
September 9, 2014!! ! ! ! ! ! ! Jon Kalb

Exception-Safe Coding

1

http://exceptionsafecode.com!

!

• Bibliography!

• Video!

• Comments

Website

2

• Email!

jon@exceptionsafecode.com!

• Follow!

@_JonKalb!

• Résumé!

jonkalb@a9.com

Contact

3

Dedication

To the great teacher of Exception-Safe coding…

4-1

Dedication

To the great teacher of Exception-Safe coding…

4-2

• Easier to Read!

Easier to Understand and
Maintain!

• Easier to Write!

• No time penalty!

• 100% Robust

The Promise

5

A Word on C++11
• I will cover both C++ 2003 and C++ 2011!

• Solid on classic C++!

• Some things still to learn about C++11!

• No fundamental change in exception-
safety!

• Some new material!

• Some material no longer necessary

!
C++ 2003

!
C++ 2011

6

Session Preview
• The problem!

• Solutions that don’t use exceptions!

• Problems with exceptions as a solution!

• How not to write Exception-Safe code!

• Exception-Safe coding guidelines!

• Implementation techniques

7

What’s the Problem?

8

8-1

• Separation of Error Detection from Error Handling

What’s the Problem?

8

8-2

Application Logic!

!

!

!

!

!

!

!

Low Level Implementation

9-1

Application Logic!

!

!

!

!

!

!

!

Low Level Implementation

Layer of Code!

Layer of Code!

Layer of Code!

...!

Layer of Code!

Layer of Code

9-2

Application Logic!

!

!

!

!

!

!

!

Low Level Implementation

Layer of Code!

Layer of Code!

Layer of Code!

...!

Layer of Code!

Layer of Code
Oops

9-3

Application Logic!

!

!

!

!

!

!

!

Low Level Implementation

Layer of Code!

Layer of Code!

Layer of Code!

...!

Layer of Code!

Layer of Code
Oops

Don’t
worry! I’ll
handle it.

9-4

Application Logic!

!

!

!

!

!

!

!

Low Level Implementation

Layer of Code!

Layer of Code!

Layer of Code!

...!

Layer of Code!

Layer of Code
Oops

Don’t
worry! I’ll
handle it.

9-5

• Addressing the problem without exceptions!

• Error flagging!

• Return codes

Solutions without
Exceptions

10

10

• errno!

• “GetError” function

Error Flagging

11

11

Error Flagging

12

 errno = 0;!

 old_nice = getpriority(PRIO_PROCESS, 0);!

 /* check errno */!

 if (errno)!

 {!

/* handle error */!

}

12

• Errors can be ignored!

• Errors are ignored by default!

• Ambiguity about which call failed!

• Code is tedious to read and write

Problems with the
Error Flagging Approach

13

13

• Return values are error/status codes!

• (Almost) every API returns a code!

• Usually int or long!

• Known set of error/status values!

• Error codes relayed up the call chain

Return Codes

14

14

• Errors can be ignored

• Are ignored by default

• If a single call “breaks the chain” by not
returning an error, errors cases are lost

• Code is tedious to read and write

• Exception based coding addresses both of
these issues…

Problems with the
Return Code Approach

15

15-1

• Errors can be ignored

• Are ignored by default

• If a single call “breaks the chain” by not
returning an error, errors cases are lost

• Code is tedious to read and write

• Exception based coding addresses both of
these issues…
! … but has issues of its own.

Problems with the
Return Code Approach

15

15-2

Broken error handling leads to bad states,

bad states lead to bugs,

bugs lead to suffering. !

— Yoda

The Dark Side

16

16

Code using exceptions is no exception.

The Dark Side

17

17

T& T::operator=(T const& x)!

{!

! if (this != &x)!

! {!

! ! this->~T(); // destroy in place!

! ! new (this) T(x); // construct in place!

! }!

! return *this;!

}

18

18

Early adopters reluctant to
embrace exceptions

The Dark Side

19

19

• Implementation issues are behind us!

• Today’s compilers: !

• Reliable, Performant, and Portable!

• What causes concerns today?

The Dark Side

20

20

• Having error conditions that can’t be
ignored implies that the functions we are
calling have unseen error returns.

