C++14 Style 9/13/2014
Herb Sutter

Back to Basics: Modern C++ Style

loops

pointers & references
smart pointers
variable declarations
parameter passing

Herb Sutter

CA

Complexity Anonymous

A 12-step program
for good people attempting to
recover from complexity addiction

© 2014 Herb Sutter except material otherwise referenced. 1

C++14 Style 9/13/2014
Herb Sutter

It’s hard to be-remember you’re an expert

C++ developers (~3M)

libstdc++ developers (~30)
+
libc++ developers (~5-7)
+

Boost developers (~3007)
+
ISO WG21 attenders (~3007?)

© 2014 Herb Sutter except material otherwise referenced. 2

C++14 Style 9/13/2014
Herb Sutter

Morgan Stanley

Reality Check

Make Simple Tasks Simple!

Bjarne Stroustrup
Morgan Stanley

Occurrences of “&&” in Bjarne’s 90-min Tue keynote? 0

Value of modern C++’s simple usable defaults? Priceless

Most Important C++ Book
A Tour of C++ ;‘:

» “What should every C++ programmer be
expected to know?”

For years, there has not been a single source
to point to.

Bjarne St"OustruP |

» Now thereis. In 180 pages you can read on
a long plane flight.

Recommend it heavily!

Also a demonstration that modern C++ is C++ In-Depth Series «
simpler to teach and explain.

Bjarne \ru)u\l:up “

© 2014 Herb Sutter except material otherwise referenced. 3

C++14 Style 9/13/2014
Herb Sutter

This Talk

» This talk focuses on defaults, basic styles and idioms in modern C++.
x IIDEEE ||II !_IIEIE :Il ||:':I.II
v’ “Default” == “don’t overthink.” Esp. don’t optimize prematurely.

» These reinforce (not compete with) the “fundamentals.”
“Write for clarity and correctness first.”
“Avoid premature optimization.” By default, prefer clear over optimal.
“Avoid premature pessimization.” Prefer faster when equally clear.

Prefer range-for

why do this
for(auto i = begin(c); i !I=end(c); ++i) { ... use(*i); ... }

when you can do this

for(auto& e:c){...use(e); ... }

and soon this

for(e:c){...use(e); ..}

© 2014 Herb Sutter except material otherwise referenced. 4

C++14 Style
Herb Sutter

Use smart pointers effectively...

... but still use lots of raw * and &, they’re great!

wait, what?

9/13/2014

» C++98:

widget* factory();

void caller() {
widget* w = factory();
gadget® g = new gadget();
use(*w, *g);
delete g;
delete w;

}

red = now “mostly wrong” ©

» Don’t use owning *,
new or delete.
Except: Encapsulated inside

the implementation of low-
level data structures.

Don’t Use Owning *, new, or delete

» Modern C++:
unique_ptr<widget> factory();

void caller() {
auto w = factory();
auto g = make_unique<gadget>();
use(*w, *g);

» For “new”, use make_unique by default,
make_shared if it will be shared.

v

For “delete”, write nothing.

© 2014 Herb Sutter except material otherwise referenced.

C++14 Style
Herb Sutter

9/13/2014

e NB: important qualifier

Owning

NB: Non-Owning */& Are Still Great

» C++98 “Classic”:
void f(widget& w) {
use(w);
}
void g(widget* w) {
if(w) use(*w);

}
*and & FTW
(More on parameter passing coming later...)

// if required

// if optional

» Modern C++ “Still Classic”:
void f(widget& w) { //if required
use(w);
}
void g(widget™* w) {
if(w) use(*w);

}

auto upw = make_unique<widget>();

// if optional

f(*upw);
auto spw = make_shared<widget>();

g(spw.get());

© 2014 Herb Sutter except material otherwise referenced.

C++14 Style 9/13/2014
Herb Sutter

Antipatterns Hurt Pain Pain

» Antipattern #1: Parameters
(Note: Any refcounted pointer type.)
void f(refcnt_ptr<widget>& w) {

» Antipattern #2: Loops
(Note: Any refcounted pointer type.)

refcnt_ptr<widget> w = ..,;
}/‘/JS_)e(*W)P for(auto& e: baz) {
o . autow2 =w;
void f((:ef)cnt_ptr<W|dget> w) { use(w2,*w2,w,*w,whatever);
use(*w);
1// 212! P/ 211

Example (thanks Andrei): In late 2013, Facebook RocksDB
changed from pass-by-value shared_ptr to pass-*/&.
QPS improved 4x (100K to 400K) in one benchmark.

http://tinyurl.com/qotw91-example

No Copy No Cry

FAQ: Smart Pointer Parameters — See GotW #91 (tinyurl.com/qotw91)

Refcounted smart pointers are about managing the owned object’s lifetime.
Copy/assign one only when you intend to manipulate the owned object’s lifetime.

