CoreASM Editor & Debugger — Manual

An advanced Editor and Debugger
for CoreASM

http://uni-ulm.de/in/pm/projects/coreasm
https://github.com/CoreASM/
http://coreasm.org

Marcel Dausend, Markus Miiller, and Michael Stegmaier

{marcel.dausend, markus.mueller, michael-1.stegmaier}@uni-ulm.de

Version 1.7.0-SNAPSHOT, March 2013

1 Introducing Notes

The CoreASM Eclipse plugin extends the Eclipse IDE for editing, debugging, and executing
CoreASM specifications. This version is a major upgrade from the latest version (0.6.8.beta).
It offers a reimplemented and enhanced editor which integrates the latest jparsec parser!.
This new editor performs noticeably better than the old one and introduces some valuable
features to revise specifications like quick fixes and syntax checks. Furthermore, CoreASM
specifications can be investigated in an intuitive as well as comprehensive manner with the
new debugger which makes use of the regular Eclipse debugging components.

The reimplementation and enhancement of the editor component has been implemented
by Markus Miiller during his diploma thesis [3]. The debugger has been implemented as part
of a bachelor thesis by Michael Stegmaier [5] and has been introduced on the ABZ-conference
2012 in Pisa [2]. Both theses have been supervised by Prof. Dr. Helmuth A. Partsch, head of
the institute of Software Engineering and Compiler Construction at the University of Ulm.
The work has been initiated and mentored by Marcel Dausend. Meanwhile, the project
has been merged with the official CoreASM development project (www.coreasm.org) and is
provided as open source via github [1].

Ihttp://jparsec.codehaus.org/

http://uni-ulm.de/in/pm/projects/coreasm
https://github.com/CoreASM/
http://coreasm.org
www.coreasm.org
http://jparsec.codehaus.org/

2 Contents

Contents
1 Introducing Notes 1
2 The CoreASM Eclipse Plugin 3
2.1 System Requirementso 3
2.2 Installing CoreASM Eclipse Plugin 3
3 General Introduction to CoreASM and its Editor 4
3.1 Creating a Specification Lo oL 5
3.2 Executing a Specification oL oL o 6
4 Debugging a Specification 6
4.1 Stepping Through a Specification 7
4.2 Adding/Removing Breakpoints o oL 8
4.3 Watching Functions and Expressions, 9
5 Taking Care of Updates 11
6 What has been changed? 11
7 Excursus — Modules in CoreASM: Hello World 11

References 13

3 2 The CoreASM Eclipse Plugin

2 The CoreASM Eclipse Plugin

The daily version of the CoreASM Eclipse plugin can be received via github [1]. A guide for
building and executing the development version can be found on the referred website, too.
Non-developers can easily try out the latest release version of the CoreASM Eclipse plugin
by themselves. It is distributed via the Eclipse Marketplace and our Eclipse Update Site.
Further information can be found in our wiki at github. You are welcome to contact the
authors in case of questions or for providing your feedback?.

2.1 System Requirements
The following infrastructure is required for the CoreASM Eclipse plugin:

e Java SE Runtime Environment 7
http://www.oracle.com/technetwork/java/javase/downloads/index.html

e Eclipse IDE for Java Developers (version Kepler suggested)
http://www.eclipse.org/downloads/

This version of the CoreASM Eclipse Plugin has been developed and tested under

Ubuntu Linux 64bit v14.10 &
Windows 7 and 8.1

with

Kepler Service Release 2 64 bit &
Luna Eclipse Standard 4.4 64 bit
Oracle Java SE JDK 7

2.2 Installing CoreASM Eclipse Plugin

The Plugin can be installed either from the Eclipse Marketplace or by performing the fol-
lowing steps:

e Check if the required software (see above) is already installed on the target machine
and if not, install the software.

e Open the [Helplmenu inside Eclipse

e Select the menu item \He|p>> Install New Software...‘

e Paste the url of this site http://webcoreasm. informatik.uni-ulm.de/coreasm-repository

into the field "work with” and press
e Next press and afterwards [Next|-button

2please send a request by e-mail to marcel.dausend@uni-ulm.de

https://marketplace.eclipse.org/content/coreasm-eclipse-plugin
http://webcoreasm.informatik.uni-ulm.de/coreasm-repository/
https://github.com/CoreASM/coreasm.core/wiki
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://webcoreasm.informatik.uni-ulm.de/coreasm-repository
marcel.dausend@uni-ulm.de

3 General Introduction to CoreASM and its Editor

e Confirm the selection of the ”CoreASM Eclipse Plugin” for installation by pressing

the [Next}-button

e Accept the license and start the installation by pressing the [Finishbutton

e When the warning appears that you are installing unsigned content, you have to press

the [Okay}button to continue

available to you

Last, you have to restart Eclipse so that the ”CoreASM Eclipse Plugin” becomes

If you like, you can build CoreASM by your own using the sources on github. The sources
and our wiki are available at https://github.com/CoreASM/coreasm.core.

