CoreASM Language User Manual
engine version 1.6.5-beta

github.com/CoreASM/

Roozbeh Farahbod

info@coreasm.org

Marcel Dausend
marcel.dausend@uni-ulm.de

Copyright (©) 2006-2014

DRAFT of March 17, 2016
This document is still under construction to match the latest version of the
engine. Your criticism is welcome!

github.com/CoreASM/

CONTENTS CoreASM LANGUAGE USER MANUAL

Contents

1 Installing CoreASM 4
1.1 CoreASM with Carma 4

1.1.1 System Requirements, 4
1.1.2 Imstalling Carma L 4
1.1.3 Running Carma e 4
1.2 CoreASM Eclipse Plugin 4
1.2.1 System Requirements 4
1.2.2 Installing CoreASM Eclipse Plugin 5
1.2.3 Using CoreASM Eclipse Plugin 5
1.3 Using CoreASM Compiler o 7

2 CoreASM Specification 7
2.1 Running CoreASM Specifications 0.

3 Kernel 10
3.1 RuleForms e 11
3.2 Kernel Engine Properties o oL 11

4 Basic ASM Plugins 12
4.1 Block Rule e 12
4.2 Choose Rule e 13
4.3 Conditional Rule 13
4.4 Forall Rule 14
45 LetRule o o o 14
4.6 CaseRule e 15
4.7 Predicate Logic L 15
4.8 Number Background oL 16

5 Standard Plugins 18
5.1 Kernel Extensions 18
5.2 Abstraction 19
5.3 Extend Rule. 19

CONTENTS

CoreASM LANGUAGE USER MANUAL

54 TurboASM Rules
5.5 String Background
5.6 Input and Output
5.7 Collection
5.8 Set Background
5.9 Bag Background
5.10 List Background
511 Queue
512 Stack
5.13 Map Background
5.14 Signature Plugin

6 Additional Plugins

6.1 Modularity
6.2 Options
6.3 Scheduling Policies
6.4 Time
6.5 Debuglnfo
6.6 Math.

6.6.3 Special Derived Functions
6.6.4 An Example

7 Notes about the CoreASM Compiler

1 INSTALLING COREASM CoreASM LANGUAGE USER MANUAL

1 Installing CoreASM

There are currently two user interfaces available for the CoreASM engine: a command-line inter-
face called Carma, and a graphical interactive development environment in the Eclipse platform,
known as the CoreASM Eclipse Plugin.

1.1 CoreASM with Carma

All sources of the CoreASM engine with Carma can be downloaded at https://github.com/
CoreASM/coreasm.core.

1.1.1 System Requirements

You need to have Sun Microsystems Java 1.6 (JVM) installed on your machine.

1.1.2 Installing Carma

You can build CoreASM with Carma using the maven build system provided in the source package.

1.1.3 Running Carma
Under Carma’s home directory (where you installed Carma), simply run ‘carma’ (under POSIX
systems) or ‘carma.bat’ (under Windows systems). To be able to run Carma form other directo-

ries, change the value of CARMA_HOME environment variable in ‘carma’ or ‘carma.bat’ (depending
on your operating system) so that it points to the folder in which Carma is installed.

To start, try Carma with ‘~help’ to see the list of command-line arguments.

1.2 CoreASM Eclipse Plugin

This section explains how to install the CoreASM Eclipse plugin.

1.2.1 System Requirements
The following infrastructure is required for the CoreASM Eclipse plugin:

e Java SE Runtime Environment 7
http://www.oracle.com/technetwork/java/javase/downloads/index.html

e Eclipse IDE for Java Developers (version Kepler suggested)
http://wwuw.eclipse.org/downloads/

This version of the CoreASM Eclipse Plugin has been developed and tested under

https://github.com/CoreASM/coreasm.core
https://github.com/CoreASM/coreasm.core
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/

1 INSTALLING COREASM CoreASM LANGUAGE USER MANUAL

Ubuntu Linux 64bit v14.10 &
Windows 7 and 8.1

with

Kepler Service Release 2 64 bit &
Luna Eclipse Standard 4.4 64 bit
Oracle Java SE JDK 7

1.2.2 Installing CoreASM Eclipse Plugin

The Plugin can be installed either from the Eclipse Marketplace or by performing the following
steps:

e Check if the required software (see above) is already installed on the target machine and if
not, install the software.

e Open the [Helpfmenu inside Eclipse

e Select the menu item [Help>> Install New Software...]

e Paste the url of this site http://webcoreasm.informatik.uni-ulm.de/coreasm-repository
into the field "work with" and press

e Next press [Select Alll and afterwards [Next}button

e Confirm the selection of the "CoreASM Eclipse Plugin" for installation by pressing the

(Next | button

e Accept the license and start the installation by pressing the [Finish -button

e When the warning appears that you are installing unsigned content, you have to press the

(Okay-button to continue

e Last, you have to restart Eclipse so that the "CoreASM Eclipse Plugin" becomes available
to you

If you like, you can build CoreASM by your own using the sources on github. The sources
and our wiki are available at https://github.com/CoreASM/coreasm. core.

1.2.3 Using CoreASM Eclipse Plugin

Creating a New Project

1. From the Eclipse menu choose:

2. Choose from the "New Project” dialog. Click [Next].
3. Give the project a name. Click [Finish].

http://webcoreasm.informatik.uni-ulm.de/coreasm-repository
https://github.com/CoreASM/coreasm.core

1 INSTALLING COREASM CoreASM LANGUAGE USER MANUAL

Creating a New CoreASM Specification
Method 1:

1
2

3.
4.

ot

From the Eclipse menu choose:

In the New dialog choose lCoreASM >> CoreASM Specification] Click .

Choose the project container for the specification.

Enter the name of the new CoreASM specification file. The file must have the extension
.casm or .coreasm.

Click [Finish].

Method 2:

. File the Eclipse menu choose:

In the new file dialog choose a project container for the new file and enter a name for the
new file. Again, The file must have the extension .casm or .coreasm.

Click (Finish|.

Running a CoreASM Specification
Method 1:

Shortcut method for running a specification with default configuration:

Press the "play"-button that is usually used to compile and run programs, e.g. in Java

or

. In the Eclipse window, right click on a CoreASM specification file.

In the context menu choose: lRun as. .. >> CoreASM Specification‘

Method 2:

If you need more control of the parameters for repeated execution, you can create a specific
CoreASM Launch Configuration as follows:

. From the Eclipse menu choose:

. In the “Run” dialog, choose the “ASM Specification” launch configuration group and create

a new ASM launch configuration (right click then select [New] or click the New launch
configuration button on the tool bar).

Enter a name for the launch configuration.

2 COREASM SPECIFICATION CoreASM LANGUAGE USER MANUAL

. Enter the project and specification file to be run. This can be done via the browse buttons.
. Configure the “Termination Conditions” and “Output Verbosity” options as desired.

. Click [Apply].

. Click to run the specification.

N4 o ol A

Once the configuration has been launched once, it can be run again through the Run But-
ton/Drop down menu in the main Eclipse toolbar.

Controlling the Execution of the CoreASM Engine

While the engine is running, you can click on the “Stop CoreASM Engine” button to stop
the run. To pause a running engine, click on the “Pause CoreASM Engine” button. If you pause
the engine, the run can be resumed by clicking on the “Resume CoreASM Engine” button.

For more control, you are welcome to use the CoreASM debugger. Further details about
debugging CoreASM specifications are described in the manual of the CoreASM debugger.

