
C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 1

Herb Sutter

C A
Complexity Anonymous

A 12-step program

for good people attempting to

recover from complexity addiction

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 2

C++ developers (~3M)

libstdc++ developers (~30)

+
libc++ developers (~5-7)

+
Boost developers (~300?)

+
ISO WG21 attenders (~300?)

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 3

Occurrences of “&&” in Bjarne’s 90-min Tue keynote? 0

Value of modern C++’s simple usable defaults? Priceless

 “What should every C++ programmer be
expected to know?”

 For years, there has not been a single source
to point to.

 Now there is. In 180 pages you can read on
a long plane flight.
 Recommend it heavily!

 Also a demonstration that modern C++ is
simpler to teach and explain.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 4

 This talk focuses on defaults, basic styles and idioms in modern C++.

 “Default” != “don’t think.”

 “Default” == “don’t overthink.” Esp. don’t optimize prematurely.

 These reinforce (not compete with) the “fundamentals.”
 “Write for clarity and correctness first.”

 “Avoid premature optimization.” By default, prefer clear over optimal.

 “Avoid premature pessimization.” Prefer faster when equally clear.

why do this
for(auto i = begin(c); i != end(c); ++i) { … use(*i); … }

when you can do this

for(auto& e : c) { … use(e); … }

and soon this

for(e : c) { … use(e); … }

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 5

wait, what?

 C++98:
widget* factory();
void caller() {

widget* w = factory();
gadget* g = new gadget();
use(*w, *g);
delete g;
delete w;

}
red now “mostly wrong” 

 Don’t use owning *,
new or delete.
 Except: Encapsulated inside

the implementation of low-
level data structures.

 Modern C++:
unique_ptr<widget> factory();
void caller() {

auto w = factory();
auto g = make_unique<gadget>();
use(*w, *g);

}

 For “new”, use make_unique by default,
make_shared if it will be shared.

 For “delete”, write nothing.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 6

 C++98:
widget* factory();
void caller() {

widget* w = factory();
gadget* g = new gadget();
use(*w, *g);
delete g;
delete w;

}
red now “mostly wrong” 

 Don’t use owning *,
new or delete.
 Except: Encapsulated inside

the implementation of low-
level data structures.

 C++14:
unique_ptr<widget> factory();
void caller() {

auto w = factory();
auto g = make_unique<gadget>();
use(*w, *g);

}

 For “new”, use make_unique by default,
make_shared if it will be shared .

 For “delete”, write nothing.

NB: important qualifier

 C++98 “Classic”:

void f(widget& w) { // if required
use(w);

}

void g(widget* w) { // if optional
if(w) use(*w);

}

 Modern C++ “Still Classic”:

void f(widget& w) { // if required
use(w);

}

void g(widget* w) { // if optional
if(w) use(*w);

}

auto upw = make_unique<widget>();
…
f(*upw);

auto spw = make_shared<widget>();
…
g(spw.get());


* and & FTW

(More on parameter passing coming later…)

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 7

 Antipattern #1: Parameters
(Note: Any refcounted pointer type.)
void f(refcnt_ptr<widget>& w) {

use(*w);
} // ?

void f(refcnt_ptr<widget> w) {
use(*w);

} // ?!?!

 Antipattern #2: Loops
(Note: Any refcounted pointer type.)
refcnt_ptr<widget> w = …;

for(auto& e: baz) {

auto w2 = w;
use(w2,*w2,w,*w,whatever);

} // ?!?!?!?!

Example (thanks Andrei): In late 2013, Facebook RocksDB
changed from pass-by-value shared_ptr to pass-*/&.
QPS improved 4 (100K to 400K) in one benchmark.

http://tinyurl.com/gotw91-example

FAQ: Smart Pointer Parameters — See GotW #91 (tinyurl.com/gotw91)

Refcounted smart pointers are about managing the owned object’s lifetime.
Copy/assign one only when you intend to manipulate the owned object’s lifetime.

Any “smart pointers (or std::vectors) are slow” performance claims based on code
that copies/assigns smart pointers (or std::vectors) – including passing by value or

copying/assigning in loops – when copies are not needed are fundamentally flawed.