3 General Introduction to CoreASM and its Editor

The CoreASM plugin for Eclipse offers two components which are designed to support
writing CoreASM specifications: The redesigned editor (see fig. 1 — middle) and an outline
view of the currently open CoreASM specification (see fig.1 — right). Moreover, a view
showing the AST of the current specification is provided to assist, for instance, in plug-in

20 Java - SampleSpecs /DiningPhilosophers.casm - Eclipse. ONOEE
File Edit Mavigate Search Project B CoreASM Run Window Help
| rov v | @ @ J#svOvayv e ev|®@o gv|ivivie Gvov [(& Javal %5 Debug
12 Package Explorer 52 =][DiningPhilosophers.casm 82 = 0B outline 31 B CoreASMAT TreeView| = O
Bgle ¥ 5 CoreASN DiningPhilosophers A e ¥
v [SampleSpecs v @ DiningPhilosophers
Lluse Standardplugins Bl e
12use OptionsPlugin aESlaluing
@ DiningPhilosophers.casm 1Zuse Mathplugin £ Standardplugins
@ ListsAndMaps.coreasm 14 & OptionsPlugin
& Plott erExample.coreasm 15enum CHOPSTICK = {cl, c2, c3, cd, cS} 8 MathPlugin
LG enum PHILOSOPHERS = {Albert, Herbert, Fredrich, Sina, Juan }
@0 RailroadCrossing.coreasm byt ¥ (& signatures
@ Reateore coreasm 16 function controlled eating : Agents -> BOOLEAN © cHopsTick
@avendingMachine.coreasm 19 function controlled chopOuner: CHOPSTICK -> Agents o PHILOSOPHERS
20 function controlled hungry : Agents -> BOOLEAN o cating
unction controlled leftChop: Agents -> CHOPSTICK =
unction controlled rightChop: Agents -> CHOPSTICK © hungry
o tefechop
unction controlled name: Agents -> String o rightchap
erived CanPickBothchopsticks = (chopOwner (leftchop(self)) = undef) and (chopOuner(rightchop(self)) = undef) © name
o CanPickothChopsticks
nit initRule = inickute
* G2 Rule Definitions
/ main program of every philosopher T
ule Philosopher = -
o = starteating
if hungry (self) and (not eating(self)) then = stopeating
if CanPickBothChopsticks then =np
| Sterteating = initRule
else
print name (self) + ' is hungry but can't eat."
if (not hungry(self)) and eating(self) then
StopEating
hungry (self) := flip
endpar
7// starts eating
ule starteating =
a5 par
s0 chopowner (leftchop(self)) = self
51 chopOwner (rightChop (self)) := self
52 eating(self) := true
3 print name(self) + " starts eating.’
54 endpar z
<)<s
Figure 1: Overview of the Eclipse IDE, showing the CoreASM editor and its outline view

https://github.com/CoreASM/coreasm.core

5 3 General Introduction to CoreASM and its Editor

The editor offers a lot of features to support the user to create, examine, and correct or
revise specifications:

e syntax highlighting

e syntax checking

e warning and error markers (which are also shown in the eclipse problems view)
e quick fixes for several issues

e tooltips showing parser information

e bracket highlighting

e code completion

The outline view shows an overview of the specification corresponding to the currently
open editor. The user can decide if the entries should be shown in a structured way, where
use-statements, signatures and rules are grouped or in a flat representation. Also, the
user can decide if the entries should be ordered alphabetically or in textual order of the
specification. The buttons at the top of the outline view can be used to toggle between
those configurations. Moreover, entries in the outline view can be used to navigate to their
corresponding definition inside the specification by simply clicking on the desired entry. If
the current specification cannot be parsed correctly, the outline view is marked as outdated.
In this case, the user is advised to correct the specification before he can continue to use the
outline view.