Any “smart pointers (or std::vectors) are slow” performance claims based on code

that copies/assigns smart pointers (or std::vectors) — including or

— when copies are not needed are fundamentally flawed.

Yes, this applies to your refcounted smart pointer:

* shared_ptr (Boost, TR1, std::)
retain/release (Objective-C ARC, Clang 3.5)
AddRef/Release (COM and WinRT, C++/CX #)
any other refcounting strategy you will ever see

© 2014 Herb Sutter except material otherwise referenced.

http://tinyurl.com/gotw91-example

C++14 Style
Herb Sutter

9/13/2014

Passing Smart Pointers (€:~ W #91)

TS
unique_ptr<widget> factory(); Me — produces widget
void sink(unique_ptr<widget>),\\ // sink — consumes widget

void reseat(unique_ptr<widget>&);> // “will” or “might” reseat ptr

o thinke! e dgetsg): y ' |

shared ptr<widget> factory(); // source + shared ownership
// when you know it will be shared, perhaps by factory itself

void share(shared ptr<widget>); // share — “will” retain refcount

void reseat(shared_ptr<widget>&); // “will” or “might” reseat ptr

void may_share(const shared_ptr<widget>&); // “might” retain refcount

How to “Do It Right” (Partial)

1. Never pass ~ =ainters (by value or by reference) unless you actually
want to m: ~*~ra_change, or let go of a reference.
Preferp Not qy;
ui
Else if v Quite done: One guidel; slide.
Ine mjsg;j
2. Express ¢ : SSing, 1g when
...an) .
you don’ 1 it applies 1, any Rc
, In al poi
It's fre Most any Iangu Pter type,
ltssa__ dage / "brary
It’s declarative = eXpresse... *mantics.

It removes many (often most) objects ou alation.

3. Else use make_shared up front wherever possible, if object will be shared.

© 2014 Herb Sutter except material otherwise referenced.

C++14 Style
Herb Sutter

9/13/2014

Guideline: Dereference Unaliased+Local RC Ptrs

» The reentrancy pitfall (simplified):

// global (static or heap), or aliased local

... shared_ptr<widget>g p ...

void f(widget& w) {

8();
use(w);

}

void g() {
g p=..;

void my_code() {

f(*g_p);

} // should not pass code review

// passing *nonlocal

» “Pin” using unaliased local copy.

// global (static or heap), or aliased local
... shared_ptr<widget>g p ...

void f(widget& w) {
8();
use(w);

}

void g() {
gp=..;

void my_code() {
auto pin=g_p; // 1 ++ for whole tree
f(*pin); // ok, *local

Guideline: Dereference Unaliased+Local RC Ptrs

» The reentrancy pitfall (simplified):

// global (static or heap), or aliased local

... shared_ptr<widget>g p ...

void f(widget& w) {

8();
use(w);

}

void g() {
gp=..;

void my_code() {
f(*g_p); // passing *nonlocal

g_p->foo(); // (or nonlocal->)
// should not pass code review

» “Pin” using unaliased local copy.

// global (static or heap), or aliased local
... shared_ptr<widget>g p ...

void f(widget& w) {

g();
use(w);

void g() {
g p=..;

void my_code() {
auto pin=g_p; // 1 ++ for whole tree
f(*pin); // ok, *local
pin->foo(); // ok, local->

}

© 2014 Herb Sutter except material otherwise referenced.

C++14 Style 9/13/2014
Herb Sutter

Summary: How to “Do It Right”

1. Never pass smart pointers (by value or by reference) unless you actually
want to manipulate the pointer = store, change, or let go of a reference.

Prefer passing objects by * or & as usual — just like always.
Remember: Take unaliased+local copy at the top of a call tree, don’t pass f(*g_p).