Yes, this applies to your refcounted smart pointer:

• shared_ptr (Boost, TR1, std::)
• retain/release (Objective-C ARC, Clang 3.5)
• AddRef/Release (COM and WinRT, C++/CX ^)

• any other refcounting strategy you will ever see

http://tinyurl.com/gotw91-example

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 8

unique_ptr<widget> factory(); // source – produces widget

void sink(unique_ptr<widget>); // sink – consumes widget

void reseat(unique_ptr<widget>&); // “will” or “might” reseat ptr

void thinko(const unique_ptr<widget>&); // usually not what you want

shared_ptr<widget> factory(); // source + shared ownership
// when you know it will be shared, perhaps by factory itself

void share(shared_ptr<widget>); // share – “will” retain refcount

void reseat(shared_ptr<widget>&); // “will” or “might” reseat ptr

void may_share(const shared_ptr<widget>&); // “might” retain refcount

1. Never pass smart pointers (by value or by reference) unless you actually
want to manipulate the pointer  store, change, or let go of a reference.
 Prefer passing objects by * or & as usual – just like always.

 Else if you do want to manipulate lifetime, great, do it as on previous slide.

2. Express ownership using unique_ptr wherever possible, including when
you don’t know whether the object will actually ever be shared.
 It’s free = exactly the cost of a raw pointer, by design.

 It’s safe = better than a raw pointer, including exception-safe.

 It’s declarative = expresses intended uniqueness and source/sink semantics.

 It removes many (often most) objects out of the ref counted population.

3. Else use make_shared up front wherever possible, if object will be shared.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 9

 The reentrancy pitfall (simplified):

// global (static or heap), or aliased local
… shared_ptr<widget> g_p …

void f(widget& w) {
g();
use(w);

}

void g() {
g_p = … ;

}

void my_code() {

f(*g_p); // passing *nonlocal

} // should not pass code review

 “Pin” using unaliased local copy.

// global (static or heap), or aliased local
… shared_ptr<widget> g_p …

void f(widget& w) {
g();
use(w);

}

void g() {
g_p = … ;

}

void my_code() {
auto pin = g_p; // 1 ++ for whole tree
f(*pin); // ok, *local

}

 The reentrancy pitfall (simplified):

// global (static or heap), or aliased local
… shared_ptr<widget> g_p …

void f(widget& w) {
g();
use(w);

}

void g() {
g_p = … ;

}

void my_code() {

f(*g_p); // passing *nonlocal
g_p->foo(); // (or nonlocal->)

} // should not pass code review

 “Pin” using unaliased local copy.

// global (static or heap), or aliased local
… shared_ptr<widget> g_p …

void f(widget& w) {
g();
use(w);

}

void g() {
g_p = … ;

}

void my_code() {
auto pin = g_p; // 1 ++ for whole tree
f(*pin); // ok, *local
pin->foo(); // ok, local->

}

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 10

1. Never pass smart pointers (by value or by reference) unless you actually
want to manipulate the pointer  store, change, or let go of a reference.
 Prefer passing objects by * or & as usual – just like always.

Remember: Take unaliased+local copy at the top of a call tree, don’t pass f(*g_p).

 Else if you do want to manipulate lifetime, great, do it as on previous slide.

2. Express ownership using unique_ptr wherever possible, including when
you don’t know whether the object will actually ever be shared.
 It’s free = exactly the cost of a raw pointer, by design.

 It’s safe = better than a raw pointer, including exception-safe.

 It’s declarative = expresses intended uniqueness and source/sink semantics.

 It removes many (often most) objects out of the ref counted population.

3. Else use make_shared up front wherever possible, if object will be shared.

Don’t use owning raw *, new, or delete any more, except
rarely inside the implementation details of low-level data structures.

Do use non-owning raw * and &, especially for parameters.

Don’t copy/assign refcounted smart pointers,
including pass-by-value or in loops, unless you really

want the semantics they express: altering object lifetime.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 11

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 12

 Guru Meditation Q: What does this code do?

template<class Container, class Value>
void append_unique(Container& c, Value v)
{

if(find(begin(c), end(c), v) == end(c))
c.push_back(move(v)); // anything comparable to end(cont)…

assert(!c.empty()); // what type does .empty return?
} // anything testable like a bool…

x

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 13

 Counterarguments: “Oi, but it’s unreadable!” “What’s my type?”

