not Found) conditions.

e.g. if the ADR tries to GET /banking/accounts/0da594ec where 0da594ec has
an Account Frozen status or a fraud lock flag.

6 Resource in Request
Body exists but
business rules
prevent sharing

POST data.holder.com.au/cds-au/v1/

 banking/accounts/direct-debits

{

 "data": {

When a Client tries to request a resource within a request body which exists
but business rules prevent sharing the data for some reason, the Resource
Server must respond with a 422 (Unprocessable Entity), rather than a 404 (Not
Found).

24 | P a g e

Situation Example Error Handling

 "accountIds": [

 "9fe8717ca89"

]

 },

 "meta": {}

}

e.g. if the ADR tries to GET /banking/accounts/direct-debits
where accountId=0da594ec is provided in the request body has an Account
Frozen status or a fraud lock flag.

7 Resource in URL or
Request Body exists
but there is no
business data
associated with the
resource

GET data.holder.com.au/cds-au/v1/

banking/accounts/0da594ec/

transactions/86ea2570-57af-4a86-917c-

87b9b7d2be72

When a Client tries to request a resource URL that results in no business data
being returned the Resource Server must respond with a 200 (OK) and set the
data object to be empty.

e.g. An ADR requests the transaction details for a transaction Id that exists but
there is no detail for the transaction, GET /banking/accounts/{accountId}

25 | P a g e

When to use 403 vs 404 or 422

Background

Typically, developers want to provide clear and deterministic error codes that allow for procedural
handling of each error individually. This aids clear reporting of issues to the user, gracefully
degradation of the UX and providing a better quality of service.

Sometimes however, providing too much detail can result in unintended security side effects. One
such example is increasing API fuzzing risk. In such a scenario an attacker can farm valid resource IDs
by hitting a GET endpoint with a valid authentication session.

Example: let's apply this example to a Get Balances For Specific Accounts.

GET data.holder.com.au/cds-au/v1/banking/accounts/balances

Customer Account ID

Bob 111

Jane 222

Bob can authenticate and hit the GET Get Balances For Specific Accounts endpoint with incremental
account ids. Suppose descriptive HTTP status codes were used as follows:

• If the Account ID exists then the GET returns a 200.

• If the Account ID does not exist then the GET returns a 404.

• If the Account ID exists but a business rule prevents sharing, the GET returns a 422.

• If the Account ID exists but it is not owned by Bob then the GET returns 403.

This means that Bob can brute force the endpoint and farm a list of valid Account IDs.

Risk of Exposing API Resource Identifiers

Probing Risk

An attacker can farm Ids and then probe other endpoints with the known Ids. APIs should be
correctly implementing their entitlements checks so the attacker should not be able to do anything
with the Ids. If there is another bug, vulnerability or poor implementation that allows the Id to be
used, there is the risk of combination attack.

Fuzzing Risk

An attacker tries to inject invalid, unexpected, or random data as inputs to see how the API
responds. The attacker may identify different situations that result in different responses which
leaks some security context of the application.

Combination attacks

An attacker combines one or more vulnerabilities to elevate the attack and gain access to more
sensitive information. A probing attack may identify a valid account Id owned by Jane, a bank
customer, who is not Bob. This attack is used in conjunction with a known bug in consent validation
that does not check that the account being requested is associated with Bob's consent. The attacker
can gain access to Jane's bank account details.

https://en.wikipedia.org/wiki/Fuzzing

26 | P a g e

Error Conditions

Situation Error Handling

1 Protected resource is in
the URL but the resource
Id is not associated with
the consumer's consent

When a Client tries to request a protected (authenticated) resource
URL with a resource Id that is not associated with the consumer's
consent contract for the given cdr_arrangement_id and access token,
the Resource Server

• should respond with a 404 (Not Found),

• must not respond with a 403 (Forbidden) and

• must be consistent with how they handle all other 404 (Not
Found) conditions.

This also covers the situation where the accountId represents another
customer's account not associated with the primary subject's consent.

2 Protected resource in the
Request Body but the
resource Id is not
associated with the
consumer's consent

When a Client tries to request a protected (authenticated) resource
where the resource Id is provided in the request body and the
resource Id is not associated with the consumer's consent contract for
the given cdr_arrangement_id and access token, the Resource Server

• must respond with a (Unprocessable Entity),

• must not respond with a 403 (Forbidden)

This also covers the situation where the accountId represents another
customer's account not associated with the primary subject's consent.