Else if you do want to manipulate lifetime, great, do it as on previous slide.
2. Express ownership using unique_ptr wherever possible, including when
you don’t know whether the object will actually ever be shared.
It’s free = exactly the cost of a raw pointer, by design.
It’s safe = better than a raw pointer, including exception-safe.
It’s declarative = expresses intended uniqueness and source/sink semantics.
It removes many (often most) objects out of the ref counted population.

3. Else use make_shared up front wherever possible, if object will be shared.

Write make_unique (by default)
or make_shared (when needed)
instead of new and delete.

Don’t use owning raw *, new, or delete any more, except
rarely inside the implementation details of low-level data structures.

Do use non-owning raw * and &, especially for parameters.

Don’t copy/assign refcounted smart pointers,
including pass-by-value or in loops, unless you really
want the semantics they express: altering object lifetime.

© 2014 Herb Sutter except material otherwise referenced. 10

C++14 Style
Herb Sutter

© 2014 Herb Sutter except material otherwise referenced.

9/13/2014

Let’s talk about auto...

It’s okay, it’s really simple...

11

C++14 Style
Herb Sutter

9/13/2014

Spoiler

To make type track, deduce:
auto var = init;

To make type stick, commit:
auto var = type/ init };
or type var{ init };

Consider This Code

» Guru Meditation Q: What does this code do?

template<class Container, class Value>

void | (Container& c, Value v)
{
if(find(begin(c), end(c), v) == end(c))
c.push_back(move(v));
assert(lc.empty());

}

© 2014 Herb Sutter except material otherwise referenced.

12

C++14 Style

9/13/2014
Herb Sutter

Why Not “Just Deduce the Type”?

» Counterarguments: “Oi, but it’s unreadable!” “What’s my type?”

» This is a weak argument for three reasons:
(Minor) It doesn’t matter to anyone who uses an IDE.
(Major) It reflects bias to code against implementations, not interfaces.
(Major) We already ignore actual types with templates and temporaries.

template<class Container, class Value> // what type is Container? Value?
void append_unique(Container& c, Value v) // anything usable like this...
{
if(find(begin(c), end(c), v) == end(c)) // what type does find return?
c.push_back(move(v)); // anything comparable to end(cont)...
assert(lc.empty()); // what type does .empty return?
} // anything testable like a bool...
We also ignore actual types with virtual functions, function<>, etc.

Why Deduce: (1) Correctness
» With deduction you always get right type. Repetition oc P(lying)
Example:
void f(const vector<int>& v) {
vector<int>::iterator i = v.begin(); //?
}
Options:
void f(const vector<int>& v) {
vector<int>::iterator i = v.begin(); // error
vector<int>::const_iterator i = v.begin(); // ok + extra thinking
auto i = v.begin(); // ok, default
}

© 2014 Herb Sutter except material otherwise referenced. 13

C++14 Style 9/13/2014
Herb Sutter

Why Deduce: (2) Correctness + Maintainability

» Using deduction makes your code more robust in the face of change.
Deduction tracks the correct type when an expression’s type changes.
Committing to explicit type = silent conversions, needless build breaks.

» Examples:
inti=1(1,2,3) *42; // before: ok enough
inti="f(1,2,3) * 42.0; // after: silent narrowing conversion
autoi=1f(1,2,3) *42.0; // after: still ok, tracks type
widget w = factory(); // before: ok enough, returns a widget
widget w = factory(); // after: silent conversion, returns a gadget
auto w = factory(); // after: still ok, tracks type
map<string,string>::iterator i = begin(dict); // before: ok enough
map<string,string>::iterator i = begin(dict); // after: error, unordered_map
auto i = begin(dict); // after: still ok, tracks type

Why Deduce: (3) Performance

» Deduction guarantees no implicit conversion will happen.
A.k.a. “guarantees better performance by default.”

Committing to an explicit type that requires a conversion
means silently getting a conversion whether you expected it or
not.

© 2014 Herb Sutter except material otherwise referenced. 14

C++14 Style 9/13/2014
Herb Sutter

Why Deduce: (4) Usability

» Using deduction is your only good (usable and efficient) option for
hard-to-spell and unutterable types like:

lambdas,
binders,
detail:: helpers,

template helpers, such as expression templates (when they should stay
unevaluated for performance), and

template parameter types, which are anonymized anyway,

» ...short of resorting to:
repetitive decltype expressions, and
more-expensive indirections like std::function.

Why Deduce: (5) Convenience

» And, yes, “basic deduction” auto x = expr; syntax is almost
always less typing.