 This is a weak argument for three reasons:
 (Minor) It doesn’t matter to anyone who uses an IDE.

 (Major) It reflects bias to code against implementations, not interfaces.

 (Major) We already ignore actual types with templates and temporaries.

template<class Container, class Value> // what type is Container? Value?
void append_unique(Container& c, Value v) // anything usable like this…
{

if(find(begin(c), end(c), v) == end(c)) // what type does find return?
c.push_back(move(v)); // anything comparable to end(cont)…

assert(!c.empty()); // what type does .empty return?
} // anything testable like a bool…

 We also ignore actual types with virtual functions, function<>, etc.

 With deduction you always get right type. Repetition  P(lying)

 Example:
void f(const vector<int>& v) {

vector<int>::iterator i = v.begin(); // ?
}

 Options:
void f(const vector<int>& v) {

vector<int>::iterator i = v.begin(); // error
vector<int>::const_iterator i = v.begin(); // ok + extra thinking
auto i = v.begin(); // ok, default

}

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 14

 Using deduction makes your code more robust in the face of change.

 Deduction tracks the correct type when an expression’s type changes.

 Committing to explicit type = silent conversions, needless build breaks.

 Examples:

int i = f(1,2,3) * 42; // before: ok enough
int i = f(1,2,3) * 42.0; // after: silent narrowing conversion
auto i = f(1,2,3) * 42.0; // after: still ok, tracks type

widget w = factory(); // before: ok enough, returns a widget
widget w = factory(); // after: silent conversion, returns a gadget
auto w = factory(); // after: still ok, tracks type

map<string,string>::iterator i = begin(dict); // before: ok enough
map<string,string>::iterator i = begin(dict); // after: error, unordered_map
auto i = begin(dict); // after: still ok, tracks type

 Deduction guarantees no implicit conversion will happen.

 A.k.a. “guarantees better performance by default.”

 Committing to an explicit type that requires a conversion

means silently getting a conversion whether you expected it or

not.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 15

 Using deduction is your only good (usable and efficient) option for
hard-to-spell and unutterable types like:
 lambdas,

 binders,

 detail:: helpers,

 template helpers, such as expression templates (when they should stay
unevaluated for performance), and

 template parameter types, which are anonymized anyway,

 … short of resorting to:
 repetitive decltype expressions, and

 more-expensive indirections like std::function.

 And, yes, “basic deduction” auto x = expr; syntax is almost

always less typing.

 Mentioned last for completeness because it’s a common

reason to like it, but it’s not the biggest reason to use it.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 16

 Prefer auto x = expr; by default on variable declarations.
 It offers so much correctness, clarity, maintainability, performance

and simplicity goodness that you’re only hurting yourself (and your
code’s future maintainers) if you don’t.

 Prefer to habitually program against interfaces, not
implementations. We do this all the time in temporaries and
templates anyway and nobody bats an eye.

 But: Do commit to an explicit type when you really mean it,
which nearly always means you want an explicit conversion.

 Q: But even then, does “commit to an explicit type”
mean “don’t use auto”?

 Deduce to track if you don’t need to commit to a type:
 const char* s = “Hello”; auto s = “Hello”;

 widget w = get_widget(); auto w = get_widget();

 Commit to stick to a specific type. Try it on the right (same syntax order):
 employee e{ empid }; auto e = employee{ empid };

 widget w{ 12, 34 }; auto w = widget{ 12, 34 };

 With heap allocation, type is on the right naturally anyway:
 C++98 style: auto w = new widget{};

 C++14 style: auto w = make_unique<widget>();

 Teaser: Does this remind you of anything else in C++11? and C++14?

 int f(double); auto f(double) -> int; // C++11

 auto f(double) { … } // C++14

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 17

But what about
int x = 42;

vs.
auto x = 42;

?

“OBVIOUSLY int x = 42;
is the tersest and clearest style.”