Code Path Disruption

21

21

“Counter-intuitively, the hard part of coding
exceptions is not the explicit throws and catches.
The really hard part of using exceptions is to write
all the intervening code in such a way that an
arbitrary exception can propagate from its throw
site to its handler, arriving safely and without
damaging other parts of the program along the
way.”!

– Tom Cargill

“ ”

22

22

23

Counter-intuitively,!

this is true of any error handling system.

23

• “Exception Handling: A False Sense of Security”!

• Analyzed a templated Stack class!

• Found problems, but no solution

Cargill’s Article

24

24

Cargill’s Stumper

25

template <class T> T Stack<T>::pop()!
{!
 if(top < 0)!
 throw "pop on empty stack";!
 return v[top--];!
}

25

Standard’s Solution

26

!
template <class T> T& stack<T>::top(); !
!
template <class T> void stack<T>::pop();!

26

• Spread Fear, Uncertainty, and Doubt!

• Some said, “Proves exceptions aren’t safe”

Cargill’s Article

27

27

Cargill’s Conclusions

• Didn’t say exceptions were unsafe!

• Didn’t say exceptions were too
hard to use!

• Did say he didn’t have all the
answers

28

28

Cargill’s Conclusions

We don’t
know how to be
exception-safe.

(1994)

29

29-1

Cargill’s Conclusions

We don’t
know how to be
exception-safe.

(1994)

Sure we do!
(1996)

29

29-2

Abrahams’ Conclusions

“Exception-handling isn’t hard.
Error-handling is hard.
Exceptions make it easier!”

30

30

Joel on Software

“Making Wrong Code Look Wrong.”!
2005-05-11 Blog entry

31

31

dosomething();!

cleanup();

Joel on Software

32

32-1

dosomething();!

cleanup();

Joel on Software

“…exceptions are extremely dangerous.”!
– Joel Spolsky

32

32-2

dosomething();!

cleanup();

Joel on Software

33

33-1

dosomething();!

cleanup();

Joel on Software

“That code is wrong.”!
– Jon Kalb

33

33-2

• Carefully check return values/error codes to
detect and correct problems.!

• Identify functions that can throw and think
about what to do when they fail!

• Use exception specifications so the compiler
can help create safe code.!

• Use try/catch blocks to control code flow

First Steps

34

34

• Carefully check return values/error codes to
detect and correct problems.!

• Identify functions that can throw and think
about what to do when they fail!

• Use exception specifications so the compiler
can help create safe code.!

• Use try/catch blocks to control code flow

The Hard Way

35

35

• Carefully check return values/error codes to
detect and correct problems.

• Identify functions that can throw and think
about what to do when they fail

• Use exception specifications so the compiler
can help create safe code.

• Use try/catch blocks to control code flow

The Wrong Way

36

36-1

• Carefully check return values/error codes to
detect and correct problems.

• Identify functions that can throw and think
about what to do when they fail

• Use exception specifications so the compiler
can help create safe code.

• Use try/catch blocks to control code flow

“You must unlearn what you have learned.”!

— Yoda

The Wrong Way

36

36-2

• Think structurally!
• Maintain invariants

The Right Way

37

37

• Guidelines for code that is Exception-Safe!

• Few enough to fit on one slide!

• Hard requirements!

• Sound advice

Exception-Safe!

38

38

• Basic!
• invariants of the component are

preserved, and no resources are leaked!
• Strong!

• if an exception is thrown there are no
effects!

• No-Throw!
• operation will not emit an exception

Exception-Safety
Guarantees (Abrahams)

39

39

• Basic!
• invariants of the component are

preserved, and no resources are leaked!
• Strong!

•  

• No-Throw!
• operation will not emit an exception

Exception-Safety
Guarantees (Abrahams)

Yoda:!
“Do or do not.”

40

40

• Basic guarantee!
• Cannot create robust code using

functions that don’t provide at least the
Basic guarantee – fixing this is priority
zero!

• All code throws unless we know
otherwise!