3.1 Creating a Specification

To create a CoreASM specification, an existing project in the current eclipse workspace is
required as a container for the new specification. A new project can be created in three
steps:

1. Choose from the Eclipse menu or press (Ctrl]+[N],
2. Choose from the New Project dialog.

3. Give the new project a name and press or click on the Finish-button.

A CoreASM specification can be created in at least two ways: One way is creating a new
text file with a name ending on €3 .casm or €3 .coreasm within the project of choice. An
alternative is the new-wizard:

1. Choose from the Eclipse menu or press [Ctrl]+[N |.

6 4 Debugging a Specification

2. In the appearing New-dialog select [CoreASM) CoreASM Specification| and press or
click on the Next-button.

3. Preferably select a project from the workspace as a container for the specification.
This can be done by either using the file selection dialog or manually entering the
project’s name.

4. Give the new specification file a name ending with €3 .casm or €3 .coreasm and press
or click on the Finish-button.

The structure of a CoreASM specification and the CoreASM language are described
in “CoreASM Language User Manual” [4, p.7]>. A “Hello World!”-example is given in
section 7.

3.2 Executing a Specification

A CoreASM specification can be executed using Carma [4, p.4]* or the CoreASM Eclipse
plugin. There are two ways to execute a CoreASM specification in Eclipse:

The easiest way to run the specification of the currently selected editor component is
to click on the green run-button “~ of the eclipse toolbar (see fig.2(a) and fig.2(b)). As
a result, the selected specification is executed by the CoreASM engine and the output is
shown inside the Console-view of Eclipse (see fig. 2(e)). Running a specification the first time
automatically creates a Run Configuration which specifies some options for the execution
of the related CoreASM specification. Fig. 3 on page 8 shows the default Run Configuration
for the DiningPhilosophers specification. The different options for a certain specification
configure the termination condition for a CoreASM execution and the verbosity of its output.

The second option to start a specification is to use a Run Configuration. If a Run
Configuration for a specification exists, or after it has been created, its specification can be
executed by selecting it. The down-arrow on the right-hand side of the Run-button or the
Run Configuration-menu can be used to open a selection list (see fig. 2(c)). To access a Run
Configuration via the Eclipse menu, select [Run) Run Configurations.. . |.

The execution of a specification can be paused, resumed, and stopped by clicking one of
the buttons (see fig. 2(a)) located under the CoreASM-menu or selecting an entry from that
menu (see fig. 2(d)).

4 Debugging a Specification

A CoreASM specification can be started for debugging by either using the debug-button #-
of the toolbar (see fig. 2(a)) or by selecting a Debug Configuration via the down-arrow beside
this button. Another option is using the eclipse menu |Run >> Debug Configurations. .. |

Shttp://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_manual/
CoreASM-UserManual.pdf
4Carma can be received at www.coreasm.org/download

http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_manual/CoreASM-UserManual.pdf
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_manual/CoreASM-UserManual.pdf
www.coreasm.org/download

4 Debugging a Specification

v Project @ CoreASM Run Wi Yo vE GvE @

& E Ly | #;; = 0 o~ aphers‘casJR“” DiningPhilosophers.casm

YO vAVH GV O v

ophers.casn @ 1 DiningPhilosophers.casm [
orge Ma

ag Philos
ted on Al Run Configurations..,

Run As >

Organize Fayorites..

;ed by Ra

(a) Relevant excerpt of (b) Running the Dining- (c) ...by selecting its Run Con-

the Eclipse tool bar

Philosophers specification

figuration

i@ Javadoc ([L Problems (@ Declaration [E Console &3

Core&Sh DiningPhilosophers

TABLE:

1 Projeck @CoregSM Run Wir
G B O) About CoreAsM t
B % 3 @ CoreAsM Help l
(
r
(3

Resume Engine
¥ Pause Engine

@l Stop Engine

Herbert c2 Fredrich ¢3 Sina

Fredrich starts eating.

Herbert 1s hungry but can't eat.
Sina i1s hungry but can't eat.
Sina is hungry but can't eat.
Fredrich stops eating.

Juan starts eating.

<L

(d) The CoreASM menu

(e) The output of the DiningPhilosophers specification

Figure 2: Running a CoreASM specification

If the specification has been paused by using one ot the pause-buttons ® ! or a break
point has been reached, Eclipse asks the user to switch to the debug perspective. Confirming
this question, the user will be shown a screen similar to fig.4. This debug perspective
contains the views (from top left to bottom right) described in table4 on page 10.