Threat Vectors and Security Conditions

Threats scenarios

Similar to the concerns raised in 403 vs 404/422 there are other security scenarios where a bank
does not wish to disclose that an error, risk threshold or security condition has occurred. In these
instances, providing a generic error response that does not leak security context is important. In
other words, the situation shouldn't look atypical to the Client. An example may be a firewall rule
identifies suspicious traffic, an adaptive authentication engine returns a risk score greater than a
tolerable threshold. Examples of threat vectors include:

• IP Address is suspicious or blacklisted
• Geo-location is suspicious or blacklisted
• Security Risk Engine threshold exceeded or request marked as suspicious
• Any edge-security threat flag is raised

ADR status scenarios

An ADR and its associated software products must be active to facilitate a successful data sharing
request. In the event that the ADR or one of its software products changes status, the Data Holder
should not allow a data sharing request.

27 | P a g e

Error Conditions

Situation Is the
Access
Token
Valid?

Is
Consent
Active?

Is the
Client
Status

OK?

Error Handling

1 Consent is active and the
request to a protected
resource is made with an
invalid access token

NO YES YES When a Client tries to request an authenticated resource URL with a resource Id
that exists but the access token is not valid (e.g. expired), the Resource
Server must respond with a 401 (Unauthorized) rather than a 403 (Forbidden).

e.g. the lifetime of the access token has been exceeded

2 Consent is not active and the
request to a protected
resource is made with a valid
access token

YES NO YES When a Client tries to request an authenticated resource URL with a resource Id
that exists but the access token is not valid (e.g. expired), the Resource
Server must respond with a 403 (Forbidden) rather than a 401 (Unauthorized).

e.g. a consumer has revoked consent in the Data Holder dashboard however an
ADR has recently obtained an access token from the Data Holder and attempts to
make a request.

3 The participant status is not
active

YES YES NO When the ADR or the ADR Software Product status is not active and the ADR tries
to request an authenticated URL the Data Holder must respond with a 403
(Forbidden);

When the Data Holder status is not active and the Data Holder tries to call an ADR
URL ADR must respond with a 403 (Forbidden)

https://cdr-register.github.io/register/#participant-statuses

e.g. GET data.holder.com.au/cds-au/v1/banking/0da594ec

DELETE data.recipient.com.au/apis/cds-au/sharing-arrangement/faa68f27-565d-
49a6-a7af-5fac80a0e7d6

https://cdr-register.github.io/register/#participant-statuses

28 | P a g e

Situation Is the
Access
Token
Valid?

Is
Consent
Active?

Is the
Client
Status

OK?

Error Handling

4 The resource is request but a
security condition prevents the
data request

? ? ? The Resource Server should respond with an error that would be appropriate for
the request being made. This situation is different to the resource itself being
invalid or prevented from disclosure because of business rules. It is the condition
where a security condition occurs prior to the resource's entitlements being
checked. In order or precedence:

If the access token is invalid, the Resource Server must respond with a 401
(Unauthorized)

If the consent is not active, the Resource Server must respond with a 403
(Forbidden)

If the Client participant status is not active, the Resource Server must respond with
a 403 (Forbidden)

The Client tries to request a resource URL but a security condition fails to be met on
the Resource Server, The Resource Server must respond with a 403 (Forbidden) or
404 (Not Found).

The Client tries to request a resource supplying the resource identifier(s) in the
request body but a security condition fails to be met on the Resource Server, The
Resource Server must choose to respond with a 403 (Forbidden) or 422
(Unprocessable Entity).

29 | P a g e

When to use 406 vs 400

406 is used in situations where a version is requested but is not supported by the resource server. In
other situations the standards specify the use of 400 (Bad Request) where a field is invalid or
malformed. 406 should only be used for negotiation based on header fields. Currently this only
covers the version headers (x-v, x-min-v) and Accept header. The remaining headers are not used to
negotiate a specific representation of the request so they are covered by 400 (Bad Request) or the
relevant HTTP status code based on the error encountered.

 6.5.6. 406 Not Acceptable

 The 406 (Not Acceptable) status code indicates that the target

 resource does not have a current representation that would be

 acceptable to the user agent, according to the proactive negotiation

 header fields received in the request (Section 5.3), and the server

 is unwilling to supply a default representation.

Consent Revocation

In the CDR Rules, Data Holders must notify Data Recipients when consent is withdrawn.

 4.25 Withdrawal of authorisation to disclose CDR data and notification

(1) The CDR consumer who gave, to a data holder, an authorisation to disclose

 particular CDR data to an accredited person may withdraw the authorisation

 at any time:

 (a) by communicating the withdrawal to the data holder in writing; or

 (b) by using the data holder’s consumer dashboard.

(2) The data holder must:

 (a) if the withdrawal was in accordance with paragraph (1)(a)―give effect

 to the withdrawal as soon as practicable, and in any case within 2

 business days after receiving the communication; and
 (b) in any case―notify the accredited person of the withdrawal in

 accordance with the data standards.