Right?

employee e{ empid }; auto e = employee{ empid };

widget w = get_widget(); auto w = get_widget();

 Now consider literal suffixes:

int x = 42; auto x = 42;

float x = 42.; auto x = 42.f; // no narrowing
unsigned long x = 42; auto x = 42ul;

string x = “42”; auto x = “42”s; // C++14
chrono::nanoseconds x{ 42 }; auto x = 42ns; // C++14

 Remember functions, lambdas, and aliases:

int f(double); auto f (double) -> int;
auto f = [=](double) { /*…*/ };

typedef set<string> dict; using dict = set<string>;

template<class T> struct myvec template<class T>
{ typedef vector<T,myalloc> type; }; using myvec = vector<T,myalloc>;

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 18

 The C++ world is moving to left-to-right everywhere:

category name = type and/or initializer ;

Auto variables: auto e = employee{ empid };
auto w = get_widget();

Literals: auto x = 42;
auto x = 42.f;
auto x = 42ul;

User-defined literals: auto x = “42”s;
auto x = 1.2ns;

Function declarations: auto func (double) -> int;

Named lambdas: auto func = [=](double) { /*…*/ };

Aliases (no more typedefs): using dict = set<string>;

Template aliases: template<class T>
using myvec = vector<T,myalloc>;

 Consider:

auto x = value;

 Q: Does this “=” create a temporary object plus a move/copy?

 Standard says “No.” The code T x = a; has exactly the same meaning

as T x(a); when a has type T (or derived from T)… and auto x = a;

guarantees the types are the same (yay auto) so it always means

exactly the same as auto x(a).

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 19

 Consider:

auto x = type{value};

 Q: Does this “=” create a temporary object plus a move/copy?

 Standard says “Yes, but”: The compiler may elide the temporary.

 In practice, compilers do (and in the future routinely will) elide this

temporary+move. However, the type must still be movable (which

includes copyable as a fallback).

 Case: (1) Explicit “type{}” + (2) non-(cheaply-)moveable type.
auto lock = lock_guard<mutex>{ m }; // error, not movable
auto ai = atomic<int>{}; // error, not movable
auto a = array<int,50>{}; // compiles, but needlessly expensive

 Non-cases: Naked init list, proxy type, multi-word name.
auto x = { 1 }; // initializer_list
auto x = 1; // int

auto a = matrix{…}, b = matrix{…}; // some lazily evaluated type
auto ab = a * b; // capture proxy (efficient by default)
auto c = matrix{ a * b }; // resolve computation

auto x = (long long){ 42 }; // use int64_t{42} or 42LL
auto y = class X{1,2,3}; // use X{1,2,3};

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 20

 A recent time I resisted using auto, I was wrong.
 It came up when changing this legacy code:

base* pb = new derived();

to this modern code, where I and others kept not noticing the different types:

unique_ptr<base> pb = make_unique<derived>();
// too subtle: people keep not seeing it

and now I actually do prefer the consistent and nearly-as-terse spelling:

auto pb = unique_ptr<base>{ make_unique<derived>() };
// explicit and clear: hard to miss it

which makes what’s going on nice and explicit – the conversion is more obvious
because we’re explicitly asking for it.

1. Deduced and exact, when you want tracking: auto x = init;

2. With explicit type name, when you want to commit: auto x = Type { init };

Note: Guarantees zero implicit conversions/temporaries,
zero narrowing conversions, and zero uninitialized variables!

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 21

They’re in headers anyway. (Insert de rigueur modules note here.)

C++14 makes it it convenient to not to not repeat yourself.

Remember: auto only  exact type, no conversions;
explicit return type  stable type, committed.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 22

Complete “how to pass params” details follow,
but the summary fits on a slide…

… one slide for “default,” one slide for “optimal”

Observation

“New features get overused.” – B. Stroustrup
or

“It’s about the lvalues, after all!” – S. Meyers

Just as exception safety isn’t all about writing try and catch,
using move semantics isn’t all about writing move and &&

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 23

 The following is the result of recent discussions with many
people, including but not limited to the following:
 Gabriel Dos Reis

 Matthew Fiovarante (&& param move from)

 Howard Hinnant (distinguish copy ctor/op= costs vs. move)

 Stephan T. Lavavej (low cost of value return even in C++98)

 Scott Meyers (reduce #objects, be aware of costs)

 Eric Niebler

 Sean Parent

 Bjarne Stroustrup (practicality, judgment, design sense)

 VC++ MVP discussion list

 & many more

Cheap to copy
(e.g., int)

Moderate cost to copy (e.g., string, BigPOD)
or Don’t know (e.g., unfamiliar type, template)

Expensive to copy
(e.g., vector,
BigPOD[])