• We are okay with this

Exception-Safety
Assumptions

41

41

• No-Throw Required!
• Cleanup (destructors)!
• swap()!
• move operations (C++11)

Exception-Safety
Guarantees (Abrahams)

42

!
C++ 2011

42

• Caller’s Point-of-View!
• The No-Throw Required functions are the

only functions that we need to be stronger
than Basic.!

• We assume all other code throws unless we
know otherwise. And we are okay with that.!

• This is a surprise to some!

Exception-Safety
Guarantees (Abrahams)

43

43

• Implementor’s Point-of-View!
• Always provide at least the Basic guarantee!
• Always provide No-Throw where Required!
• Document any stronger guarantees!
• Provide the Strong guarantee when it is

“natural”

Exception-Safety
Guarantees (Abrahams)

44

44

• What does it mean for the Strong guarantee
to be “natural?”

Exception-Safety
Guarantees (Abrahams)

45

template <typename T> struct vector!

{!

...!

void push_back(T const&);!

...!

};

45

• Case where size < capacity

Exception-Safety
Guarantees (Abrahams)

46

void push_back(T const&t)!
{!
...!

new(&buffer[size]) T(t);!
++size;!

...!
};

46

• Case where size == capacity

Exception-Safety
Guarantees (Abrahams)

47

void push_back(T const&t)!
// allocate new buffer in temp ptr!
// copy existing items into new buffer!
// set new capacity!
new(&temp_buffer[size]) T(t);!
swap(temp_buffer, buffer);!
delete temp_buffer;!
++size;!
...

47

• For many functions, the Strong guarantee
naturally comes “free” with the Basic
guarantee

Exception-Safety
Guarantees (Abrahams)

48

48

• When don’t you give the strong guarantee!
• Consider vector<>::insert()!

• Strong guarantee would require copying
and inserting into the copy!

• The Standard does not promise the Strong
guarantee

Exception-Safety
Guarantees (Abrahams)

49

49

• How exceptions work in C++!

• Error detection / throw!

• Error handling / catch!

• New in C++11

Mechanics

50

50-1

• How exceptions work in C++!

• Error detection / throw!

• Error handling / catch!

• New in C++11

Mechanics

50

50-2

Error Detection
{!

/* A runtime error is detected. */!

ObjectType object;!

throw object;!

}!

Is object thrown?!
Can we throw a pointer?!
Can we throw a reference?

51

51

Error Detection

{!

std::string s("This is a local string.");!

throw ObjectType(constructor parameters);!

}

52

52

• How exceptions work in C++!

• Error detection / throw!

• Error handling / catch!

• New in C++11

Mechanics

53

53

! try!
! {!

code_that_might_throw();!
! }!
! catch (A a) <== works like a function argument!
! {!
! ! error_handling_code_that_can_use_a(a);!
! }!

catch (...) <== “catch all” handler!
{!
! ! more_generic_error_handling_code();!
! }!

more_code();

54

54

! ...
! catch (A a)
! {
! ! ...

55

55-1

! ...
! catch (A a)
! {
! ! ...
!
• Issues with catching by value!

• Slicing!
• Copying (might throw)

55

55-2

! ...!
catch (A& a)!
{!
! ! a.mutating_member();!
! ! throw;!
! }

56

56

! try!
! {!
! ! throw A();!
! }

57

57-1

! try!
! {!
! ! throw A();!
! }
! catch (B) {}! ! // if B is a public base class of A!
! catch (B&) {}!
! catch (B const&) {}!
! catch (B volatile&) {}!
! catch (B const volatile&) {}!
! catch (A) {}!
! catch (A&) {}!
! catch (A const&) {}!
! catch (A volatile&) {}!
! catch (A const volatile&) {}!
! catch (void*) {}! // if A is a pointer!
! catch (…) {}

57

57-2

• Throw by value.!

• Catch by reference.

Guideline

58

58

• No throw — no cost.

• In the throw case…

Performance Cost of
try/catch

59

59-1

• No throw — no cost.

• In the throw case…

• Don’t know. Don’t care.

Performance Cost of
try/catch

59

59-2

! void F(int a)!
! {!
!try!

 {!
int b;!

! ...!
 }!
 catch (std::exception const& ex)!
 {!

 ... // Can reference a, but not b!
 ... // Can throw, return, or end!