Mentioned last for completeness because it’'s a common
reason to like it, but it’s not the biggest reason to use it.

© 2014 Herb Sutter except material otherwise referenced. 15

C++14 Style
Herb Sutter

9/13/2014

Why Deduce: Wrapup

» Prefer auto x = expr; by default on variable declarations.

It offers so much correctness, clarity, maintainability, performance
and simplicity goodness that you’re only hurting yourself (and your
code’s future maintainers) if you don’t.

Prefer to habitually program against interfaces, not
implementations. We do this all the time in temporaries and
templates anyway and nobody bats an eye.

» But: Do commit to an explicit type when you really mean it,
which nearly always means you want an explicit conversion.

Q_: But even then, does “commit to an explicit type”
mean “don’t use auto”?

Left-to-right auto style

» Deduce to track if you don’t need to commit to a type:

const char* s = “Hello”; auto s = “Hello”;
widget w = get_widget(); auto w = get_widget();
» Commit to stick to a specific type. Try it on the right (same syntax order):
employee e{ empid }; auto e = employee{ empid };
widget w{ 12, 34 }; autow = widget{ 12, 34 };
» With heap allocation, type is on the right naturally anyway:
C++98 style: auto w = new widget{};
C++14 style: auto w = make_unique<widget>();

» Teaser: Does this remind you of anything else in C++11? and C++14?
int f(double); auto f(double) -> int; // C++11
auto f(double) { ... } // C++14

© 2014 Herb Sutter except material otherwise referenced.

16

C++14 Style
Herb Sutter

9/13/2014

The Elephant

But what about
intx=42;

VS.
autox=42;

?

“OBVIOUSLY int x=42;
is the tersest and clearest style.”

Right?

Left-to-right auto style

employee e{ empid }; auto e = employee{ empid };

widget w = get_widget(); auto w = get_widget();

» Now consider literal suffixes:

intx=42; auto x =42;

float x =42.; auto x = 42.1; // no narrowing
unsigned long x = 42; auto x = 42ul;

string x = “42”; auto x = “42"s; // C++14
chrono::nanoseconds x{ 42 }; auto x =42ns; // C++14

» Remember functions, lambdas, and aliases:

int f(double); auto f (double) ->int;
auto f = [=](double) { /*..*/ };

typedef set<string> dict; using dict = set<string>;

template<class T> struct myvec
{ typedef vector<T,myalloc> type; };

template<class T>
using myvec = vector<T,myalloc>;

© 2014 Herb Sutter except material otherwise referenced.

17

C++14 Style
Herb Sutter

9/13/2014

Left-to-right modern C++ style

» The C++ world is moving to left-to-right everywhere:

category name = type ananr initializer ;

Auto variables: auto e = employee{ empid };

auto w = get_widget();
Literals: autox =42;

auto x = 42.f;

auto x = 42ul;
User-defined literals: auto x = “42"s;

auto x = 1.2ns;
Function declarations: auto func (double) -> int;
Named lambdas: auto func = [=](double) { /*..*/ };
Aliases (no more typedefs): using dict = set<string>;
Template aliases: template<class T>

using myvec = vector<T,myalloc>;

I Know Some of You Have Been Wondering

» Consider:
auto x = value;

Q: Does this “=" create a temporary object plus a move/copy?

Standard says “No.” The code T x = g, has exactly the same meaning
as T x(a); when a has type T (or derived from T)... and auto x = a;
guarantees the types are the same (yay auto) so it always means
exactly the same as auto x(a).

© 2014 Herb Sutter except material otherwise referenced.

18

C++14 Style 9/13/2014
Herb Sutter

I Know Some of You Have Been Wondering

» Consider:
auto x = type{value};

Q: Does this “=" create a temporary object plus a move/copy?
Standard says “Yes, but”: The compiler may elide the temporary.

In practice, compilers do (and in the future routinely will) elide this
temporary+move. However, the type must still be movable (which
includes copyable as a fallback).