Out X f() f(X&)

In/Out f(X&)

In
f(X) f(const X&)

In & retain copy

“Cheap”  a handful of hot int copies
“Moderate cost”  memcpy hot/contiguous ~1KB and no allocation

* or return X* at the cost of a dynamic allocation

*

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 24

Cheap or
impossible to
copy (e.g., int,

unique_ptr)

Cheap to move (e.g., vector<T>, string)
or Moderate cost to move (e.g., array<vector>, BigPOD)

or Don’t know (e.g., unfamiliar type, template)

Expensive to move
(e.g., BigPOD[],
array<BigPOD>)

Out X f() f(X&)

In/Out f(X&)

In
f(X) f(const X&)

In & retain “copy”

“Cheap”  a handful of hot int copies
“Moderate cost”  memcpy hot/contiguous ~1KB and no allocation

* or return unique_ptr<X>/make_shared_<X> at the cost of a dynamic allocation

*

Summary of what’s new in C++1x:

 Defaults work better

Cheap or
impossible to
copy (e.g., int,

unique_ptr)

Cheap to move (e.g., vector<T>, string)
or Moderate cost to move (e.g., array<vector>, BigPOD)

or Don’t know (e.g., unfamiliar type, template)

Expensive to move
(e.g., BigPOD[],
array<BigPOD>)

Out X f() f(X&)

In/Out f(X&)

In
f(X)

f(const X&)

In & retain copy f(const X&) + f(X&&) & move

In & move from f(X&&)

* or return unique_ptr<X>/make_shared_<X> at the cost of a dynamic allocation

** special cases can also use perfect forwarding (e.g., multiple in+copy params, conversions)

**

*

**

Summary of what’s new in C++1x:

 Defaults work better

 + More optimization opportunities

+1 consistency:
same optimization

guidance as overloaded
copy+move construction

and assignment

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 25

Cheap or
impossible to
copy (e.g., int,

unique_ptr)

Cheap to move (e.g., vector<T>, string)
or Moderate cost to move (e.g., array<vector>, BigPOD)

or Don’t know (e.g., unfamiliar type, template)

Expensive to move
(e.g., BigPOD[],
array<BigPOD>)

Out X f() f(X&)

In/Out f(X&)

In
f(X)

f(const X&)

In & retain copy f(const X&) + f(X&&) & move

In & move from f(X&&)

* or return unique_ptr<X>/make_shared_<X> at the cost of a dynamic allocation

** special cases can also use perfect forwarding (e.g., multiple in+copy params, conversions)

**

*

**

Summary of what’s new in C++1x:

 Defaults work better

 + More optimization opportunities

When do I write rvalue &&? Only to optimize rvalues
Just as exception safety isn’t all about writing try and catch,
using move semantics isn’t all about writing move and &&

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 26

Cheap or
impossible to
copy (e.g., int,

unique_ptr)

Cheap to move (e.g., vector<T>, string)
or Moderate cost to move (e.g., array<vector>, BigPOD)

or Don’t know (e.g., unfamiliar type, template)

Expensive to move
(e.g., BigPOD[],
array<BigPOD>)

Out X f() f(X&)

In/Out f(X&)

In

f(X)

f(const X&)

In & retain copy
f(X) & move

In & move from

* GOOD: this can be faster than C++98 – can move from rvalues;

BUT: also can be much slower than C++98 – always incurs a full copy, prevents reusing
buffers/state (e.g., for vectors & long strings, incurs memory allocation 100% of the time)

BUT: also problematic for noexcept

*

?

 Consider:

class employee {

std::string name_;

public:

void set_name(/*… ?? …*/); // change name_ to new value

};

 Q: What should we tell people to write here?

 Hint: There has been a lot of overthinking going on about this.

(I include myself.)