1.3 Using CoreASM Compiler

The CoreASM Eclipse plugin contains a compiler, which compiles a specification into an exe-
cutable jar archive. Only a subset of the CoreASM plugins described in this manual is currently
compilable, but all standard plugins can be used (some with restrictions, see section 7 for more in-
formation). It is recommended to verify specifications using the CoreASM Engine, as the compiler
does not provide further debugging features.

Launching the compiler The compiler can be launched by right-clicking on a specification,
selecting and then clicking on [CoreASM to Jar Export| in the section. This will open
the configuration dialog for customization of the compilation process. Pressing the Button
will start the compiler. Any generated warnings and errors will be displayed after the process
has finished. If the operation was successful, the compiler will have generated an executable jar
at the configured location.

Configuring the compiler The compiler can be configured to include different logging mes-
sages and termination conditions. Further options change the paths used for the output and
preprocessor manipulation. Table 1 lists all options found in the configuration dialog.

2 CoreASM Specification

Figure 1 shows a typical structure of a CoreASM specification!. Every specification starts with
the keyword CoreASM followed by the name of the specification. Plugins that are required in the

1 As of version 1.1, this structure is not required anymore and different components of the specification can
appear in any order. The only requirement is that the specification must start with a CoreASM phrase.

https://github.com/CoreASM/coreasm.core/blob/master/org.coreasm.eclipse/rsc/doc/CoreASM_Eclipse_Debugger_Manual.pdf?raw=true

2 COREASM SPECIFICATION

CoreASM LANGUAGE USER MANUAL

option

description

Specification Name
outputFile

keepTempFiles
removeExistingFiles
terminateOnError
terminateOnFailedUpdates
terminateOnEmptyUpdate
terminateOnSameUpdate
terminateOnUndefAgent
terminateOnStepCount
logUpdatesAfterStep
logStateAfterStep
logEndOfStep

logAgentSet AfterStep
noCompile

logTimings
preprocessorRuns

hideCoreASMOutput

The path to the specification. Should not

be changed and will be filled in automatically
The file name for the generated jar

Whether the compiler should keep generated java
sources (location will be displayed at the end
of the compilation)

Whether files already existing in the
temporary directory should be removed
Whether the program should terminate

on errors. Currently always true

Whether the program should terminate

on failed updates

Whether the program should terminate

upon generating an empty update in a step
Whether the program should terminate

upon generating the same updates in two steps
Whether the program should terminate

when there is no agent with a runnable program
Whether the program should terminate

after a certain number of steps

Whether the generated updates should

be logged after each step

Whether the complete state should be

logged after each step

Whether the end of a step should be

logged

Whether the selected agent set should

be logged after a step

Whether the compiler should generate

a jar archive or nor

Whether the compiler should display

timing information

How many times the preprocessor is

allowed to run before generating an error

If the compiler should hide messages
generated by the CoreASM Parser

Table 1: Compiler options

2 COREASM SPECIFICATION CoreASM LANGUAGE USER MANUAL

specification are then listed one by one with the keyword use followed by the name of the plugin.

The Header block is where various definitions take place. What goes into this section depends
on the plugins that are used. The CoreASM Kernel does not define anything for the header section.

The init rule of the specification (the rule that creates the initial state) is defined by keyword
init followed by a rule name. This would be the rule that initializes the state of the machine that
is defined by the specification. The body of the init rule must be declared in the Rule Declaration
block.

A sample CoreASM specification is presented in CoreASM-Says-Hello example.

r 3

CoreASM SpecificationName

use SamplePlugin
use ...

[Header Block]

init InitRuleName

Rule Declaration Block

Figure 1: Typical Structure of a CoreASM Specification

2.1 Running CoreASM Specifications

To run a CoreASM specification you need to have a CoreASM engine driver. Currently, there are
two engine drivers available:

e CoreASM Eclipse Plugin is a plugin for the Eclipse (see www.eclipse.org) development
environment that provides syntax highlighting and a nice GUI to control specification runs.

e Carma is a command-line CoreASM engine driver. To run a specification using Carma simply
run Carma on the command line and pass it the name of the specification file as an argument.
Make sure to specify a termination condition (e.g., ——steps 20 or ——empty—updates) for
the run. Run Carma with ——help for a complete list of options that controls its behavior.

The following command runs MySpec using Carma and stops after 30 steps, or after a step
that generates empty updates; it also dumps the final state before termination.

carma ——steps 30 ——empty—updates ——dump—final—state MySpec.coreasm

www.eclipse.org

3 KERNEL CoreASM LANGUAGE USER MANUAL

Alternatively, to run the specification of CoreASM-Says-Hello example, one can use the
following options which would make Carma to mark the end of each step and stop after 30
steps or when there is no agent with a defined program:

carma —-—marksteps ——steps 30 ——no—agent ThisIsCoreASM.coreasm

In this example, Carma will stop after three steps.

CoreASM-Says-Hello example

CoreASM ThisIsCoreASM

use Standard

init InitRule

rule InitRule =

par
terminate := false
program (self) := @MainProgram
endpar

rule MainProgram =
if not terminate then

par
print "This is CoreASM."
terminate := true
endpar
else
program(self) := undef
3 Kernel

Kernel of the CoreASM engine provides the minimum set of vocabulary and rules to have a
CoreASM specification.

Basic values such as undef, true, and false are defined in the kernel along with the background
of Boolean values (BOOLEAN) and the universe of AGeNTs. A function called program is also defined
in the kernel which maps agents to their programs (CoreASM rules). At any time during the
evaluation of a rule, self refers the the agent that is running the enclosing rule.

CoreASM kernel also defines a couple of important operators:

> value; = wvalues Kernel

10

3 KERNEL CoreASM LANGUAGE USER MANUAL

This is the equality operator.

> ruleelement <d Kernel

This operator returns the rule element of a rule with the given name (4d). Rule element is
an element in the CoreASM state that represents a rule defined in the specification. It is useful
in assigning rules to programs of agents. In the following example, Main is the name of a rule:

‘ program(self) := ruleelement Main

The above rule, assigns the rule named Main as the value of the program of the agent running
this rule.

> Q %d Kernel

Returns the rule element (rule body) or function element of a rule or function with the given
name (id). If the given name is the name of a rule, it works exactly the same as ruleelement.
Thus, if Main is rule, we can have:

‘ program (self) := @Main

3.1 Rule Forms

The following rule forms are defined in the kernel:

» loc := wvalue Kernel

Assigns the value of value to the location toc.

» import <d do rule Kernel

Imports a new element, assigns it as the value of the environment variable id, and evaluates
rule.

» skip Kernel

Does nothing. This is like a NoOp.

3.2 Kernel Engine Properties

The following properties affect the behavior of the CoreASM engine.

11

4 BASIC ASM PLUGINS CoreASM LANGUAGE USER MANUAL

engine.error.printStackTrace if equals to "yes", the engine will print the stack trace of errors
and exceptions. The default value is "no".

engine.limits.maxProcessors the maximum number of processors the engine can use for sim-
ulation. The default value is "1".

scheduler.printProcessorStats if equals to "yes", the engine will print some information on
processor utilization after every step. The default value is "no".

scheduler.threadBatchSize in a multi-threaded simulation, the value of this property defines
the minimum number of agents assigned to every thread. The default value is "1".

engine.pluginFolders a colon-separated list of folders that provide additional plugins.

engine.pluginLoadRequest a comma separated list of plugins to be loaded in addition to
those listed in the specification being loaded.

4 Basic ASM Plugins

In this section we list the plugins that provide the basic ASM rule forms. All the plugins in
this section can be loaded individually (as instructed in each section) or all together with the
following use phrase,

| use BasicASMPlugins

which automatically loads the following plugins: BlockRule, ConditionalRule, ChooseRule, Forall-
Rule, LetRule, and Number.