The debbuging of CoreASM specifications is described in detail in the following sections.

4.1 Stepping Through a Specification

Once the execution of a specification in debug mode is paused, one can analyze a specification
step-by-step. There are three different kinds of stepping, which can be forced by pressing
the related buttons -& =@ 2 in the toolbar of the debug perspective or use a keyboard

shortcut:

o & — Step Return

Executing all statements and stopping at the next sequential block

o = — Step Over

Executing a single step of the machine

o 2 — Step Into

Executing a single step, which can also be a step inside a sequential block

Debugging of imperative languages differs in many points from debugging Abstract State
Machines. One difference is, that in a CoreASM specification without sequential parts, all

8 4 Debugging a Specification

— Y& Run Configurations Yoy

Create, manage, and run configurations ;i

i X B
[@ (mmspecification = Common|

it

. Mame: | DiningPhilosophers.casm

it

v @8 ASM Specification Source
8 DiningPhilosophers.c :
® Eclipse Application RS /sampleSpecs Browse...
5] Java Applet Specification DiningPhilosophers.casm Browse...

1 Jave Application
PP Termination condition
Ju Junit

4 Junit Plug-in Test | Upon errors | Upon Failed updates
™2 Maven Build

When a step returns an empty set of updates
[¥) Mwez Launch

“ 05Gi Framework | When a step returns the same set of updates as the previous one
' When there is no agent with a defined program.
After this many steps have been performed: 10 &
Verbasity
Log messages with at least the Following severity level: | Fatal v
Dump updates after each step
Dump entire state after each step
Dump final report at termination

Mark the end of each step

Print the selected set of agents after each step.

(e— £$

Apply Revert
Fil.er matched 10 of 10 items = T i

©) Bun Close

Figure 3: Default Run Configuration for the DiningPhilosophers specification

different step actions result in collecting and aggregating all updates of the current step.
The execution will stop again before the first statement of the next step will be computed,
so that one can examine the update set before the state of the machine is updated. To
continue the execution of the interpreter click on one of the resume-buttons # U,

4.2 Adding/Removing Breakpoints

A breakpoint can be set from within the source editor by double-clicking on the ruler or

right-clicking it and selecting (see Fig. 5).

There are three different types of breakpoints (see Fig. 6):

e Watchpoints: They will be added if the selected line starts with “function” or “uni-
verse”. They will suspend the execution whenever the value of a function/universe
changes or is being read.

9 4 Debugging a Specification

[)®) Debug - SampleSpecs/DiningPhilssophers.casm - Eclipse SDIC (ORONES]
File Edit Navigste Sesreh Broject (@) CoreASM Run Windew Help
i S S 0 & & @ W HEVOVRVE S Sy v v B
‘o B | &) Jave [%5 Debug
%5 Debug 13 ¥ = B %% Breakpoin 88 = B |[e=varisbles 53 = B | /6] Expressions R % 3 & R % Y= 8
(@ DiningPrilosophers. casm [ASM Specific A || g 52 g8 oo W 1 g ||[meme T ~
- m'DlmngPh\lwswhers:asm [ASM Specific - Name o A ([T 5 "eating(albert)”
¥ 5 samplespecs . 5 *chopowner
~- o Thread [main] (Suspended) lv).e pherscast ||| ¢ Herbert 5 hungry”
= DiningPhilesephers.casmiPhiles, + % DiningPhilosaphers.cast || - % eatina(Fredrich) | False S Add e expression
= DiningPhilosophers.casmistope @ eating(sina) true
ningPhilosaphers.casm:Philos # cating(Albert) False
ningPhilosophers, casmiPhilos @ eating(Herbert) | true
ningPhilosophers.casm:Philos. @ eating(Juan) False z
? L) ——— T
phers. casm:philos | || 2 3 e >
ningPhilosophers, casmiPhilos
T i No details to display For the D
ningehiosophers.casmiphios Ul|| ciiten selection. U U
= DiningPhilosophers.casmiinitRy 7 > o
< <> < J<> <) J<> <(J<>
8 DiningPhilosophers.casm £ = 8 |2 outline f@ CoreASM Update View 53 ~ = [|[@ coreasm compare View 52 ~ =g
ST/ Stops eating 2 || ® (output(), "Herbert stops cating.", printAction) Name Step 4% Step 2% 2
:af“’pEaU”g = @ (chopOwner(c2), undef, updateAction) step ar 2v
50 chopOwner (leftChop(self)) := undef @ (chopOwner(c), undef, updateAction) Last Selected Ag [Albert] [Sina]
61 chopowner (rightchop (self)) := undef @ (b0), False, updateaction) Calistack [Philosopher()] | [Philosopher()] |
eating(self) := false @ (esting(Herbert), False, updateaction) rightChopHerbe c1 et
i name (self) + * stops eating. @ (hunory(Herbert), False, updateAction) rightChopalbert <5 s
P rightChop(Sing) | <3 3
right Chop(Fredri c2 =
rightChepiduan); <4 4
return a random BOOLEAN hungrylalbert) False False
“rule flip = hungry(Fredrich) true true
700 return b in dd
71 choose ¢ in BOOLEAN do = hungry(Sina) true true o
7z =c S hungry(Herbert)| False true -
< h<> <)} J<>||< <>
(B console 1 b b # E~riv= O
CoreASM DiningPhilosophers
TABLE: cl Herbert cz Fredrich c3 Sina c4 Juan c5 Albert cl |~ |