(The) Case Where You Can’t Use “auto Style”

» Case: (1) Explicit “type{}” + (2) non-(cheaply-)moveable type.

auto lock = lock_guard<mutex>{m}; // error, not movable
auto ai = atomic<int>{}; // error, not movable
auto a = array<int,50>{}; // compiles, but needlessly expensive

» Non-cases: Naked init list, proxy type, multi-word name.

autox={1}; // initializer_list

autox =1; // int

auto a = matrix{...}, b = matrix{...}; // some lazily evaluated type
autoab=a * b; // capture proxy (efficient by default)
auto c=matrix{a*b }; // resolve computation

auto x = (long long){ 42 }; // use int64_t{42} or 42LL

auto y = class X{1,2,3}; // use X{1,2,3};

© 2014 Herb Sutter except material otherwise referenced. 19

C++14 Style
Herb Sutter

9/13/2014

Cases Where You Can’t ... Are Few

» Arecenttime | resisted using auto, | was wrong.

It came up when changing this legacy code:
base* pb = new derived();
to this modern code, where | and others kept not noticing the different types:

unique_ptr<base> pb = make_unique<derived>();
// too subtle: people keep not seeing it

and now | actually do prefer the consistent and nearly-as-terse spelling:

auto pb = unique_ptr<base>{ make_unique<derived>() };
// explicit and clear: hard to miss it

which makes what’s going on nice and explicit — the conversion is more obvious
because we’re explicitly asking for it.

Prefer declaring local variables using auto,
whether the type should (1) track or (2) stick.

1. Deduced and exact, when you want tracking: auto x = init;
2. With explicit type name, when you want to commit: auto x = Type { init };

Note: Guarantees zero implicit conversions/temporaries,
zero narrowing conversions, and zero uninitialized variables!

© 2014 Herb Sutter except material otherwise referenced.

20

C++14 Style
Herb Sutter

Consider having some functions in headers
(e.g., templates, inlines), return auto (only):
One-liners, and wrappers

that should track type

They’re in headers anyway. (Insert de rigueur modules note here.)
C++14 makes it it convenient to not to not repeat yourself.

Remember: auto only = exact type, no conversions;
explicit return type = stable type, committed.

9/13/2014

Remember, it’s
really simple
To make type track, deduce:

auto var = init;

auto f{) { ... }

To make type stick, commit:
auto var = type{ init };
auto f{) -> type;
or
type var{ init };
type f);

© 2014 Herb Sutter except material otherwise referenced.

21

C++14 Style 9/13/2014
Herb Sutter

Use return-by-value way more often.

BUT: Don’t overuse pass-by-value.

Complete “how to pass params” details follow,
but the summary fits on a slide...

... one slide for “default,” one slide for “optimal”

Observation

“New features get overused.” — B. Stroustrup
or

“It's about the Ivalues, after all

I”

—S. Meyers

Just as exception safety isn’t all about writing try and catch,
using move semantics isn’t all about writing move and &&

© 2014 Herb Sutter except material otherwise referenced. 22

C++14 Style 9/13/2014
Herb Sutter

Up Front: Acknowledgments & Hat Tips

» The following is the result of recent discussions with many
people, including but not limited to the following:

Gabriel Dos Reis

Matthew Fiovarante (&& param = move from)

Howard Hinnant (distinguish copy ctor/op= costs vs. move)
Stephan T. Lavavej (low cost of value return even in C++98)
Scott Meyers (reduce #objects, be aware of costs)

Eric Niebler

Sean Parent

Bjarne Stroustrup (practicality, judgment, design sense)
VC++ MVP discussion list

& many more

C++98: Reasonable Default Advice

Expensive to copy

Cheap to copy Moderate cost to copy (e.g., string, BigPOD) B —
(e.g., int) or Don’t know (e.g., unfamiliar type, template) BigPODI])
Oout X f() fix&) *
In/Out f(X&)
In
f(X) f(const X&)

In & retain copy

“Cheap” =~ a handful of hot int copies
“Moderate cost” ~ memcpy hot/contiguous ~1KB and no allocation

or return X at the cost of a dynamic allocation

© 2014 Herb Sutter except material otherwise referenced. 23

C++14 Style 9/13/2014
Herb Sutter

Modern C++: Reasonable Default Advice

Cheap or

impossible to Cheap to move (e.g., vector<T>, string) Expensive to move
- . or Moderate cost to move (e.g., array<vector>, BigPOD) (e.g., BigPOD[],
copy (e.g., int, or Don’t know (e.g., unfamiliar type, template) array<BigPOD>)
unique_ptr) 32)
Out X () £(X&) o
In/Out (X&)
In
f(X) f(const X&)

In & retain “copy”