This process is facilitated through the CDR Arrangement API hosted by the Data Recipient. When a
Data Holder encounters an error - say the Data Recipient is down for system maintenance - the
consent is now revoked on the Data Holder side but not on the Data Recipient side. This creates a CX
gap - the consumer will see consent as revoked on the Data Holder side, but they will see consent as
active on the Data Recipient side. It should be noted that there is no risk to unauthorised disclosure
of data from this point onwards because the Data Holder has marked consent as revoked. In this
situation, a Data Holder would be expected to try communicating the consent revocation with the
Data Recipient again within reasonable limits.

The corollary situation (Data Recipient revoking consent with the Data Holder) is slightly different.
An ADR can clearly communicate that the consumer must try again (either immediately or at a later
time). The reason that a Data Holder would want to cease data sharing as soon as a consumer
notifies them is to prevent the ongoing disclosure of data when the consumer clearly does not wish
this to continue. It may be through the Data Holder dashboard or it may be the receipt of
communications from the consumer (e.g. a call to the data holder's contact centre).

To improve handling of this situation, informing Data Recipients in a meaningful way that consent is
not active is important - e.g. when they attempt to collect data again without realising their consent
is revoked.

https://tools.ietf.org/html/rfc7231#section-6.5.6
https://tools.ietf.org/html/rfc7231#section-5.3

30 | P a g e

This must consider three situations:

1. The ADR has a valid access token and tries to request consumer data.
2. The ADR doesn't have an access token and the ADR tries to request an access token from the

DH's authorisation server using a refresh token.
3. The ADR doesn't have an access token or refresh token, they only have an authorisation

code and the ADR tries to request a refresh token and access token from the DH's
authorisation server using an authorisation code.

Error Conditions

Situation Is the
Access
Token
Valid?

Is
Consent
Active?

Error Handling

1 ADR tries to request a
protected resource

YES NO When a Client tries to request an authenticated
resource URL but consent is revoked, the
Resource Server must respond with a 403
(Forbidden).

The error response is covered by a CDR Error
Code.

2 ADR tries to request
an access token using
the oAuth Token
endpoint

N/A NO Error handling is governed by the normative
standards [RFC6749 oAuth 2.0].

An invalid_grant grant error must be returned.

3 ADR tries to obtain
tokens using the
oAuth Token endpoint
with an authorisation
code

N/A NO Error handling is governed by the normative
standards [RFC6749 oAuth 2.0].

An invalid_grant grant error must be returned.

For example:

HTTP/1.1 400 Bad Request

Content-Type:
application/json;charset=UTF-8

Cache-Control: no-store

Pragma: no-cache

{

 "error":"invalid_request"

}

https://tools.ietf.org/html/rfc6749#section-5.2
https://tools.ietf.org/html/rfc6749#section-5.2

31 | P a g e

Customer Records, Accounts and Consent

Accounts are associated to consent. Because of a variety of reasons, the accounts that a consumer
elects to share with an ADR may change within a CDR sharing arrangement or may be unavailable for
data sharing. Reasons may include:

• An account is a joint account and the second joint account holder has withdrawn their
consent election

• An account is frozen or suspended by a bank because of suspicious payments activity

• A customer hasn't provided sufficient KYC evidence, or their KYC documents are old and
have not been refreshed

• A bank prevents the disclosure of account data when their are customer vulnerability flags
related to the account

• The consumer is locked out of internet banking

• A consumer removes accounts from their data sharing arrangement via the Data Holder
Dashboard

• Other security reasons that prevent a bank from disclosing the data

In a similar context, the customer details requested via the Get Customer and Get Customer Details
endpoints may be denied where business rules prevent disclosure.

Where the requested account(s) are not associated to consent or cannot be shared for business or
security reasons, a Data Holder should respond with an error. Depending on the situation, this may
be:

1. A 404 (Not Found) when the resource is requested via the URI path parameter specifying
the account that could not be shared in the Response Error List

2. A 422 (Unprocessable Entity) when the resource(s) are supplied in the request body
specifying the account(s) that could not be shared in the Response Error List.

3. A 200 (OK) with a partial or empty result set when more than one account Id is requested
(e.g. via bulk GET). The Data Holder should populate the Response Error List errors[] array
with the list of accounts that will not be shared along with the partial result set.

Response Error List requirements

When returning the errors encountered, a separate error item should be returned for each account
or resource Id that cannot be returned.

 ## Valid response

{

 “errors”: [

 {

 “code”: “AU.CDR.Entitlements.InvalidAccount”,

 “title”: “Invalid Account”,

 “detail”: “29202ah34e”

 }, {

 “code”: “AU.CDR.Entitlements.InvalidAccount”,

 “title”: “Invalid Account”,

 “detail”: “00284ae747”,

 “meta”: {

 ...