Figure 4: Overview of the Debugger

48 rule StartEating =

49 par
50 chopOwner (LeftChop(self)) := self
51 chopOwner (rightchop(self)) := self
|- S i i —
Togagle Breakpoint Double Click s eating.”
Disable Breakpoint shift+Dauble Click

Figure 5: Line breakpoint set at line 52 of the DiningPhilosophers specification.

e Method breakpoints: They will be added if the selected line starts with rule. They
will suspend whenever an update occurs from a line within the selected rule’s body.

e Line breakpoints: They will be added if none of the above breakpoints can be added.
They will suspend whenever an update occurs from the selected line.

A breakpoint can be disabled by choosing from context menu of the
ruler or by un-checking the box in front of its entry in the Breakpoints view. By enabling

the Skip All Breakpoints-toggle switch ™ all breakpoints are discounted during an execution
without the need of changing the set of active breakpoints.

4.3 Watching Functions and Expressions

The Variables-view (see Fig. 7(a)) allows to watch and examine the values of all available
functions of the machine’s state. All values that have been changed due to the last update-set

10 4 Debugging a Specification
Table 1: Overview of the debugging components in fig. 4
View Description Interaction
Debug Shows the currently executed | Selected steps are taken into account
specification and its steps for the CoreASM Compare View
Breakpoints Lists all Breakpoints of the | Breakpoint(s) can be disabled or re-
workspace enabled, skipped, deleted, exported,
imported and used to navigate to its
related source destination
Variables Shows the state of the Core- | The state of the CoreASM execution
ASM engine can be investigated and manipulated
Expressions Shows user defined CoreASM | User defined expressions are passed to
expressions and their values the interpreter and evaluated based
on the current state of the execution
Editor Shows the statement to be | Changes to the specification during

evaluated next

debugging do not influence the cur-
rent execution

Update View

Shows all updates, optionally
restricted to a specific agent,
which are collected up to now
during the current step of the
interpreter

An update can be used to navigate to
the statement of its origin; Updates
which correspond to a breakpoint are
highlighted by a green symbol @.

Compare View

Shows the state of the Core-

All selected steps in the Debug-view

ASM execution for specific
steps

are shown for comparison; Optionally,
just differences are presented.

are highlighted in yellow color. The value of a function at a specific location can be changed
by clicking on its value entry, changing the value by modifying the text, and pressing [Enter|.
This modification is applied directly to the state of the machine and will not induce an extra
update — this feature has to be used with caution.

To keep an eye on a specific function for a given location, a corresponding entry in the
Ezpressions-view (see fig.8(a)) can be created by right-clicking on the desired entry and
selecting from the menu (see Fig. 7(b)).

Additional expressions can be added to the Ezpressions-view by pressing + Addnswespresion
and entering either a universe name, or function name and its location (see fig. 8(b)). En-
tering a function name without its location (e.g. hungry) will result in showing a container
of all it’s locations and values (see Fig. 8(a)). Expressions can be removed by selecting at
least one entry and pressing [Del.], or using the buttons * %

Another way to inspect expressions on the fly is marking an expression inside the Editor-
view or moving the mouse over a single statement. By doing so, a tooltip will be presented
that shows the result of the evaluation of the marked expression based on the current context
of the machine’s evaluation, i.e. the global state and the current computation context. Two
examples are given in fig. 9.