Note that the words “Plugin” and “Plugins” in the name of the plugins are optional. For
example, Basic ASM plugins can also be loaded using the following line:

‘ use BasicASM

4.1 Block Rule

The Block Rule plugin can be loaded by the following use phrase:

‘ use BlockRule
This plugin provides the following rule form:

» par rule; rulex... Tule, endpar Block Rule Plugin
optional

12

4 BASIC ASM PLUGINS CoreASM LANGUAGE USER MANUAL

Instructs the engine to evaluate all the given rules in parallel. The update generated by this
rule is the union of all the updates generated by rule; to rule,.

4.2 Choose Rule

The Choose Rule plugin can be loaded by the following use phrase:
‘ use ChooseRule
This plugin provides the following rule form:
» choose id in wvalue with guard do rule; ifnone rule; endchoose Choose Rule Plugin

optional optional optional

Chooses an element from the enumerable? value which satisfies guard, assigns it as the value
of id and evaluates rule;1. If the ifnone clause is provided, rule; will be evaluated if no element
can be found. The last keyword endchoose is optional.

The following example chooses the minimum price p from the set of prices and prints (see
Section 5.6) p on the screen:

choose p in prices with (forall pi in prices holds p <= pi) do
print p

See Section 4.7 for more information on forall expressions.

The ChooseRule plugin also provides the following expression form to non-deterministically
pick a value from an enumerable that satisfies the given (optional) condition:

> pick <¢d in value with guard Choose Rule Plugin

optional

For example, the following assignment non-deterministically assigns true or false to location
foo:

‘ foo := pick x in {true, false}

4.3 Conditional Rule
The Conditional Rule plugin can be loaded by the following use phrase:

‘ use ConditionalRule

2An enumerable is an element that can be enumerated; i.e., that is a collection of other values. Sets, universes,
and some backgrounds are enumerable values.

13

4 BASIC ASM PLUGINS CoreASM LANGUAGE USER MANUAL

This plugin provides the following rule forms:

» if walue then rule Conditional Rule Plugin

Evaluates rule only if value is true. It expects value to be a Boolean value (being either true
or false).

» if walue then rule; else rules Conditional Rule Plugin

Evaluates rule; only if value is true and rules only if value is false. It expects value to be
a Boolean value (being either true or false).

The Conditional Rule plugin also provides a conditional operation of the form:

> walue:. ? value; : valuey Conditional Rule Plugin

The value of this operator is value:, if value, evaluates to true; it is valuey, if value, evaluates
to false; otherwise, it is undef.

4.4 Forall Rule
The Forall Rule plugin can be loaded by the following use phrase:

‘ use ForallRule
This plugin provides the following rule form:

» forall %d in wvalue with guard do rule endforall Forall Rule Plugin
~ optional optional

For all the elements in the enumerable value that satisfy guard, assigns the element to id,
and evaluates rule. The following examples assigns the DefaultProgram rule as the program of
all the agents program of which is undef:

forall a in AGENTS with program(a) = undef do
program(a) := ruleelement DefaultProgram

4.5 Let Rule
The Let Rule plugin can be loaded by the following use phrase:

‘ use LetRule

14

4 BASIC ASM PLUGINS CoreASM LANGUAGE USER MANUAL

This plugin provides the following rule form:

» let %idi = wvalue;, id2 = walues, ..., td, = wvalue, in rule Let Rule Plugin
optional

For all the given pairs of id and value, assigns value; as the value of the environment variable
id;, and evaluates rule.

4.6 Case Rule

The Case Rule plugin can be loaded by the following use phrase:

‘ use CaseRule
This plugin provides the following rule form:

» case wvalue of wvalue; : rule; ...value, : rule, endcase Case Rule Plugin

The case condition value will be evaluated first and then all the guards value; will be evaluated
in an unspecified order. Afterward, rules with a guard value equal to the value of the case
condition will be evaluated. Finally, the updates generated by the matching cases are united to
form the set of updates generated by the case rule.

4.7 Predicate Logic
The Predicate Logic plugin can be loaded by the following use phrase:

‘ use Predicatelogic
This plugin provides the following functions and expression forms:

> forall ¢d in walue holds guard Predicate Logic Plugin

This Boolean expression holds if guard holds for all the elements of value (which must be an
enumerable value).

> exists td in wvalue with guard Predicate Logic Plugin

This Boolean expression holds if there exists at least one element in value (which must be an
enumerable value) that satisfies guard.

> walue; # values Predicate Logic Plugin

15

4 BASIC ASM PLUGINS CoreASM LANGUAGE USER MANUAL
This is the not-equal operator which is defined on all elements. The semantics of this operator

is equivalent to "not (value; = wvaluez)".

> walue; bin—op values Predicate Logic Plugin

Performs a binary operation on the given values. The following operators are defined on

Boolean values:

or, xor, and, implies

The following two operators are also defined which require values to be an enumerable:

memberof and not memberof

> not wvalue Predicate Logic Plugin

This is the negation operator which is defined on Boolean values.

4.8 Number Background

The Number plugin can be loaded by the following use phrase:

| use NUMBER

This plugin provides the number background (NuMBER) and a valuable set of functions and ex-
pression forms.

>

value; bin—op values Number Plugin

Performs binary operations on number values. Currently supported operators are
+ — x / div % > >= < <= =

which result in Number or Boolean values.

| value | Number Plugin

If walue is enumerable (such as a set), this operator will evaluate to the size of value.

infinity: — NUMBER Number Plugin

Is the positive infinity.
toNumber: ELEMENT — NUMBER Number Plugin

16

4 BASIC ASM PLUGINS

CoreASM LANGUAGE USER MANUAL

This is a conversion function that maps any value to a Number value (which can also be
undef). The following example uses this function to read a number from the environment:
seq

amount := input("Input Amount")
next

let val = toNumber(amount) in
if val = undef then

print "Error"
else

DepositAmount (val)

¢ isNaturalNumber: NUMBER — BOOLEAN

Number Plugin
Returns true if the argument is a Natural number (i.e., positive non-zero integer).

¢ isIntegerNumber : NUMBER — BOOLEAN

Number Plugin
Returns true if the argument is an Integer number.

¢ isRealNumber: NUMBER — BOOLEAN

Number Plugin
Returns true if the argument is a valid non-infinite Real number.

¢ isEvenNumber: NUMBER — BOOLEAN

Number Plugin
Returns true if the argument is an Integer number divisible by two.

¢ isOddNumber: NUMBER — BOOLEAN

Number Plugin
Returns true if the argument is an Integer number which is not divisible by two.

¢ size: ELEMENT — NUMBER

Number Plugin
Returns the size of the given collection.

The Number plugin also provides a background for number ranges (NUMBER_RANGE). Number
range elements are enumerable and can be defined using the following syntax.

> [valuestart valuecnd step valuestep |

optional

Number Plugin

Creates a range of numbers from wvaluestort t0 valuec,qa with the optional step. It is also
possible to use ‘’

instead of step. In the following example, RandomGuess returns a random
number between 1 and 100:

17

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

derived RandomGuess =
return rand in
choose x in [1 .. 100 | do
rand := X

5 Standard Plugins

Most of the CoreASM plugins, including all the Basic ASM plugins, are included in the Standard
plugins package. In this section we list the plugins that are provided by the Standard plugins
package in addition to the ones listed in the previous section. All these plugins can be loaded
individually (as instructed in each section) or all together with the following use phrase,

‘ use Standard

which automatically loads all the plugins listed in Section 4 in addition to the ones listed in this
section.