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 27

 Default: const string&
class employee {

std::string name_;
public:

void set_name(const std::string& name) { name_ = name; }
};

 Always 1 copy assignment – but usually <<50% will alloc
 If small (SSO), ~5 int copies, no mem alloc – often dominant

 If large, still performs mem alloc <50% of the time

 If optimization justified: Add overload for string&& + move
class employee {

std::string name_;
public:

void set_name(const std::string& name) { name_ = name; }
void set_name(std::string&& name) noexcept

{ name_ = std::move(name); }
};

 Optimized to steal from rvalues:
 Pass a named object: 1 copy assignment (<<50% alloc), as before

 Pass a temporary: 1 move assignment (~5 ints, no alloc noexcept)

 Note: Combinatorial if multiple “in + retain copy” parameters.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 28

 Another new option in C++11: string + move
class employee {

std::string name_;
public:

void set_name(std::string name) noexcept
{ name_ = std::move(name); }

};

 Optimized to steal from rvalues, without overloading:
 Pass named object: 1 copy construction (100% alloc if long) + move op=

 Pass a temporary: 1 move assignment (~5 ints, no alloc noexcept-ish)

 This “noexcept” is… problematic

 Still another new option in C++11: Templated T&& “perfect forwarding”
class employee {

std::string name_;
public:

template<class String, class = std::enable_if_t<!std::is_same<std::decay_t<String>,
std::string>::value>>

void set_name(String&& name)
noexcept(std::is_nothrow_assignable<std::string&, String>::value)

{ name_ = std::forward<String>(name); }
};

 Optimized to steal from rvalues (and more), sort of without overloading:

 Pass a named object: 1 copy assignment (<<50% alloc), as before

 Pass a temporary: 1 move assignment (~5 ints, no alloc  noexcept)

 “Unteachable!” Generates many funcs. Must be in a header. Can’t be virtual.

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 29

0

1000

2000

3000

4000

5000

6000

lvalue (1-10) lvalue (1-50) xvalue (1-10) xvalue (1-50) char* (1-10) char* (1-50)

VC++ 2013 x64 Release

Option 1: const string& Option 2: const string& + string&& Option 3: string Option 4: String&& perfect fwding

0

200

400

600

800

1000

1200

lvalue (1-10) lvalue (1-50) xvalue (1-10) xvalue (1-50) char* (1-10) char* (1-50)

Clang/libc++ Release

Option 1: const string& Option 2: const string& + string&& Option 3: string Option 4: String&& perfect fwding

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 30

0

200

400

600

800

1000

1200

1400

lvalue (1-10) lvalue (1-50) xvalue (1-10) xvalue (1-50) char* (1-10) char* (1-50)

G++/libstdc++ x64 Release

Option 1: const string& Option 2: const string& + string&& Option 3: string Option 4: String&& perfect fwding

0

200

400

600

800

1000

1200

lvalue (1-10) lvalue (1-50) xvalue (1-10) xvalue (1-50) char* (1-10) char* (1-50)

G++/libstdc++ vstring x64 Release

Option 1: const string& Option 2: const string& + string&& Option 3: string Option 4: String&& perfect fwding

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 31

Constructor operator=

Default

$$

Move $

Copy $$$$ $$$

 Howard Hinnant: “Don’t blindly assume that the cost of
construction is the same as assignment.”

 For strings and vectors, “Capacity plays a large role in their performance.
Copy construction always allocates (except for short). Copy assignment
(except for short) allocates/deallocates 50% of the time with random
capacities on the lhs and rhs. To keep an eye on performance, one must
count allocations and deallocations.”

 William of Occam: ‘Do not multiply entities needlessly.’

 Attributed. Talking about hypotheses; applies to ‘entities.’

 Andrei Alexandrescu: “No work is less work than some work.”

 Scott Meyers: ‘It’s a bad habit to just create extra objects.’

 “Just create ’em because they’re cheap to move from” is thoughtcrime.

"William of Ockham" by self-created (Moscarlop) -
Own work. Licensed under Creative Commons
Attribution-Share Alike 3.0 via Wikimedia Commons-
http://commons.wikimedia.org/wiki/File:William_of_Ockh
am.png#mediaviewer/File:William_of_Ockham.png

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 32

 This talk focuses on defaults, basic styles and idioms in modern C++.

 “Default” != “don’t think.”

 “Default” == “don’t overthink.” Esp. don’t optimize prematurely.

 These reinforce (not compete with) the “fundamentals.”
 “Write for clarity and correctness first.”

 “Avoid premature optimization.” By default, prefer clear over optimal.

 “Avoid premature pessimization.” Prefer faster when equally clear.