 }!
}

Function Try Blocks

60

60

! void F(int a)!
! try!
! {!
!int b;!
!...!
}!
catch (std::exception const& ex)!
{!

... // Can reference a, but not b!

... // Can throw,!

... // Can’t “return” in constructor try blocks!
}

Function Try Blocks

61

61

• What good are they?!

• Constructors!

• How do you catch exceptions from
base class or data member
constructors?

Function Try Blocks

62

62

Foo::Foo(int a)!
try :!
Base(a),!
member(a)!
{!
}!
catch (std::exception& ex)!
{!
... // Can reference a, but not Base or member!
// Can modify ex or throw a different exception...!
// but an exception will be thrown (can’t “return”)!
}

Function Try Block for
a Constructor

63

63

Function Try Blocks

64

64-1

• Only use is to change the exception
thrown by the constructor of a base
class or data member constructor

Function Try Blocks

64

64-2

• Only use is to change the exception
thrown by the constructor of a base
class or data member constructor

• (Except see esc.hpp on
http://exceptionsafecode.com)

Function Try Blocks

64

64-3

• How exceptions work in C++!

• Error detection / throw!

• Error handling / catch!

• New in C++11

Mechanics

!
C++ 2011

65

65

C++11 Supported
Scenarios

!
C++ 2011

• Moving exceptions between threads!

• Nesting exceptions

66

66

Moving Exceptions
Between Threads

!
C++ 2011

• Capture the exception!

• Move the exception like any other object!

• Re-throw whenever we want

67

67

Moving Exceptions
Between Threads

!
C++ 2011

Capturing is easy!
<exception> declares:!
!
exception_ptr current_exception() noexcept;

68

68

Moving Exceptions
Between Threads

!
C++ 2011

• std::exception_ptr is copyable!
• The exception exists as long as any

std::exception_ptr using to it does!
• Can be copied between thread like any

other data

69

69

Moving Exceptions
Between Threads

!
C++ 2011

std::exception_ptr ex(nullptr);!
try {!
...!
}!
catch(...) {!

ex = std::current_exception();!
...!

}!
if (ex) {!
...

70

70

Moving Exceptions
Between Threads

!
C++ 2011

Re-throwing is easy!
<exception> declares:!
!

[[noreturn]] void rethrow_exception(exception_ptr p);!

71

71

Moving Exceptions
Between Threads

!
C++ 2011

A related scenario!

int Func(); // might throw!

std::future<int> f = std::async(Func);!

int v(f.get()); // If Func() threw, it comes out here

72

72

Nesting Exceptions

!
C++ 2011

• Nesting the current exception!

• Throwing a new exception with the
nested one!

• Re-throwing just the nested one

73

73

Nesting Exceptions

!
C++ 2011

Nesting the current exception is easy!
<exception> declares:!
!

class nested_exception;!

!

Constructor implicitly calls current_exception()
and holds the result.

74

74

Nesting Exceptions

!
C++ 2011

Throwing a new exception with the nested is easy!
<exception> declares:!
!
[[noreturn]] template <class T>!
void throw_with_nested(T&& t);!
!
Throws a type that is inherited from both T and!
std::nested_exception.

75

75

Nesting Exceptions

!
C++ 2011

try {!
try {!
...!
} catch(...) {!

std::throw_with_nested(MyException());!
}!

} catch (MyException&ex) {!
... handle ex!
... check if ex is a nested exception!
... extract the contained exception!
... throw the contained exception!

}
76

76

Nesting Exceptions

!
C++ 2011

One call does all these steps!
!
<exception> declares:!
!
template <class E>!
void rethrow_if_nested(E const& e);

77

77

Nesting Exceptions

!
C++ 2011

try {!
try {!
...!
} catch(...) {!

std::throw_with_nested(MyException());!
}!

} catch (MyException&ex) {!
... handle ex!
... check if ex is a nested exception!
... extract the contained exception!
... throw the contained exception!

}
78

78

Nesting Exceptions

!
C++ 2011

79

try {!
try {!
...!
} catch(...) {!

std::throw_with_nested(MyException());!
}!

} catch (MyException&ex) {!
... handle ex!
std::rethrow_if_nested(ex);!