11 7 Excursus — Modules in CoreASM: Hello World

@ DiningPhilosophers, coreasm [line: 38]
@ DiningPhilosophers.careasm [lines: 26 - 38] - PhilasopherProgram
%% DiningPhilosophers.coreasm [access and modification] - eating

Figure 6: Three different kinds of breakpoints listed in the Breakpoints view.

ﬂ Select All Chrl+A

(€)= variables &2 S Breakpoints fick 2
“=| Copy Wariables Chrl+C
Marne Yalue ot Find chrler &5
+
@ Step] ® : | " [=]
@ Last Selected Agents [InitAagent] sert] —m Change Value... cl
@ rightChopJuan) o4 Y watch Ea:
@ rightChoplFredrich) c2 - =
(a) The Variables-view shows all functions at its loca- (b) Context-menu of the Vari-
tion, their value, definition type, and current type. ables-view.

Figure 7: The Variables-view for inspecting function and modifying their values.

5 Taking Care of Updates

The Update-view (see fig. 10) lists all updates which have been computed during the current
step. Each update is a triple, consisting of the function and its location, the value, and the
type of action. The action type is an internal CoreASM specific value. By double-clicking
on an update-entry, the source of this update inside the specification is presented to the
user. Updates that correspond to an active breakpoint are marked by a green symbol @.
To focus on the updates of a specific agent, a filter option can be applied (see fig. 11(a)).

6 What has been changed?

The Compare-view enables analyzing the state of the machine over the time. Therefore,
the view shows all functions and their values for selected steps of the machine side-by-side.
The selection has to be performed within the Breakpoints-view where all steps are listed.
Multiple steps can be selected while holding (for single selection) or holding (to
mark a range of steps). Steps, which are marked by a * are intermediate steps resulting
from sequential steps. To clear up the Compare-view the filter option can be used, which
results in hiding all corresponding functions with equal values (see fig. 11(b), p. 14).

7 Excursus — Modules in CoreASM: Hello World

The following specification &3HelloWorld.casm implements an extended “Hello World!”.
This specification itself specifies the output of “we proudly present:”. It further demonstrates
the use of modules by including the module €&3PrintHelloWorld.casm which implements
the output of “Hello World!”. As a result, the rule PrintHelloWorld can be called from

© 0 O T W N

—_ =
= O

12 7 Excursus — Modules in CoreASM: Hello World

& Expressions 53 = 0 &4 Expressions 3 = O
B+ %% % B & %
Name : Value 1 MName : Value
" hung d i b b Y "hungry(sina)" False
% hunary(sina) False §§y "hunary(albert)" Erue
% hungry(Fredrich) | False ISY "hungry(Sina) or hungry{Albert)" ! brue
@ hungry(Juan) true §_$Y "eating(Albert)" False
% hungrylAlbert) | true Y "eFrchop(Fredrich)” ‘e3
@ hunary(Herbert) true 4P Add new expression ;
&P Add new expression |
<[1 J<>
[sina, Fredrich, Juan, Albert, Herbert] [’:"] true E]
~ ~
' W
<[J<> <[J<o>
(a) A function and its values for each location. (b) Some functions of specific locations and their

values. The marked entry shows a user defined
expression and its value.

Figure 8: The Ezpressions-view shows user selected universes, functions for either all or one
specific location, and evaluates user defined expressions depending on the current state.

31// main program ot every philosopher
3zrule Philesopher = 32rule Philosopher =
33 par 33 par
» 34 iy 1ungry (self) and (not eating(self))B{] ® 34 if hungry(self) and (not eating(self)) then
35 © = PickBothChopsticks then 35 if canPickBothchopsticks| then
35 false L rtEating 36 StartEating -
37 else 37 else Derived Function: CanPickBothChopsticks = true
38 print name(self) + * is hungry but can't eat." 38 print name(self) + " is hungry but can't eat."
29 39

(a) The expression at the line breakpoint is eval- ~ (b) The result of the derived function
uated on-the-fly. CanPickBothChopsticks is presented as a tooltip when
the mouse cursor hovers over its calling statement.

Figure 9: During debugging, expressions can be marked inside the Editor-view so that the
result will be shown as a tooltip.

the initial rule of the main specification “HelloWorld”.