 }

 }

32 | P a g e

]

}

 ## Invalid response

{

 “errors”: [

 {

 “code”: “AU.CDR.Entitlements.InvalidAccount”,

 “title”: “Invalid Account”,

 “detail”: “Accounts 29202ah34e and 00284ae747 cannot be returned.”,

 “meta”: {

 ...

 }

 }

]

}

 ## Invalid response

{

 “errors”: [

 {

 “code”: “AU.CDR.Entitlements.InvalidAccount”,

 “title”: “Invalid Account”,

 “detail”: “29202ah34e, 00284ae747”,

 “meta”: {

 ...

 }

 }

]

}

Auditing

In all of these situations it is expected that a Data Holder would record the reasons and the rejection
must be included in the Data Holder's metrics obligations.

33 | P a g e

Error Conditions

Under these sorts of circumstances, the expectations are presented in the following table:

Situation Error Handling

1 The consumer removes election of the account
in the Data Holder Dashboard

A meaningful reason for not sharing the account data should be provided in the error
description.

The account Id (as in the ID Permanence version) must be specified in the error description.

2 A Joint Account holder has withdrawn consent
election to an account

Where an account cannot be shared because a joint account holder has withdrawn their
consent election, a meaningful reason for not sharing the account data is provided in the error
description.

The account Id must be specified in the error description.

3 The consumer no longer owns the account Where an account is no longer owned by the consumer, it must not be shared. If account
ownership it is not considered a sensitive condition, a meaningful reason for not sharing the
account data is provided in the error description.

The account Id must be specified in the error description.

4 The account Id is invalid / not associated with
the consumer's consent (including the resource
requested is just wrong)

A meaningful reason for not sharing the account data is provided in the error description.

The account Id must be specified in the error description.

5 A security exception or event prevents the Data
Holder sharing an account

No reason must be disclosed. A generic error description must be provided. Data Holders must
not share or disclose what events, triggers or rules are considered security exceptions.

The account Id must be specified in the error description.

A data holder may also respond with a 403 (Forbidden). No detail should be disclosed.

34 | P a g e

Situation Error Handling

6 Sensitive business rules prevent the Data Holder
sharing an account

No reason must be disclosed. A generic error description must be provided. Data Holders must
not share or disclose what conditions or business rules are considered sensitive.

The account Id must be specified in the error description.

7 Non-sensitive business rules prevent the Data
Holder sharing an account

A meaningful reason for not sharing the account data is provided in the error description.

The account Id must be specified in the error description.

35 | P a g e

Appendix: Issues considered

• https://github.com/ConsumerDataStandardsAustralia/standards/issues/11

• https://github.com/ConsumerDataStandardsAustralia/standards/issues/68

• https://github.com/ConsumerDataStandardsAustralia/standards/issues/119

• https://github.com/ConsumerDataStandardsAustralia/standards/issues/120

• https://github.com/ConsumerDataStandardsAustralia/standards/issues/121

• https://github.com/ConsumerDataStandardsAustralia/standards/issues/122

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/5

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/36

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/78

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/117

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/118

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/133

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/141

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/164

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/174

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/179

• https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/188

https://github.com/ConsumerDataStandardsAustralia/standards/issues/11
https://github.com/ConsumerDataStandardsAustralia/standards/issues/68
https://github.com/ConsumerDataStandardsAustralia/standards/issues/119
https://github.com/ConsumerDataStandardsAustralia/standards/issues/120
https://github.com/ConsumerDataStandardsAustralia/standards/issues/121
https://github.com/ConsumerDataStandardsAustralia/standards/issues/122
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/5
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/36
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/78
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/117
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/118
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/133
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/141
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/164
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/174
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/179
https://github.com/ConsumerDataStandardsAustralia/standards-maintenance/issues/188

	Context
	Decision To Be Made
	Current recommendation
	HTTP Response Codes
	High level error scenarios
	HTTP Response Code Mapping to End Points

	Options Identified
	Normative References
	When to use 404 vs 501 vs 405
	Error Conditions

	When to use 422 vs 404 vs 400 vs 200
	Response Code handling
	Error Conditions

	When to use 403 vs 404 or 422
	Background
	Risk of Exposing API Resource Identifiers
	Probing Risk
	Fuzzing Risk
	Combination attacks

	Error Conditions
	Threat Vectors and Security Conditions
	Threats scenarios
	ADR status scenarios

	Error Conditions

	When to use 406 vs 400
	Consent Revocation
	Error Conditions

	Customer Records, Accounts and Consent
	Response Error List requirements
	Auditing
	Error Conditions

	Appendix: Issues considered