}

79

• The “Terminate” Handler!

• Calls std::abort()!

• We can write our own ...!

• …but it is too late.!

• The “Unexpected” Handler!

• Calls the terminate handler!

• We can write our own ...!

• …but it is too late.

Standard Handlers

80

80

• The “Unexpected” Handler!

• Called when throwing an exception outside of
(dynamic) exception specifications

Standard Handlers

81

81

Exception Specifications
• Two flavors!

• C++ 2003!

• Exception Specifications!

• Now technically called 
Dynamic Exception Specifications

!
C++ 2003

82

82

Exception Specifications
• Two flavors!

• C++ 2011!

• Introduces “noexcept” keyword!

• Deprecates Dynamic Exception Specifications

!
C++ 2011

83

83

Dynamic Exception
Specifications

void F(); // may throw anything!

void G() throw (A, B); // may throw A or B!

void H() throw (); // may not throw anything

!
C++ 2003

84

84

• Not checked at compile time.!

• Enforced at run time.!

• By calling the “unexpected” handler and
aborting.

!
C++ 2003

85

Dynamic Exception
Specifications

85

• Do not use dynamic exception specifications.

Guideline

!
C++ 2003

86

86

noexcept

• Two uses of “noexcept” keyword in C++11!

• noexcept specification (of a function)!

• noexcept operator

!
C++ 2011

87

87

noexcept
• As a noexcept exception specification!

!

void F(); // may throw anything!

void G() noexcept(Boolean constexpr);!

void G() noexcept; // defaults to noexcept(true)!

Destructors are noexcept by default.

!
C++ 2011

88

88

noexcept

• As an operator!

static_assert(noexcept(2 + 3) , "");!

static_assert(not noexcept(throw 23) , "");!

inline int Foo() {return 0;}!

static_assert(noexcept(Foo()) , ""); // ???

!
C++ 2011

89

89

noexcept

• As an operator!

static_assert(noexcept(2 + 3) , "");!

static_assert(not noexcept(throw 23) , "");!

inline int Foo() {return 0;}!

static_assert(noexcept(Foo()) , ""); // assert fails!

!
C++ 2011

90

90

noexcept

• As an operator!

static_assert(noexcept(2 + 3) , "");!

static_assert(not noexcept(throw 23) , "");!

inline int Foo() noexcept {return 0;}!

static_assert(noexcept(Foo()) , ""); // true!

!
C++ 2011

91

91

noexcept
• How will noexcept be used?!

• Operator form for no-throw based optimizations!

• move if no-throw, else do more expensive copying!

• Unconditional form for simple user-defined types!

struct Foo { Foo() noexcept {} };!

• Conditional form for templates with operator form!

template <typename T> struct Foo: T {!

Foo() noexcept(noexcept(T())) {} };

!
C++ 2011

92

92

• Do not use dynamic exception specifications.!

• Do use noexcept.

Guideline

!
C++ 2003

!
C++ 2011

93

93

• The “Terminate” Handler!

• Called for unhandled exceptions!

• Called when re-throw and there is no exception!

• or rethrow_exception() with null_ptr!

• Called when a “noexcept” function throws!

• Called when throwing when there is already an
exception being thrown

Standard Handlers
!

C++ 2003
!

C++ 2011

94

94

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-1

• Put a try/catch block in main

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-2

• Put a try/catch block in main

• ✔

• Don’t re-throw outside of a catch block

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-3

• Put a try/catch block in main

• ✔

• Don’t re-throw outside of a catch block

• ✔

• Don’t throw from a “noexcept” function

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-4

• Put a try/catch block in main

• ✔

• Don’t re-throw outside of a catch block

• ✔

• Don’t throw from a “noexcept” function

• ✔

• Don’t throw when an exception is being thrown

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-5

• Put a try/catch block in main

• ✔

• Don’t re-throw outside of a catch block

• ✔

• Don’t throw from a “noexcept” function

• ✔

• Don’t throw when an exception is being thrown

• When would that happen? After throw comes
catch. What else happens?

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-6

• Put a try/catch block in main

• ✔

• Don’t re-throw outside of a catch block

• ✔

• Don’t throw from a “noexcept” function

• ✔

• Don’t throw when an exception is being thrown

• When would that happen? After throw comes
catch. What else happens?