/** A multi-line comment

* for the HelloWorld specification

* Each specification has to start with CoreASM <name>
*/

CoreASM HelloWorld

//4 single line comment previous to the block of used plugins
use Standard

use Modularity

//the initial rule definition

12
13
14
15
16
17
18
19
20
21
22
23

N OO W N

13 7 Excursus — Modules in CoreASM: Hello World

DiningPhilosophers.casm &3 C= outline = 0 CoreASh Update View 23 ¥ = O
o
~
e

ag par @ (chopoOwner(c1), Albert, updateAction)

2 gmomer(lsficplenli) = sl Y ——
e 52 @(chopOwner(cS),Albert, updateAction)
53 print name(self) + " starts eating." @(output(), "Albert starts eating."”, prinkAction)
54 endpar D
55
56
57 // stops eating
S2rule StopEating =
59 par
60 chopOwner(leftChop(self)) := undef
61 chopOwner(rightchop(self)) := undef
< —~— ”‘I o)< > <[J <>

Figure 10: The Editor (left) and Update-view (right): The statement in the specification
causing the marked update is highlighted. It is located in a line with an active breakpoint.

init HelloWorld

/** The path to an included CoreASM module
* has to be given within double quotes.
*/

include "./PrintHelloWorld.casm"

rule HelloWorld =
seq

print "we proudly present:"
next

PrintHelloWorld ()

The module &3PrintHelloWorld.casm implements the output of “Hello World!”. In differ-
ence to a main specification, its header starts with CoreModule <module name> and an init
rule is not allowed here.

//modules can be included in CoreASM specifications
CoreModule PrintHelloWorld
use Standard
rule PrintHelloWorld =
print "Hello World!"

Further example specifications, e. g. the DiningPhilosophers specification, are part of the
distributable and can be found in the folder €3 sampleSpecs.

14 References

(@) CoreAsM Update View E3 ¥ = 0 (i CoreAsi Compare View Eﬂx ¥ = 0]
@ (hungry(Sine),| Show updates from all agents Mame : Step 14] show differences only
@ (chopOwner(g . name(Herbert) ;| Herbert
only show updates From agent: Fredrich "r'
@ (hunary(albert name(Albert) | Albert Albert
@ (hungry(uan)] Only show updates From agent: Albert chopOwner(c2) Fredrich
@ (outpuk(), "Juj Only show updates from agent: Sina chopOwner(c3) ERE
@ (eating(Albert Only show updates From agent: Juan chopOwner(c1) | Albert Albert
@ (chopOwner(e Only show updates From agent: Herberk chopOwner(cs) | Albert Albert
" eating(Herbert) | False fFalse B
eating(Fredrich)i False true
eating(Albert) true true]
< 3 <> eaFingFS.ina)\ iallse Tallse C

(a) The filter of the Update-view helps the user to (b) The Compare-view shows the functions for dif-

concentrate on the updates of a specific agent. ferent states side-by-side. To focus on the changes
between those states, the filter can be used to hide
functions with equal values.

Figure 11: Both, the Update- and the Compare-view offer filters to focus on certain aspects.

References

[1] M. Dausend, R. Farahbod, M. Miiller, A. Raschke, and M. Stegmaier. The CoreASM
Project. https://github.com/CoreASM/coreasm.core, 2012.

[2] M. Dausend, M. Stegmaier, and A. Raschke. Debugging Abstract State Machine Specifi-
cations: An Extension of CoreASM. In Proceedings of the Posters € Tool demos Session,
iFM 2012 € ABZ 2012, 2012.

[3] M. Miiller. Entwicklung eines Editors fiir CoreASM — Redesign nach Software Engi-
neering Methoden. Diplomathesis, University of Ulm, 2012.

[4] R. Rarahbod. CoreASM Language User Manual, engine version 1.5-beta edition, 2011.

[6] M. Stegmaier. Entwurf und Implementierung eines Debuggers fiir Abstract State Ma-
chines in CoreASM. Bachelorthesis, University of Ulm, 2012.

	Introducing Notes
	The CoreASM Eclipse Plugin
	System Requirements
	Installing CoreASM Eclipse Plugin

	General Introduction to CoreASM and its Editor
	Creating a Specification
	Executing a Specification

	Debugging a Specification
	Stepping Through a Specification
	Adding/Removing Breakpoints
	Watching Functions and Expressions

	Taking Care of Updates
	What has been changed?
	Excursus — Modules in CoreASM: Hello World
	References