Summary of what’s new in C++1x:
v’ Defaults work better

* or return unique_ptr<X>/make_shared_<X> at the cost of a dynamic allocation

Using the Advanced Knobs, Optimal

Cheap or
impossible to

Cheap to move (e.g., vector<T>, string) Expensive to move
or Moderate cost to move (e.g., array<vector>, BigPOD) (e.g., BigPOD[],

copy (e.g., int,) o :
T i or Don’t know (e.g., unfamiliar type, template) array<BigPOD>)

Out

+1 consistency:
it same optimization
In guidance as overloaded

. » ¥ copy+move construction

In & retain copy f(const X&) + f(X&&) & move .

and assignment
In & move from f(X&&)

Summary of what’s new in C++1x:
v' Defaults work better
v’ + More optimization opportunities

24

© 2014 Herb Sutter except material otherwise referenced.

C++14 Style 9/13/2014
Herb Sutter

I v’ + More optimization opportunities I

When do | write rvalue &&? Only to optimize rvalues

Just as exception safety isn’t all about writing try and catch,
using move semantics isn’t all about writing move and &&

© 2014 Herb Sutter except material otherwise referenced. 25

C++14 Style 9/13/2014
Herb Sutter

Modern C++: A Narrowly Useful Option

. Chea.p of Cheap to move (e.g., vector<T>, string) Expensive to move
impossible to .)
: or Moderate cost to move (e.g., array<vector>, BigPOD) (e.g., BigPODI],
copy (e-g, int, or Don’t know (e.g., unfamiliar type, template) array<BigPOD>)
unique_ptr) "o ‘
Out X f() f(X&)
In/Out f(X&)
In f(const X&)
In & retain copy f(X) *
f(X) & movep
In & move from °

* GOOD: this can be faster than C++98 — can move from rvalues;

BUT: also can be much slower than C++98 — always incurs a full copy, prevents reusing
buffers/state (e.g., for vectors & long strings, incurs memory allocation 100% of the time)

BUT: also problematic for noexcept

Journeyman Example: set_name

» Consider:
class employee {
std::string name_;
public:
void set_name(/*... ?? ...*/); // change name_ to new value

2
» Q: What should we tell people to write here?

Hint: There has been a lot of overthinking going on about this.
(I include myself.)

© 2014 Herb Sutter except material otherwise referenced. 26

C++14 Style
Herb Sutter

9/13/2014

Option #1: Default (same as C++98)

»

Default: const string&

class employee {
std::string name_;
public:
void set_name(const std::string& name) { name_ = name; }

2

Always 1 copy assignment — but usually <<50% will alloc
If small (SSO), ~5 int copies, no mem alloc — often dominant
If large, still performs mem alloc <50% of the time

Option #2: Optimized (new for C++11)

»

If optimization justified: Add overload for string&& + move

class employee {
std::string name_;
public:
void set_name(const std::string& name) { name_ = name; }
void set_name(std::string&& name) noexcept
{ name_ = std::move(name); }

2

Optimized to steal from rvalues:
Pass a named object: 1 copy assignment (<<50% alloc), as before
Pass a temporary: 1 move assignment (~5 ints, no alloc — noexcept)
Note: Combinatorial if multiple “in + retain copy” parameters.

© 2014 Herb Sutter except material otherwise referenced.

27

C++14 Style 9/13/2014
Herb Sutter

Option #3: Pass by Value?

» Another new option in C++11: string + move

class employee {
std::string name_;

public:
void set_name(std::string name) noexcept

{ name_ = std::move(name); }
2
» Optimized to steal from rvalues, without overloading:

Pass named object: 1 copy construction (100% alloc if long) + move op=
Pass a temporary: 1 move assignment (~5 ints, no alloc — noexcept)
This “noexcept” is... problematic

Option #4: Perfect Forwarding Idiom

» Still another new option in C++11: Templated T&& “perfect forwarding”

class employee {
std::string name_;
public:
template<class String, class = std::enable_if t<!std::is_same<std::decay_t<String>,
std::string>::value>>
void set_name(String&& name)
noexcept(std::is_nothrow_assignable<std::string&, String>::value)
{ name_ = std::forward<String>(name); }
12
» Optimized to steal from rvalues (and more), sort of without overloading:
Pass a named object: 1 copy assignment (<<50% alloc), as before
Pass a temporary: 1 move assignment (~5 ints, no alloc — noexcept)

“Unteachable!” Generates many funcs. Must be in a header. Can’t be virtual.