• Destructors!

How to not “Terminate”
!

C++ 2003
!

C++ 2011

95

95-7

• Destructors must not throw.

• Must deliver the No-Throw Guarantee.

• Cleanup must always be safe.

• May throw internally, but may not emit.

Guideline

96

96-1

• Destructors must not throw.

• Must deliver the No-Throw Guarantee.

• Cleanup must always be safe.

• May throw internally, but may not emit.

• But see C++ Next blog

Guideline

96

96-2

• Exception-Safe Code is Built on Safe Objects

Safe Objects

97

97

Object Lifetimes
• Order of construction:

98

98-1

Object Lifetimes
• Order of construction:

• Base class objects

98

98-2

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

98

98-3

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members

98

98-4

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members
• As listed in the type definition, top to bottom

98

98-5

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members
• As listed in the type definition, top to bottom
• Not as listed in the constructor’s initializer list

98

98-6

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members
• As listed in the type definition, top to bottom
• Not as listed in the constructor’s initializer list

• Constructor body

98

98-7

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members
• As listed in the type definition, top to bottom
• Not as listed in the constructor’s initializer list

• Constructor body
• Order of destruction:

98

98-8

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members
• As listed in the type definition, top to bottom
• Not as listed in the constructor’s initializer list

• Constructor body
• Order of destruction:

• Exact reverse order of construction

98

98-9

Object Lifetimes
• Order of construction:

• Base class objects
• As listed in the type definition, left to right

• Data members
• As listed in the type definition, top to bottom
• Not as listed in the constructor’s initializer list

• Constructor body
• Order of destruction:

• Exact reverse order of construction
• When does an object’s lifetime begin?

98

98-10

• How?
• Throw from constructor of base class,

constructor of data member, constructor body
• What do we need to clean up?

• Base class objects?

Aborted Construction

99

99-1

• How?
• Throw from constructor of base class,

constructor of data member, constructor body
• What do we need to clean up?

• Base class objects?
• Data members?

Aborted Construction

99

99-2

• How?
• Throw from constructor of base class,

constructor of data member, constructor body
• What do we need to clean up?

• Base class objects?
• Data members?
• Constructor body?

Aborted Construction

99

99-3

• How?
• Throw from constructor of base class,

constructor of data member, constructor body
• What do we need to clean up?

• Base class objects?
• Data members?
• Constructor body?

• We need to clean up anything we do here
because the destructor will not be called.

Aborted Construction

99

99-4

• How?
• Throw from constructor of base class,

constructor of data member, constructor body
• What do we need to clean up?

• Base class objects?
• Data members?
• Constructor body?

• We need to clean up anything we do here
because the destructor will not be called.

• What about new array?

Aborted Construction

99

99-5

• How?
• Throw from constructor of base class,

constructor of data member, constructor body
• What do we need to clean up?

• Base class objects?
• Data members?
• Constructor body?

• We need to clean up anything we do here
because the destructor will not be called.

• What about new array?
• What about the object’s memory?

Aborted Construction

99

99-6

Aborted Construction

100

100-1

• Throwing from a constructor

Aborted Construction

100

100-2

• Throwing from a constructor
• Leaking object memory

Aborted Construction

100

100-3

• Throwing from a constructor
• Leaking object memory
• Placement new

Aborted Construction

100

100-4

• Any use of new passing additional
parameter!

• Standard has “original placement new”!
• Overload for “newing” an object in place!

Object* obj = new(&buffer) Object;!

• “Placement” can be misleading

Placement New

101

101

• Throwing from a constructor
• Leaking object memory
• Placement new

Aborted Construction

102

102-1

• Throwing from a constructor
• Leaking object memory
• Placement new
• Effective C++, 3rd Ed.!

• Item 52:!
• Write placement delete if you write

placement new.

Aborted Construction

102

102-2

• We can’t pass parameters to the delete
operator

• Only called if constructor throws during
the “corresponding” placement new

• Not an error if not defined

Placement Delete

103

103-1

• We can’t pass parameters to the delete
operator

• Only called if constructor throws during
the “corresponding” placement new

• Not an error if not defined
• It’s just a hard to find bug

Placement Delete

103

103-2

• Resource Acquisition Is Initialization

RAII

104

104

• Most smart pointers!