5.1 Kernel Extensions

The Kernel Extensions plugin can be loaded by the following use phrase:

‘ use KernelExtensions

This plugin extends the Kernel capabilities in handling function and rule elements. The
current version provides the following expression and rule forms.

> ¢d (valuei, ..., value,) (wvalue’i, ...,value’y,) Kernel Extensions Plugin

> (value) (value’i, ..., value’,,) Kernel Extensions Plugin

The above two forms apply the arguments value’; to the function element at location (value)
(valuei, ..., value,) or to the function element resulting from evaluation of value. If the function
element refers to a function in the state, the location of the above expressions are also set to the
location of the function with the given arguments; otherwise (e.g., in case of non-state functions)
the location will be not be defined. Here are some examples, assuming that foo and bar are two
defined functions, and bar = @foo:

print bar() (5,4) //printing the value of foo(5, 4)
(bar) (1, 3) := 4 //assigning 4 to foo(1, 3)

» call 4d (valuei, ..., value,) (value’y, ...,value’,,) Kernel Extensions Plugin

18

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

» call (value) (walue’i, ..., value’) Kernel Extensions Plugin

The above two rules call the rule element value of id (value,..., value,) (the first form) or
value (the second form) with the arguments value’;. For example, if we have foo(5) = @MyRule
and

rule MyRule (a,b) =
print a + " talks to " + b

then we can call this rule by:

‘ call foo(5) ("John", "Mary") // prints "John talks to Mary"

This plugin is not yet part of the Standard Plugin package.

5.2 Abstraction
The Abstraction plugin can be loaded by the following use phrase:

‘ use Abstraction

This plugin provides the following rule form, which is useful when the specifier wants to leave
the detail of a rule abstract.

» abstract wvalue Abstraction Plugin

In the following example, the rule SendMessage is left abstract:

rule SendMessage —
abstract "Sending the message."

5.3 Extend Rule
The Extend Rule plugin can be loaded by the following use phrase:

‘ use ExtendRule
This plugin provides the following rule form:

» extend wvalue with %d do rule Extend Rule Plugin

19

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

This rule has two semantics depending on value:

1. If value is a universe, it imports a new element, assigns it to id, and evaluates rule. The
resulting update set is the union of the updates generated by rule and a single update to
add the imported element to the universe value.

2. If walue is a background, it gets the default element from the background, assigns it to id
and evaluates rule. The resulting update set is the updates generated by rule.

In the following example, the universe AGENTS is extended with a new agent and the program
of that agent is set to MainProgram:

extend AGENTS with a do
program(a) := @MainProgram

However, the same result can be achieved by:

import a do

par
AGENTS(a) := true
program(a) := @MainProgram
endpar

5.4 TurboASM Rules
The TurboASM plugin can be loaded by the following use phrase:

| use TurboASM
This plugin provides the following rule forms:

» seq rule; next rules next rules ... next rule, endseq TurboASM Plugin

optional optional

Evaluates rule;, applies the generated updates in a virtual state, and evaluates rules in that
state. The resulting update set is a sequential composition of the updates generated by rule;,
rulep, and all other rules rule,. The keyword next is meant to improve readability specially
where the sequence rule is combined with other rule forms. In order to avoid ambiguities, the
optional keyword endseq can be used to explicitly complete a seq ... next group.

» segblock rule; ... rule, endsegblock TurboASM Plugin

» seq rule; ... rule, endseq TurboASM Plugin

20

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

» [ruler ... Tuley, | TurboASM Plugin

Similar to the seq rule (above), these block rules execute the contained rules in sequence.
First, rule; is evaluated and the generated updates are applied to a virtual state. This state is
the base for the evaluation of rules which may produce further updates to this virtual state, and
so on. The resulting update set is a sequential composition of the updates generated by rule;

...ruley.

» iterate rule TurboASM Plugin

Repeatedly evaluates rule, until the update set produced is either empty or inconsistent; at
that point, the accumulated updates are computed (the resulting update set can be inconsistent
if the computation of the last step had produced an inconsistent set of updates).

» while (value) rule TurboASM Plugin

This rule is equivalent to:

iterate
if wvalue then rule

» loc <— rule TurboASM Plugin

Replaces all the occurrences of result in rule with loc and evaluates the rule. In the ASM
book this is written as "toc <— rule'. In the following example, the evaluation of MainProgram
assigns the value of 5 divided by 2 (i.e., 2.5) to division:

rule Divide(a, b) =
if b > O then
result := a / b

else
par
result := undef
error := true
endpar

rule MainProgram =
division <— Divide(5, 2)

¢ return walue in rule TurboASM Plugin

First, rule is evaluated; value is then evaluated in the state obtained by provisionally, and
the value is returned, while the updates and the provisional state itself are discarded.

21

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

Remark The return-construct has been changed from a rule-construct to an expression-construct.
This decision has been taken in order to clarify the roles of derived function and rules. Now, after
removing "return rules” all macro rules in principal have side-effects and only derived functions
are side-effect-free by definition.

» 1local 4di, %d2, ..., %d, in rule TurboASM Plugin

optional

Evaluates rule but discards all the updates to locations addressed by id-s (as location names).
In the following example, newValue will get the local value of foo(5, 7) (i.e., 25) but the update
to foo(5, 7) will be discarded afterwards.

rule LocalRule =
local foo in
seq
foo(5, 7) := 25
newValue := foo(5, 7)
5.5 String Background
The String plugin can be loaded by the following use phrase:

| use STRING
This plugin provides the string background (STring) and few functions and expression forms.

> walue; + wvalues String Plugin

If both values are string, this operator concatenates the given string values in to one. If one
of the values is not a string value, it tries to convert it into a string value, and then concatenates
the values. This operator is not defined on two non-string values.

With this operator, one can simply put values together to create a customized message:

‘ print "The amount of $" 4 amount + " is deposited to your account."

¢ toString: ELEMENT — STRING String Plugin

A conversion function that maps any value to a String value (which can also be undef).

¢ strlen: STRING — NUMBER String Plugin

Returns the length of the given String value.

¢ matches: STRING — STRING String Plugin

22

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

Returns true, if the first parameter matches the given regular expression provided by the
second parameter. Otherwise false is returned. The syntax for the regular expressions follows
the java language definition. For example, the function matches("42", "[0—9]+") returns true.

5.6 Input and Output
The IO plugin can be loaded by the following use phrase:

‘ use I0

This plugin provides the following rule form and function which enable user input and output as
well as file input and output:

Remark All values that describe file destinations are terms from the String background. A
file destination can be either described relatively to the executed specification, i.e. the main
specification that is executed by CoreASM (not necessary the module which contains the print-to-
file construct), e.g. "./", or the file destination is described relatively to the systems root folder,
e.g. "c:"or /"

» print wvalue 10 Plugin
Prints out walue to the environment. Depending on the environment (engine driver) this
value can be printed on the standard output.

» print wvalue; to wvaluex 10 Plugin

Prints value; into a new file named wvalues, if consistent. If it does not exist, this file will be
created. If it already exists it is overwritten without any further warning. Instead of the keyword
to, maybe some linux users prefer the operator > (which can be used, too).

» print wvalue; into wvaluez 10 Plugin

Prints value; into an existing file named wvalues, if consistent. If the file already exists the
value is appended to the existing content of the file. If it does not exist, this file will be created.
The alternative operator » can be used Instead of the keyword into.

¢ input: STRING — STRING 10 Plugin

Reads a string value from the environment. Given a step and given an argument arg, every
evaluation of input(arg) during this step will result in the same value. Please refer to Section 5.5
for an introduction to the String Plugin.

¢ read : STRING — LIST 10 Plugin

23

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

The derived function read(value) returns the content from the given filename as List of
elements from the String Background. The returned list contains the lines from the source file
in ascending order.

