
CW-Unity-Prop Audit
CW Unity Proposal CosmWasm Contract Audit

Prepared by: Logan Cerkovnik
Date: March 29th, 2022

TVL : $>=120M USD equivalent
… + more about threat model

Outline
Document Revision History

Version Modification Date Author

0.1 Created 3/29/2022 Logan Cerkovnik

Contact

Contact Organization Email

Logan Cerkovnik Security DAO logan@secdao.xyz

Paul Wagner Security DAO paul@secdao.xyz

Barton Rhodes Security DAO, DAO DAO barton@secdao.xyz

CW-Unity-Prop Audit SecurityDAO secdao.xyz 1

Outline 1

Executive Overview 4
Audit Summary 4
Test Approach and Methodology 5
Scope

Action Plan 7
Assessment Summary and Findings Overview 7

(SEC - 13) Yanked Dependency 7
(SEC - 15) Misuse of entry_point macro with sudo function 8

CW-Unity-Prop Audit SecurityDAO secdao.xyz 2

Executive Overview

Audit Summary

Security Dao worked on an engagement with the Juno Community and Juno
Core Dev group from 3/25/2022 through 3/30/2022 to conduct a security
assessment of the unity proposal contracts to ensure security, trust, and
communication for prop 18.

The security engineers involved with the audit are security and blockchain
smart contract security experts with advanced knowledge of smart contract
exploits.

The purpose of this audit is to achieve the following:

● Ensure that smart contract functions work as intended
● Identify potential security issues with the smart contracts

In summary, Security Dao identified impactful improvements to reduce the
likelihood and scope of risks, which were addressed by the WasmSwap team.

The primary ones are as follows:

● Misuse of entry_point macro with sudo function

External threats such as intercontract functions and calls should be validated for
expected logic and state and are not covered within the scope of this audit. Only
direct rpc contract interaction is considered here not any UI components or frontend
wasm interactions are excluded.

Test Approach and Methodology

Security DAO performed a combination of manual review of the code and
automated security testing.

The following phases were used throughout the audit:

○ Research into the architecture, purpose, and use of the platform
○ Manual code review and walkthrough

CW-Unity-Prop Audit SecurityDAO secdao.xyz 3

○ Manual Assessment of the use and safety for critical rust variables and
functions in scope to identify any contracts logic related vulnerability

○ Fuzz Testing (securitydao fuzzing tool)
○ Check Test Coverage (cargo tarpaulin)

Contract % coverage Lines Covered

cw20-unity-prop 99.35% 457/460

○ Scanning of Rust files for vulnerabilities (cargo audit)

Contract Dependency Version Warning

cw20-unity-prop const-oid 0.6.0 yanked

cw20-unity-prop crypto-bigint 0.2.2 yanked

Risk Methodology

Risk Likelihood and impact scales 1 through 5 where 5 is the most severe

Risk Likelihood Scale

1 low 2 unlikely 3 possible 4 likely to happen 5 high

least severe most severe

A low likelihood risk indicates that the likelihood of a�ack is low because of
obscurity or requiring additional exploits to utilize, a possible a�ack is one that
is possible but not an a�ack method commonly seen in the wild or well-known,
and high risk likelihood represents an exploit extremely likely to be used,
readily apparent, or commonly been used in the past against similar systems

Risk Impact Scale

1 low 2 limited 3 Impactful 4 critical 5 severe

least severe most severe

CW-Unity-Prop Audit SecurityDAO secdao.xyz 4

In the context of smart contracts, a low risk impact might be something
associated with limited scope or a preventive best practice, an impactful risk
may result in large loss of funds but not in a systematic way, and a severe risk
impact could result in substantial loss of funds in a systematic way.

Scope

Cosmwasm Smart Contracts

The primary target for the audit is cw-unity-prop crate. User interface and
cross contract messages are considered out of scope for this work.

● Repo: Private: https://github.com/CosmosContracts/cw-unity-prop
● Commit hash: 54c1fb6fa5157bcb76b8e9b9736acc6c59a99575

Action Plan

Sudo function’s purpose and use needs to be addressed and fixed in some way
before deploying the contract to mainnet with appropriate fixes for authorization and
validation of the sudo entry point functions.

Low Level of Effort to Fix and Low Impact

● (SEC - 13) Upgrade Yanked Dependencies

High Level of Effort to Fix and High Impact

● (SEC - 15) Misuse of entry_point macro with sudo function

Assessment Summary and Findings Overview

Findings and Tech Details

(SEC - 13) Yanked Dependencies

Severity Low / Impact Low

Description

CW-Unity-Prop Audit SecurityDAO secdao.xyz 5

https://github.com/CosmosContracts/cw-unity-prop

Dependencies for const-oid version 0.6.0 and crypto-bigint 0.2.2 are both yanked.
This is a cosmwasm-std 1.0.0beta dependency issue.

Code Location

https://github.com/CosmosContracts/cw-unity-prop/blob/main/Cargo.loc
k

Risk Level

The risk likelihood is low and the impact is low

Recommendation

Upgrade cosmwasm-std to latest version 1.0.0beta7

Remediation Plan

CW-Unity-Prop Audit SecurityDAO secdao.xyz 6

https://github.com/CosmosContracts/cw-unity-prop/blob/main/Cargo.lock
https://github.com/CosmosContracts/cw-unity-prop/blob/main/Cargo.lock

(SEC - 15) Misuse of entry_point macro with sudo function

High Severity / High Impact

Description

The cosmwasm_std::entry_point macro is misused with the sudo function. Officially
only 3 functions (instantiate, execute, and query) are supported according to
cosmwasm_std source code and docs. Use of a non-standard entrypoint macro and
calling it “sudo” could introduce security vulnerabilities and will reduce trust from
community members reviewing source and possibly in wasm/wat on-chain.

execute_burn , execute_send, and execute_send_all functions have no authorization
in them also so they cannot be dropped into the execute entrypoint as is. Currently
those functions will be unusable in the current contract because they are called
outside of the execute entrypoint.

The cw-multi-test crate does have a mock_app.wasm_sudo(integration_tests.rs line
line 168), but that is only for testing behavior with error handling in the test
environment and no authorization functionality.

Code Location
h�ps://github.com/CosmosContracts/cw-unity-prop/blob/main/src/contract.rs line
141

#[cfg_attr(not(feature = "library"), entry_point)]

pub fn sudo(deps: DepsMut, env: Env, msg: SudoMsg) -> Result<Response,

ContractError> {

match msg {

SudoMsg::ExecuteBurn {} => execute_burn(deps, env),

SudoMsg::ExecuteSend { recipient, amount } => execute_send(deps,

env, recipient, amount),

SudoMsg::ExecuteSendAll { recipient } => execute_send_all(deps,

env, recipient),

}

}

CW-Unity-Prop Audit SecurityDAO secdao.xyz 7

https://github.com/CosmosContracts/cw-unity-prop/blob/main/src/contract.rs

Risk Level

Risk likelihood is high and severity is high

Recommendation

Either this code should not be included, included as a test helper function, or
integrated with the execute function. Because the function is named sudo it will
likely be targeted by anyone looking at .wasm/wat code on chain if it has any
functionality. Another concern is that the sudo function is supposed to perform
some essential authorization functionality that isn’t integrated currently right now
since it's not inside the execute function. The functions called in the sudo
entrypoint (execute_burn , execute_send, and execute_send_all) need security
features added around address verification, time expiration validation etc.)

Remediation Plan

CW-Unity-Prop Audit SecurityDAO secdao.xyz 8