• Many wrappers for!

• memory!

• files!

• mutexes!

• network sockets!

• graphic ports

RAII Examples

105

105

What happens to the
object if acquisition fails?

106

106-1

• Nothing

What happens to the
object if acquisition fails?

106

106-2

• The object never exists.!

• If you have the object, you have the resource.!

• If the attempt to get the resource failed, then
the constructor threw and we don’t have the
object.

What happens to the
object if acquisition fails?

107

107

• Destructors have resource release
responsibility.!

• Some objects may have a “release” member
function.!

• Cleanup cannot throw!

• Destructors cannot throw

RAII Cleanup

108

108

• Each item (function or type) does just one
thing.!

• No object should manage more than one
resource.

Design Guideline

109

109

• If it isn’t in an object, it isn’t going to be
cleaned up in a destructor and it may leak.!

• Smart Pointers are your friend.

Every Resource in a
Object

110

110

shared_pointer

• The smart pointer!

• From Boost!

• Was in the TR1!

• Is in C++ 2011!

• Ref-counted!

• Supports custom deleters

!
C++ 2003

!
C++ 2011

111

111

Smart Pointer “Gotcha”

• Is this safe?

 FooBar(smart_ptr<Foo>(new Foo(f)),
 smart_ptr<Bar>(new Bar(b)));

112

112-1

Smart Pointer “Gotcha”

• Is this safe?

 FooBar(smart_ptr<Foo>(new Foo(f)),
 smart_ptr<Bar>(new Bar(b)));

“There’s many a slip twixt the cup and the lip”

112

112-2

Smart Pointer “Gotcha”

• What is the rule?

“No more than one new in any statement.”

113

113-1

Smart Pointer “Gotcha”

• What is the rule?

“No more than one new in any statement.”

113

113-2

Smart Pointer “Gotcha”

• What is the rule?

“No more than one new in any statement.”

a = FooBar(smart_ptr<Foo>(new Foo(f))) + Bar();

where we assume Bar() can throw

(Why do we assume Bar() can throw?)

113

113-3

Smart Pointer “Gotcha”

• What is the rule?

“Never incur a responsibility as part of an
expression that can throw.”

114

114-1

Smart Pointer “Gotcha”

• What is the rule?

“Never incur a responsibility as part of an
expression that can throw.”

smart_ptr<T> t(new T);

114

114-2

Smart Pointer “Gotcha”

• What is the rule?

“Never incur a responsibility as part of an
expression that can throw.”

smart_ptr<T> t(new T);

Does both, but never at the same time.

114

114-3

Smart Pointer “Gotcha”

• But what about this?

smart_ptr<Foo> t(new Foo(F()));

Does it violate the rule?

115

115-1

Smart Pointer “Gotcha”

• But what about this?

smart_ptr<Foo> t(new Foo(F()));

Does it violate the rule?

It is safe.

115

115-2

Smart Pointer “Gotcha”
• What is the rule?!

!

Assign ownership of every resource,
immediately upon allocation, to a
named manager object that manages no
other resources.!

!

Dimov’s rule
116

116

Smart Pointer “Gotcha”

• A better way!
!

auto r(std::make_shared<Foo>(f));!
auto s(sutter::make_unique<Foo>(f));!

!

• More efficient.!

• Safer

117

117

Smart Pointer “Gotcha”

• Is this safe?

 FooBar(std::make_shared<Foo>(f),
 std::make_shared<Bar>(b));

118

118-1

Smart Pointer “Gotcha”

• Is this safe?

 FooBar(std::make_shared<Foo>(f),
 std::make_shared<Bar>(b));

Yes!

118

118-2

Smart Pointer “Gotcha”

• A better rule!
!

“Don’t call new.”!

119

119

Smart Pointer “Gotcha”

• A better rule!
!

“Don’t call new.”!
“Avoid calling new.”

120

120

Lesson Learned

• Keep your resources on a short leash to not
go leaking wherever they want.