© 2014 Herb Sutter except material otherwise referenced. 28

C++14 Style
Herb Sutter

9/13/2014

Visual C++

VC++ 2013 x64 Release

6000
5000
4000
3000
2000

1000

, [|] [|

Ivalue (1-10) Ivalue (1-50) xvalue (1-10) xvalue (1-50)

M Option 1: const string& Option 2: const string& + string&& Option 3: string

char* (1-10) char* (1-50)

Option 4: String&& perfect fwding

Clang libc++

Clang/libc++ Release

1200
1000
800
600
400

200

. [[[

Ivalue (1-10) Ivalue (1-50) xvalue (1-10) xvalue (1-50)

W Option 1: const string& Option 2: const string& + string&& Option 3: string

char* (1-10) char* (1-50)

Option 4: String&& perfect fwding

© 2014 Herb Sutter except material otherwise referenced.

29

C++14 Style
Herb Sutter

9/13/2014

gcc libstdc++

G++/libstdc++ x64 Release

1400
1200
1000

800

600

- I I I I
0

Ivalue (1-10) Ivalue (1-50) xvalue (1-10) xvalue (1-50) char* (1-10) char* (1-50)

M Option 1: const string& Option 2: const string& + string&& Option 3: string Option 4: String&& perfect fwding

gcc libstdc++ (coming soon)

G++/libstdc++ vstring x64 Release

1200
1000
800
600
400

200

0 I I

Ivalue (1-10) Ivalue (1-50) xvalue (1-10) xvalue (1-50) char* (1-10) char* (1-50)

W Option 1: const string& Option 2: const string& + string&& Option 3: string Option 4: String&& perfect fwding

© 2014 Herb Sutter except material otherwise referenced.

30

C++14 Style
Herb Sutter

9/13/2014

vector & large string SMFs: Rough Costs

Constructor operator=

Default

SS
Move S

Copy $SSS $SS

(More) Geek Heroes

» Howard Hinnant: “Don’t blindly assume that the cost of
construction is the same as assighment.”

For strings and vectors, “Capacity plays a large role in their performance.
Copy construction always allocates (except for short). Copy assignment
(except for short) allocates/deallocates 50% of the time with random
capacities on the lhs and rhs. To keep an eye on performance, one must
count allocations and deallocations.”

» William of Occam: ‘Do not multiply entities needlessly.’
Attributed. Talking about hypotheses; applies to ‘entities.

» Andrei Alexandrescu: “No work is less work than some work.”

» Scott Meyers: ‘It’s a bad habit to just create extra objects.’
“Just create 'em because they’re cheap to move from” is thoughtcrime.

© 2014 Herb Sutter except material otherwise referenced.

31

C++14 Style 9/13/2014
Herb Sutter

This Talk Ripp ISE

» This talk focuses on defaults, basic styles and idioms in modern C++.

x IIDE'E ||II !_IIEIE:"ll:':I.”
v’ “Default” == “don’t overthink.” Esp. don’t optimize prematurely.

» These reinforce (not compete with) the “fundamentals.”
“Write for clarity and correctness first.”
“Avoid premature optimization.” By default, prefer clear over optimal.
“Avoid premature pessimization.” Prefer faster when equally clear.

Option #3: Pass by Value?

» Another new option in C++11: string + move

class employee {
std::string name_;
public:
void set_name(std::string name) noexcept
{ name_ = std::move(name); }

i mpt th " yverloading:
re att .
- Wina Mmber of ex e.m’:’oral’lly)0% alloc if long) + move op=
at Ieast “t Cute” perts! ints, no alloc — noexcept)
dntipg Prob :
Pattern... exce for on Tl justan
€ cas.

© 2014 Herb Sutter except material otherwise referenced. 32

C++14 Style
Herb Sutter

9/13/2014

Option #3: Pass by Value for Constructors

» Thereis one place where this is a good idea: Constructors.
class employee {
std::string name_;
std::string addr_;
std::string city_;
public:
void employee(std::string name, std::string addr, std::string city)
: name_{std::move(name)}, addr_{std::move(addr)}, city_{std::move(city)} { }

|3

» Constructors are the primary case of multiple “in + retain copy” params,
where overloading const&/&& is combinatorial.

» Note: Probably prefer not to write the misleading “noexpect”...