The machine specified in CoreASM-Says-Hello example with 1O extension is an extension
of our CoreASM-Says-Hello example that reads a name from the environment and prints out a
greeting to that name:

CoreASM-Says-Hello example with IO extension

CoreASM ThisIsCoreASM
use Standard
init InitRule

rule InitRule =
par
terminate := false
program (self) := @MainProgram
name := input("What is your name?")
endpar

rule MainProgram =
if not terminate then

par
print "This is CoreASM."
terminate := true
print "Hello " + name + "!"
endpar
else

program(self) := undef

5.7 Collection
The Collection plugin can be loaded by the following use phrase:

‘ use Collection

This plugin provides the foundation for collections (i.e., sets, lists, maps, etc.) in CoreASM
and provides some general functions on collections. However, each specific collection background
(e.g., list or set) is provided by its corresponding plugin.

4 foldl : ELEMENT x FUNCTION X ELEMENT — ELEMENT Collection Plugin

24

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

foldl(c, @func, init) processes the collection c (e.g., a set or a list) using the binary function
func and the initial value init and returns the final result.

foldl([x1, ..., xn), f,4) = f(zn, f(n=1,... f(x1,init)))...)

¢ foldr : ELEMENT X FUNCTION x ELEMENT — ELEMENT Collection Plugin

foldr(c, @func, init) processes the collection ¢ (a set or a list) using the binary function func
and the initial value init and returns the final result.

foldr([x1, ..., xyn], f,1) = f(zx1, f(z2, ... f(@n,init)))...)

¢ fold : ELEMENT X FUNCTION X ELEMENT — ELEMENT Collection Plugin

This is the same as foldr; see above.

¢ map : ELEMENT x FUNCTION x ELEMENT — ELEMENT Collection Plugin

map(c, @func) applies the unary function func to all the elements of ¢ (any collection, such
as list and set) and returns a new collection (with the same structure as that of c).

map([mla"'axn]vf) = [f(xl)af(xZ)af(xn)]

¢ filter : ELEMENT X FUNCTION X ELEMENT — ELEMENT Collection Plugin

filter(c, @func) applies the boolean unary function func to all the elements of ¢ and returns a
new collection with only those elements of ¢ for which func returns true.

5.8 Set Background
The Set plugin can be loaded by the following use phrase:

‘ use SET
This plugin provides the set background (SET) and a number of functions and expression forms.

> { value, ..., value, } Set Plugin

optional

25

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

Creates a set element that includes the listed values. The values should be basic terms (i.e.,
no operators) or they should be surrounded in parentheses.

> { 4d|id in value with guard } Set Plugin

optional

This is the basic form set comprehension. It creates a set of all the elements in value which
satisfy guard. Of course, value must be enumerable.

> {4d is exp |'Ld1 in wvaluey, ..., idy, in wvalue, with guard } Set Plugin

optional optional

Creates a set element that contains all the elements of the form ezp which satisfy the guard.
In this form, ezp is a function of id, ...,4id, and every 4d; is bound to an enumerable value;. In
the following example, SetAdd takes two sets setl and set2 as input and produces a new set by
adding every element of set1 to all the elements of set2:

derived SetAdd(setl, set2) =
return a in
a:={ x is (x1 4+ x2) | x1 in setl, x2 in set2 }

The result of evaluating SetAdd({1, 2, 3}, {10, 20}) would be:

{22.0, 23.0, 12.0, 21.0, 13.0, 11.0}

> walue; bin—op valuez2 Set Plugin

Performs a set binary operation where both value; and wvalues are sets. Currently, subset,
union, intersect, and diff are supported.

Set background also provides two important rule forms which allow for parallel incremental
updates of set data structures.
» add wvalue to loc Set Plugin
If 1oc is a location in the state (e.g., a function) and its value is a set, this rule produces an
update instruction (partial update) that adds value to loc.
» remove wvalue from loc Set Plugin

If 1oc is a location in the state (e.g., a function) and its value is a set, this rule produces an
update instruction (partial update) that removes value to loec.

26

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

5.9 Bag Background
The Bag plugin can be loaded by the following use phrase:

‘ use Bag

This plugin provides the bag background (Bag) equivalent to multi sets and a number of functions
and expression forms.

> << waluej, ..., value, >> Bag Plugin

optional

Creates a bag element that includes the listed values. The values should be basic terms (i.e.,
no operators) or they should be surrounded in parentheses.

> << 4d |7;d in value with guard >> Bag Plugin

optional

This is the basic form bag comprehension. It creates a bag of all the elements in value which
satisfy guard. Of course, value must be enumerable.

> << 4d is exp |7ld1 in wvaluey, ..., ©dy, in value, with guard >> Bag Plugin

optional optional

> wvalue; bin—op wvaluez2 Bag Plugin

Performs a bag binary operation where both value; and values are bags. Currently, subset,
union, intersect, and diff are supported.

Creates a bag element that contains all the elements of the form ezp which satisfy the guard.
In this form, ezp is a function of 4d, ...,4d, and every 4d; is bound to an enumerable value;. In
the following example, Baghdd takes two bags bagl and bag2 as input and produces a bag that
contains all elements of bagl and all elements of bag2:

‘ derived BagMerge(bagl, bag2) = bagl + bag2
The result of evaluating BagAdd(<<1, 2, 3>>, <<2, 3, 3>> would be:
<< 1,2, 2 3, 3, 3 >

Bag background also provides two important rule forms which allow for parallel incremental
updates of bag data structures.

» add wvalue to loc Bag Plugin

27

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

If 1oc is a location in the state (e.g., a function) and its value is a bag, this rule produces an
update instruction (partial update) that adds value to loc.

» remove wvalue from loc Bag Plugin

If 1oc is a location in the state (e.g., a function) and its value is a bag, this rule produces an
update instruction (partial update) that removes value to loec.

5.10 List Background

The List plugin can be loaded by the following use phrase:

‘ use LIST
This plugin provides a list background (L1sT) and a rich set of functions and operators on lists.

> [valuer, values, ..., value, | List Plugin

optional

Creates a list element that includes value, to value, in the given order.® List elements are
enumerable. The index of the first element is 1.
> walue; + wvaluez List Plugin

If both values are list, this operator concatenates the given lists in to one list.

4 toList: ELEMENT — LIST List Plugin

If e is an enumerable (e.g., number range, set, etc.), toList(e) will return a list that includes
all the elements of e. If e is not ordered (e.g., a set), the order of elements in the returned list
will be non-deterministic; otherwise the elements will be in the same order.

¢ AfattenList: L1sT — LIST List Plugin

If 1 is a netsting list, flattenList(1) will return a flatten version of 1.

4 head: L1sT — ELEMENT List Plugin

Returns the first element of the list.

¢ last: L1ST — ELEMENT List Plugin

3The old form of <<x1,... ,xn>> still works but it is deprecated and may not be supported in future releases
of the CoreASM engine.

28

STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

Returns the last element of the list.

tail: L1sT — LIST List Plugin

Returns all but the first element of the list.

cons: ELEMENT X LIST — LIST List Plugin

Creates a new list with the given element as its head and given list as its tail.

nth: LIST x NUMBER — ELEMENT List Plugin

Returns the n* element of the list. The index of the first element is 1.

setnth: LIST x NUMBER X ELEMENT — LIST List Plugin

setnth(list, i, e), if i is a valid index for list, returns a new list in which the element at

index i is e.