 Another new option in C++11: string + move
class employee {

std::string name_;
public:

void set_name(std::string name) noexcept
{ name_ = std::move(name); }

};

 Optimized to steal from rvalues, without overloading:
 Pass named object: 1 copy construction (100% alloc if long) + move op=

 Pass a temporary: 1 move assignment (~5 ints, no alloc noexcept-ish)

 This “noexcept” is… problematic

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 33

 There is one place where this is a good idea: Constructors.
class employee {

std::string name_;
std::string addr_;
std::string city_;

public:
void employee(std::string name, std::string addr, std::string city)

: name_{std::move(name)}, addr_{std::move(addr)}, city_{std::move(city)} { }
};

 Constructors are the primary case of multiple “in + retain copy” params,
where overloading const&/&& is combinatorial.

 Constructors always construct, so no worries about reusing existing capacity.

 Note: Probably prefer not to write the misleading “noexpect”…

 Default: const string&
class employee {

std::string name_;
public:

void set_name(const std::string& name) { name_ = name; }
};

 Always 1 copy assignment – but usually <<50% will alloc
 If small (SSO), ~5 int copies, no mem alloc – often dominant

 If large, still performs mem alloc <50% of the time

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 34

 If optimization justified: Add overload for string&& + move
class employee {

std::string name_;
public:

void set_name(const std::string& name) { name_ = name; }
void set_name(std::string&& name) noexcept

{ name_ = std::move(name); }
};

 Optimized to steal from rvalues:
 Pass a named object: 1 copy assignment (<<50% alloc), as before

 Pass a temporary: 1 move assignment (~5 ints, no alloc noexcept)

 Note: Combinatorial if multiple “in + retain copy” parameters.

What is a T&&? A forwarding reference

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 35

void foo(X&& x);

template<class Y>
void bar(Y&& y);

 Q: What are the types of the function parameters?
What arguments to they accept or reject?
What is the parameter for?

 A: Fundamentally different.
 foo takes rvalue reference to non-const.

foo accepts only rvalue X objects.
foo’s parameter is to capture temporaries (and other rvalues).

 bar takes mumble reference to everything: const, volatile, both, and neither.
bar accepts all Y objects.
bar’s parameter is for forwarding its argument onward.

 Scott Meyers pointed out that T&& is very different,
and needs a name.

 He coined “universal reference.”

 For his book whose final galleys are due, um, today.

 Here at CppCon, a few of us met and ultimately
agreed that this does need a name. (Thanks, Scott.)

 But we still disliked “universal.” (Sorry, Scott.)

 We think the right name is “forwarding reference.”

 The committee/community may disagree. Time will tell.

 In the meantime, Scott will add a footnote and index
entry for “forwarding reference,” and switch to it in
future printings if the community agrees. (Thanks,
Scott!)

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 36

 Use && only for parameter/return types:
 myclass&& rvalue references to optimize rvalues, usually overloading const& /

&& – note this covers the move SMFs!

void f(const string&); // default way to express “in + retain a copy”
void f(string&&); // what to add to additionally optimize for rvalues

 T&& forwarding references to write forwarders, which are neutral code
between unknown callers and callees and want to preserve rvalueness/cv-ness.

 Note this includes the new proposed for(e:c), which is… drum roll…
a neutral forwarder between a collection/range and the calling code.

 Also includes generic lambda auto&& parameters… use for forwarders only.

 Don’t use auto&& for local variables.
 You should know whether your variable is const/volatile or not!

 (Except rarely if you’re just handing it off… in the body of a forwarder.)

Yes, C++11 has multiple return values! (Who knew?)

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 37

 Given a set<string> myset, consider:

// C++98

pair<set<string>::iterator,bool> result = myset.insert(“Hello”);
if (result.second) do_something_with(result.first); // workaround

// C++11 – sweet backward compat

auto result = myset.insert(“Hello”); // nicer syntax, and the
if (result.second) do_something_with(result.first); // workaround still works

// C++11 – sweet forward compat, can treat as multiple return values

tie(iter, success) = myset.insert(“Hello”); // normal return value
if (success) do_something_with(iter);

C++ developers (~3M)

libstdc++ developers (~30)

+
libc++ developers (~5-7)

+
Boost developers (~300?)

+
ISO WG21 attenders (~300?)

C++14 Style
Herb Sutter

9/13/2014

 2014 Herb Sutter except material otherwise referenced. 38

Questions?