» Constructors always construct, so no worries about reusing existing capacity.

Option #1: Default (same as C++98)

» Default: const string&

class employee {
std::string name_;
public:
void set_name(const std::string& name) { name_ = name; }
2
» Always 1 copy assignment — but usually <<50% will alloc
If small (SSO), ~5 int copies, no mem alloc — often dominant

If large, still performs mem alloc <50% of the time

© 2014 Herb Sutter except material otherwise referenced.

33

C++14 Style
Herb Sutter

9/13/2014

Option #2: Optimized (new for C++11)

» If optimization justified: Add overload for string&& + move

class employee {
std::string name_;
public:
void set_name(const std::string& name) { name_ = name; }
void set_name(std::string&& name) noexcept
{ name_ = std::move(name); }

2
» Optimized to steal from rvalues:
Pass a named object: 1 copy assignment (<<50% alloc), as before
Pass a temporary: 1 move assignment (~5 ints, no alloc — noexcept)
Note: Combinatorial if multiple “in + retain copy” parameters.

What is a T&&? A forwarding reference

© 2014 Herb Sutter except material otherwise referenced.

34

C++14 Style
Herb Sutter

9/13/2014

Quiz
void foo(X&& x);

template<class Y>
void bar(Y&& vy);

» Q: What are the types of the function parameters?
What arguments to they accept or reject?
What is the parameter for?

» A: Fundamentally different.

foo takes rvalue reference to non-const.

foo accepts only rvalue X objects.

foo’s parameter is to capture temporaries (and other rvalues).

bar takes reference to everything: const, volatile, both, and neither.
bar accepts all Y objects.

bar’s parameter is for forwarding its argument onward.

Forwarding References

» Scott Meyers pointed out that T&& is very different,
and needs a name.

He coined “universal reference.”
For his book whose final galleys are due, um, today.
» Here at CppCon, a few of us met and ultimately
agreed that this does need a name. (Thanks, Scott.)
But we still disliked “universal.” (Sorry, Scott.)
We think the right name is “forwarding reference.”
The committee/community may disagree. Time will tell.

In the meantime, Scott will add a footnote and index
entry for “forwarding reference,” and switch to it in
future printings if the community agrees. (Thanks,
Scott!)

© 2014 Herb Sutter except material otherwise referenced.

35

C++14 Style
Herb Sutter

9/13/2014

Uses and Abuses of &&

» Use && only for parameter/return types:
myclass&& rvalue references to optimize rvalues, usually overloading const& /
&& — note this covers the move SMFs!

void f(const string&); // default way to express “in + retain a copy”
void f(string&&); // what to add to additionally optimize for rvalues

T&& forwarding references to write forwarders, which are neutral code
between unknown callers and callees and want to preserve rvalueness/cv-ness.

Note this includes the new proposed for(e:c), which is... drum roll...
a neutral forwarder between a collection/range and the calling code.

Also includes generic lambda auto&& parameters... use for forwarders only.

» Don’t use auto&& for local variables.
You should know whether your variable is const/volatile or not!
(Except rarely if you’re just handing it off... in the body of a forwarder.)

Dessert Slide:

Use tuple for multiple return values.

Yes, C++11 has multiple return values! (Who knew?)

© 2014 Herb Sutter except material otherwise referenced.

36

C++14 Style 9/13/2014
Herb Sutter

Sweet Realization: We’re Already Doing It

» Given a set<string> myset, consider:
// C++98

pair<set<string>::iterator,bool> result = myset.insert(“Hello”);
if (result.second) do_something_with(result.first); // workaround

// C++11 — sweet backward compat

auto result = myset.insert(“Hello”); // nicer syntax, and the
if (result.second) do_something_with(result.first); // workaround still works

// C++11 — sweet forward compat, can treat as multiple return values

tie(iter, success) = myset.insert(“Hello”); // normal return value
if (success) do_something_with(iter);

It’s hard to be-remember you’re an expert

libstdc++ developers (~30)
+
libc++ developers (~5-7)
+
Boost developers (~3007?)
+
ISO WG21 attenders (~3007?)

© 2014 Herb Sutter except material otherwise referenced. 37

C++14 Style 9/13/2014
Herb Sutter

Back to Basics: Modern C++ Style

loops

pointers & references
smart pointers
variable declarations
parameter passing

Questions?

© 2014 Herb Sutter except material otherwise referenced. 38