¢ take: L1ST x NUMBER — LIST List Plugin

take(list, i) returns the first i elements of list list.

drop: Li1sT X NUMBER — LIST List Plugin

drop(list, i) returns what is left after dropping the first ¢ elements of the list list.

reverse: LIST — LIST List Plugin

Returns a list consisting of the given list’s elements in reverse order.

indexes: LIST x ELEMENT — LIST List Plugin

Returns a potentially empty list of the indexes of the given element in given list.

indices: LI1ST X ELEMENT — LIST List Plugin

The same as indexes; see above.

zip: LI1sT x LisT — LIST List Plugin

The function zip takes two lists and returns a list of corresponding pairs. If one input list is

short, excess elements of the longer list are discarded.

¢ zipwith: LIST x LiST x FUNCTION — LIST List Plugin

29

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

The function zipwith generalises zip by zipping with the function given as the last argument,
instead of a tupling function. For example, zipwith (11, 12, @max) is applied to two lists to
produce a list of corresponding maximums (requires use Math).

¢ replicate: ELEMENT x NUMBER — LIST List Plugin

The function replicate(x, n) returns a new list where the given element x is repeated n times.

List background also provides the following rule forms to manipulate lists:

» add wvalue to loc List Plugin

If 1oc is a location in the state and its value is a list, this rule produces an update that adds
value to loc. In lists order matters, so the update produced by this rule is NOT incremental
(not like the one for sets). As a result, there cannot be two parallel add rules operating on the
same list.

» remove wvalue from loc List Plugin

If 1oc is a location in the state and its value is a list, this rule produces an update that
removes the first occurrence of value from loc. As for add, this rule is also NOT incremental (not
like the one for sets) and there cannot be two parallel remove rules operating on the same list.

» shift left walue into loc List Plugin

If toc is a location in the state and value is a list, it removes the first element of the list and
puts it in the given location (shifting the list to left).

» shift right wvalue into loc List Plugin

If loc is a location in the state and wvalue is a list, it removes the last element of the list and
puts it in the given location (shifiting the list to right).

In the following example, SortSet sorts elements of a given set into a list:

rule SortSet(set) =
seq
par
result := []
tempSet := set
endpar
next
while (| tempSet | > 0)
choose x in tempSet with forall y in tempSet holds x <= y do
par
remove x from tempSet
add x to result

30

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

‘ endpar

5.11 Queue
The Queue plugin can be loaded by the following use phrase:

‘ use Queue
This plugin provides the following queue operations (rule forms) on lists:

» enqueue wvalue into loc Queue Plugin

If 1oc is a location in the state and its value is a queue (i.e., a list), it adds value to the end
of the queue.

» dequeue loc, from loc, Queue Plugin

If locy is a location in the state and its value is a queue (i.e., a list), it removes the first
element of this queue and assigns it as the value of the location 1oc,.

5.12 Stack
The Stack plugin can be loaded by the following use phrase:

‘ use Stack
This plugin provides the following stack operations and functions on lists:

» push walue into loc Stack Plugin
If toc is a location in the state and its value is a stack (i.e., a list), it pushes value to the

front of the stack.

» pop loc, from locs Stack Plugin
If 1ocs is a location in the state and its value is a stack (i.e., a list), it removes the first element

of the stack (top of the stack) and assigns it as the value of loc,.

¢ peeck: LI1ST — ELEMENT Stack Plugin

Returns the top of the stack (first element of the list) without changing the stack.

31

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

5.13 Map Background
The Map plugin can be loaded by the following use phrase:

‘ use MAP
This plugin provides a map background (Map).

> {—=12 Map Plugin

Creates an empty map.

> { valuex1 — wvalueyi, valuers — wvaluey2, ..., valuey, — value,, Map Plugin

optional

Creates a map with the given key-value pairs. Map elements are enumerable; every map can
be viewed as a set of pairs which are represented by lists of size 2.

¢ toMap: ELEMENT — MAP Map Plugin

If e is an enumerable (e.g., a set) consisting of pairs of elements (lists of size two) of the
form [k;,v;] such that V[k;,v;] Alkj,v;] ki = kj Av; # vj, toMap(e) returns a map element
representing a mapping of k;s to v;s; otherwise, it returns undef. For example, the following two
expressions create equal maps:

toMap({[1, "John"], [2, "Mary"]|})

results in

{1 — "John", 2 — "Mary"}

¢ mapToPairs: MAP — SET Map Plugin

Returns a set of pairs of the form (key,value) from the given map elements. The pairs are
list elements of size two. For example, the following two expressions are equal:

mapToPairs({1 — "John", 2 — "Mary"})
results in

{[1, "John"], [2, "Mary"]}
Map background also provides the following rule forms to manipulate maps:

» add wvalue to loc Map Plugin

32

5 STANDARD PLUGINS CoreASM LANGUAGE USER MANUAL

If 1oc is a location in the state, its value is a map, and value is a map, this rule produces
an update that copied all of the mappings from wvalue to loc. These mappings will replace any
mappings that loc had for any of the keys shared with value. In the current version of Map
plugin, the update produced by this rule is NOT incremental (not like the one for sets). As a
result, there cannot be two parallel add rules operating on the same map.

» remove wvalue from loc Map Plugin

If 1oc is a location in the state and its value is a map, this rule produces an update that
removes value from loc according to the following:

1. if value is a map, this rule removes all the exact mappings of value from loc;

2. if value is not a map but an enumerable, this rule removes all the mappings for the elements
of walue (as keys) from loc;

3. if value is neither a map nor an enumerable, this rule removes the mapping for value (as a
key) from loc if present.

In the current version of Map plugin, the update produced by this rule is NOT incremental (not
like the one for sets). As a result, there cannot be two parallel remove rules operating on the
same map.

5.14 Signature Plugin
The Signature plugin can be loaded by the following use phrase:

‘ use Signature

The signature plugin extends the header section of CoreASM specifications (see Figure 1) to add
support for definition of functions, universes, and custom data types and also extends the engine
to support for certain forms of type checking. This plugin is still under development. The current
version includes the following features:

e Definition of universes through the following syntax (with optional initial elements):

universe id = { 4di, ..., ©dn}

optional

e Definition of enumeration backgrounds through the following syntax:

enum 44 = { %di, ..., 1dn}

optional

For example, the following line defines a new enumeration background of four elements:

‘ enum Product = { Soda, Juice, Sandwich, Candy }

33

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

The elements are in fact defined as constant functions that hold values of the background
Product.

e Definition of functions through the following syntax:

function 4dy : idu1 * ... ¥ Tdun — dr
optional

As an example, the following signature defines a function named priceTable that maps
pairs of string values to numbers:

‘ function priceTable : STRING x STRING — NUMBER

e Definition of derived functions through the following syntax:

derived 4dy (idi, ..., idn,) = expression

optional

As an example, the following declaration defines a derived function f(z,y) = 22 + y:

‘ derived f(x, y) = x> + y°

Depending on the properties of the engine (see the Options Plugin, Section 6.2) the Signature
plugin can use the signature information to perform the following checks:

e Type checking on assignments: if the “Signature.TypeChecking” property is set to
“warning”, “strict” or “on”, before the updates are applied to the state, the Signature
Plugin checks the types of arguments and assigned values against the defined signatures
and issues a warning (in case of “warning”) or stops the execution of the engine with an
error (in case of “strict” or “on”).

e Unknown identifiers: if the “Signature.NoUndefinedId” property is set to “warning”,
“strict” or “on”, the Signature Plugin issues a warning (in case of “warning”) or stops the
execution of the engine with an error (in case of “strict” or “on”) if a function name is
used and its signature is not defined in the header of the specification. This feature helps
in identifying typos in the specification.

6 Additional Plugins

The plugins listed in this section are currently not part of any plugin packages.

34

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

6.1 Modularity

The Modularity plugin can be loaded by the following use phrase:

‘ use Modularity

This plugin allows one to break the specification into separate files or modules. As its current
version, the functionality provided is limited to introducing an include keyword that would load
another file into the current specification.

include "filename"

Included files can themselves have other include clauses to further break down the specifica-
tion.

6.2 Options
The Options plugin can be loaded by the following use phrase:

‘ use Options

The Options plugin extends the header section of CoreASM specifications (see Figure 1) to provide
the following syntax to set values of engine properties:

option property value

Other plugins (such as the Signature Plugin, see Section 5.14) can use these options to cus-
tomize their behavior.

6.3 Scheduling Policies

The Scheduling Policies plugin can be loaded by the following use phrase:

‘ use SchedulingPolicies

This plugin provides alternative scheduling policies for simulation of multi-agent specifica-
tions. For any specification (for any run), only one scheduling policy can be defined, using the
following option:

option SchedulingPolicies.policy policyname

Currently, there are two scheduling policies provided by this plugin:

35

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

e allfirst Tries executing all the agents in every computation step. If this fails at any step,
the policy falls back to the engine’s default scheduling policy.

e onebyone Executes only one agent in every step. It tries to be fair by not executing an
agent more than once unless all other agents have been given a chance to execute.

The following rules are also provided by this plugin to control the execution of agents during
a simulation.

» suspend value SchedulingPolicies Plugin

If value is an agent, this rule suspends the execution of that agent from the next computation
step. The suspended agents will not be chosen by the engine for execution.

» resume wvalue SchedulingPolicies Plugin

If value is an agent which has been suspended, this rule resumes the execution of that agent
from the next computation step; i.e., the agent will be available for execution from the next step.

» terminate wvalue SchedulingPolicies Plugin

If value is an agent, it will no longer be available for scheduling for the rest of the current
run of the machine.

» shutdown SchedulingPolicies Plugin

Clears the AGENTS universe, such that there will be no agent available to contribute to the
next computation step. Depending on the parameters of the run, this can stop the execution of
the engine.

6.4 Time
The Time plugin can be loaded by the following use phrase:

‘ use Time
This plugin provides the following monitored function:

¢ now: — NUMBER Time Plugin

Returns a value representing the current time of the system. Of course, given a step, the
value of now is fixed.

¢ stepcount: — NUMBER Time Plugin
P

36

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

Returns the number of computation steps performed so far by the engine excluding the current
step.

6.5 Debuglnfo

DebuglInfo plugin is a CoreASM plugin to maintain logging information for debugging purposes
and it can be loaded by the following use phrase:

‘ use Debuglnfo
The plugin adds the following rule to the CoreASM language:

» debuginfo id value Debuglnfo Plugin

which, upon evaluation, adds the string representation of the given value to the logging channel
identified by the given 4d.

The set of active channels are to be defined as a space-separated list of channel ids, set as the
value DebugInfo.activeChannels engine property. This can be done either through the Options
plugin or by setting the values directly from the engine driver (e.g., Carma). For example, using
the Options plugin one can add the following line to a spec to turn the logging on for channels
warning and error:

‘ option DebuglInfo.activeChannels "warning, error"

In order to turn all channels on, one can use the special channel id ALL:

‘ option DebugInfo.activeChannels ALL // or "ALL'

Since this rule is only used for debugging purposes, the evaluation of debuginfo results in an
empty update set and a print out of the debugging information (if the corresponding channel is
active) to the standard output, whether or not the updates of the enclosing rule block is discarded
by the engine or not. Applications of the engine can set redirect the output of this plugin using
the plugin’s service interface (see org.coreasm.engine.plugin.Plugin#getPluginInterface()).

Example

CoreASM DebugInfoExample

use Standard
use Debuglnfo
use Options

option Debuglinfo.activeChannels ALL

37

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

//option Debuglinfo.activeChannels "chl ch2"
//option Debuglinfo.activeChannels "chl, ch2'
//option Debuglinfo.activeChannels chl
//option Debuglinfo.activeChannels NONE
init R1
rule R1 =
if mode = undef then
par
debuginfo chl "initializing."
mode := "counting"
counter := 0
endpar
else
par
debuginfo ch2 mode
counter := counter + 1
endpar
6.6 Math

The Math plugin can be loaded by the following use phrase:

‘ use Math

Math Plugin extends the CoreASM engine to provide some basic mathematical functions. Most
of these functions are equivalent of their Java counterparts in java.lang.Math. For such functions,
the following descriptions are basically taken from the Java 2 Platform Standard Edition 5.0 API
Specification.

6.6.1 Constants

e MathE
The value that is closer than any other to e, the base of the natural logarithms.

e MathPI
The value that is closer than any other to 7, the ratio of the circumference of a circle to its
diameter.

6.6.2 Basic Derived Functions

e abs(v) Returns the absolute value of v.
e acos(v) Returns the arc cosine of an angle, in the range of 0 through 7.

e asin(v) Returns the arc sine of an angle, in the range of —m/2 through /2.

38

ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

e atan(v) Returns the arc tangent of an angle, in the range of —7/2 through /2.
e atan2(x, y) Converts rectangular coordinates (x,y) to polar (r,) and returns 6.
e cuberoot(v) Returns the cube root of v.

e cbrt(v) Returns the cube root of v.

e ceil(v) Returns the smallest (closest to negative infinity) value that is greater than or
equal to the argument and is equal to a mathematical integer.

e cos(v) Returns the trigonometric cosine of an angle.

e cosh(v) Returns the hyperbolic cosine of v.

e exp(v) Returns Euler’s number e raised to the power of v.
e expml(v) Returns e’ — 1.

e floor(v) Returns the largest (closest to positive infinity) value that is less than or equal
to the argument and is equal to a mathematical integer.

e hypot(x, y) Returns y/x2 + y2 without intermediate overflow or underflow.

e IEEEremainder(vl, v2) Computes the remainder operation on two arguments as pre-
scribed by the IEEE 754 standard.

e log(v) Returns the natural logarithm (base €) of v.

e log10(v) Returns the base 10 logarithm of v.

e logip(v) Returns the natural logarithm of the sum of the argument and 1; i.e., in(v + 1).
e max(vl, v2) Returns the greater of two values.

e min(vl, v2) Returns the smaller of two values.

e pow(x, y) Returns the value of the first argument raised to the power of the second
argument.

e random() Returns a random value with a positive sign, greater than or equal to 0.0 and
less than 1.0.

e round(v) Returns the closest mathematical integer to the argument.

e signum(v) Returns zero if the argument is zero, 1.0 if the argument is greater than zero,
—1.0 if the argument is less than zero.

e sin(v) Returns the trigonometric sine of an angle.
e sinh(v) Returns the hyperbolic sine of v.

e sqrt(v) Returns the correctly rounded positive square root of v; i.e., \/v.

39

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

e tan(v) Returns the trigonometric tangent of an angle.
e tanh(v) Returns the hyperbolic tangent of v.

e toDegrees(v) Converts an angle measured in radians to an approximately equivalent angle
measured in degrees.

e toRadians(v) Converts an angle measured in degrees to an approximately equivalent angle
measured in radians.

6.6.3 Special Derived Functions

e powerset(set) Computes the powerset of the given set.
e powerset({el,....,en}) This function returns the powerset of the given set of elements.

e max({v1l,...,vn}) Returns the maximum value in a collection of numbers. If there is one
non-number in the collection, it returns undef.

e min({v1l,...,vn}) Returns the minimum value in a collection of numbers. If there is one
non-number in the collection, it returns undef.

e sum({vi,..,vn}) This function returns the sum of a collection of numbers. If there is one
non-number in the collection, it returns undef.

e sum({vl,...,vn}, @f) This function returns the sum of a collection of numbers, after applying
function £ to the values in the collection. If there is one non-number in the collection, it
returns undef.

40

6 ADDITIONAL PLUGINS CoreASM LANGUAGE USER MANUAL

6.6.4 An Example

Using Math Plugin

CoreASM MathPluginExample

use StandardPlugin
use MathPlugin

init Init

rule Init =
par
program (self) := @Main
a(l) := 56
a(2) := 10
a(100) := 500
endpar

rule Main =
let e = MathE in

par
print "’e’ =" + e
print "log(e) = " 4+ log(e)
print "sin(30) = " + round(sin(toRadians(30)) % 10) / 10
print "asin(0.5) = " + round(toDegrees(asin(0.5)))
print "min(51, 43) = " 4 min(51, 43)
print "sum({1, 2, 100}) = " + sum({1, 2, 100})
print "sum({1, 2, 100}, @a) = " + sum({1, 2, 100}, @a)
print "{2, 3} is in P({1, 2, 3}) = " 4+ ({2, 3} memberof

powerset ({1,2,3}))
choose x in powerset({1, 2, 3, 4}) do
if x memberof powerset({1, 2, 3}) then
print x + " is a member of powerset({1, 2, 3})"
else
print x + " is not a member of powerset({1, 2, 3})"
endpar

As an example, the output of the CoreASM Spec MathPluginExample would be the following;:

41

7 NOTES ABOUT THE COREASM COMPILER CoreASM LANGUAGE USER MANUAL

sum({1, 2, 100}) = 103

min(51, 43) = 43

asin(0.5) = 30

powerset ({1, 2, 3}) = {{}, {3}, {2}, {3, 2}, {1}, {3, 1}, {2, 1}, {3, 2, 1}}
{2, 3} memberof powerset({l, 2, 3} = true

log(e) =1

sum({1, 2, 100}, @a) = 515

‘e’ = 2.718281828459045

{2, 1, 4} is not a member of powerset({1, 2, 3})

sin(30) = 0.5

7 Notes about the CoreASM Compiler

As mentioned in section 1.3, the CoreASM Compiler currently does not provide support for all
CoreASM Plugins. Supported are:

e All Standard plugins

— BlockRulePlugin

— ChooseRulePlugin
ConditionalRulePlugin
— ExtendRulePlugin

— ForallRulePlugin

— IOPlugin

— LetRulePlugin

— NumberPlugin

— PredicateLogicPlugin
— SetPlugin

— SignaturePlugin
— StringPlugin

— TurboASMPlugin
— CollectionPlugin
— ListPlugin

— MapPlugin

— AbstractionPlugin
— CaseRulePlugin
— OptionsPlugin

42

7 NOTES ABOUT THE COREASM COMPILER CoreASM LANGUAGE USER MANUAL

— KernelExtensionsPlugin
e MathPlugin
e ModularityPlugin

e TimePlugin

Still, some restrictions apply to several of the mentioned plugins.

Kernel The MacroCall operation has some slight differences between the interpreter and the
compiler versions. They shouldn’t influence a well written specification, but can still provide
errors.

SignaturePlugin The SignaturePlugin provides an undef-handler to the CoreASM engine,
which allows to generate warnings and errors upon using undefined locations. This currently
doesn’t work in the compiler.

TurboASMPlugin The TurboASMPlugin Return Result rule might not work as intended in
all instances, but should provide the same result as the CoreASM Engine in most cases.

KernelExtensionsPlugin The KernelExtensionsPlugin is only implemented partially, missing
some functionality.

43

Index

:=, see update rule

<— rule, see return result rule

=, see equality operator

x|, see size-of operator

[...], see list element, see map element
{...}, see set element, see bag element
[1, see number range elements

Abstraction plugin, 19
AGENTS, 10
and, see Boolean operators

Bag background, 27
bag comprehension, 27
bag element, 27

bag enumeration, 27
Bag plugin, 27

Basic ASM plugin, 12
block rule, 12

Block Rule plugin, 12
Boolean background, 10
Boolean operators, 16

case rule, 15

Case Rule plugin, 15
choose rule, 13

Choose Rule plugin, 13
Collection plugin, 24
conditional operation, 14
conditional rule, 14
Conditional Rule plugin, 13
controlled, 34
CoreASM, 7

CoreASM kernel, 10

derived, 34

enum, see enumeration background
enumerable, 13

enumeration backgrounds, 33
equality operator, 11

extend rule, 19

Extend Rule plugin, 19

false, 10

filter function, 25
fold function, 25
foldl function, 24
foldr function, 25
forall rule, 14

Forall Rule plugin, 14

function, 34
Header block, 9

if —then—else rule, see conditional rule
implies, see Boolean operators
import, 11

include, 35

infinity function, 16

init, see init rule

init rule, 9

input function, 23

10 plugin, 23

isEvenNumber function, 17
isIntegerNumber function, 17
isNaturalNumber function, 17
isOddNumber function, 17
isRealNumber function, 17

kernel, see CoreASM kernel
Kernel Extensions plugin, 18

let rule, 15

Let Rule plugin, 14
List background, 28
list concatenation, 28
list element, 28

List plugin, 28

Map background, 32
map element, 32
map function, 25
Map plugin, 32
matches function, 22
Math plugin, 38

memberof operator, see membership operators

membership operators, 16

44

INDEX

CoreASM LANGUAGE USER MANUAL

Modularity plugin, 35

not operator, 16

not-equal operator, 15

now function, 36

Number background, 16
Number plugin, 16

Number Range background, 17
number range elements, 17

option, 35
Options plugin, 35
or, see Boolean operators

par, see block rule
Predicate Logic plugin, 15

queue, 31
Queue plugin, 31

read function, 23
return, 21

return result rule, 21
Rule Declaration, 9
ruleelement, 11

Scheduling Policies plugin, 35
self, 10

segblock, see sequence block rule

seq rule, 20

sequence block rule, 20, 21
Set background, 25

set comprehension, 26
set element, 25, 26

set enumeration, 25

Set plugin, 25
Signature plugin, 33
size function, 17

size-of operator, 16
stack, 31

Stack plugin, 31
Standard plugins, 18
stepcount function, 36
String background, 22
string concatenation, 22
String plugin, 22

strlen function, 22

45

Time plugin, 36
toNumber function, 16
toString function, 22
true, 10

TurboASM plugin, 20

undef, 10
universe, 33
update rule, 11
use, 9

xor, see Boolean operators

	Installing CoreASM
	CoreASM with Carma
	System Requirements
	Installing Carma
	Running Carma

	CoreASM Eclipse Plugin
	System Requirements
	Installing CoreASM Eclipse Plugin
	Using CoreASM Eclipse Plugin

	Using CoreASM Compiler

	CoreASM Specification
	Running CoreASM Specifications

	Kernel
	Rule Forms
	Kernel Engine Properties

	Basic ASM Plugins
	Block Rule
	Choose Rule
	Conditional Rule
	Forall Rule
	Let Rule
	Case Rule
	Predicate Logic
	Number Background

	Standard Plugins
	Kernel Extensions
	Abstraction
	Extend Rule
	TurboASM Rules
	String Background
	Input and Output
	Collection
	Set Background
	Bag Background
	List Background
	Queue
	Stack
	Map Background
	Signature Plugin

	Additional Plugins
	Modularity
	Options
	Scheduling Policies
	Time
	DebugInfo
	Math
	Constants
	Basic Derived Functions
	Special Derived Functions
	An Example

	Notes about the CoreASM Compiler