121

121

• Use objects to manage state in the same
way that we use objects to manage any
other resource.

Manage State Like a
Resource

122

122

• Resource Acquisition Is Initialization

RAII

123

123

• Resource Acquisition Is Initialization

RAII

124

124-1

• Resource Acquisition Is Initialization

• “Resource” includes too much

RAII

124

124-2

• Resource Acquisition Is Initialization

• “Resource” includes too much

• “Resource” includes too little

RAII

124

124-3

• Resource Acquisition Is Initialization

• “Resource” includes too much

• “Resource” includes too little

• Responsibility Acquisition Is Initialization

• Responsibility leaks

• Responsibility management

RAII

124

124-4

• Use RAII.!

• Responsibility Acquisition Is Initialization.!

• Every responsibility is an object!

• One responsibility per object

Guideline

125

125

• Don’t write cleanup code that isn’t being
called by a destructor.!

• Destructors must cleanup all of an object’s
outstanding responsibilities.!

• Be suspicious of cleanup code not called by a
destructor.

Cleanup Code

126

126

dosomething();!

cleanup();

Joel on Software

“…exceptions are extremely dangerous.”!
– Joel Spolsky

127

127

128

Jon on Software
{!

! CleanupType cleanup;!

! dosomething();!

}!

“…Exception-Safe code is exceptionally safe.”!
– Jon Kalb

128

• All cleanup code is called from a destructor.!

• An object with such a destructor must be put
on the stack as soon as calling the cleanup
code become a responsibility.

Guideline

129

129

!
 class Widget!
 {!
 Widget& operator=(Widget const&);!
 // Strong Guarantee ???!
 // ...!
 private:!
 T1 t1_;!
 T2 t2_;!
 };!

The Cargill Widget
Example

130

130

Widget& Widget::operator=(Widget const& rhs) {!
 T1 original(t1_);!
 t1_ = rhs.t1_;!
 try {!
 t2_ = rhs.t2_;!
 } catch (...) {!
 t1_ = original;!
 throw;!
 }!
}

The Cargill Widget
Example

131

131

Widget& Widget::operator=(Widget const& rhs) {!
 T1 original(t1_);!
 t1_ = rhs.t1_;!
 try {!
 t2_ = rhs.t2_;!
 } catch (...) {!
 t1_ = original; <<== can throw!
 throw;!
 }!
}

The Cargill Widget
Example

132

132

• Cargill’s Points!
• Exception-safety is harder than it looks.!
• It can’t be “bolted on” after the fact.!

• It need to be designed in from the beginning.

The Cargill Widget
Example

133

133-1

• Cargill’s Points!
• Exception-safety is harder than it looks.!
• It can’t be “bolted on” after the fact.!

• It need to be designed in from the beginning.
• Cargill’s answer to the challenge:!

• No, it can’t be done.

The Cargill Widget
Example

133

133-2

• Cargill’s Points!
• Exception-safety is harder than it looks.!
• It can’t be “bolted on” after the fact.!

• It need to be designed in from the beginning.
• Cargill’s answer to the challenge:!

• No, it can’t be done.
• Jon’s answer:!

• Yes, it can.

The Cargill Widget
Example

133

133-3

• Construction!

• Default!

• Copy

• Destruction

• (Copy) Assignment operator!
• Value class

• The Rule of Three

Fundamental Object
Functions

!
C++ 2003

134

134-1

• Construction!

• Default!

• Copy

• Destruction

• (Copy) Assignment operator!
• Value class

• The Rule of Three

• The Rule of Four!
• One more fundamental operator…

Fundamental Object
Functions

!
C++ 2003

134

134-2

• swap()!

• No-Throw swapping is a key exception-safety tool!

• swap() is defined in std, but...!

• std::swap<>() not No-Throw (in classic C++)!

• swap() for types we define can (almost) always be
written as No-Throw

The Swapperator

!
C++ 2003

135

135

The Swapperator
• Spelled “swap()”!

• Write a one-parameter member function and two-
parameter free function in the “std” namespace!

• If your type is a template, do not it put in “std”!

• Both take parameters by (non-const) reference!

• Does not throw!!

• Is not written like this: swap() throw ()!

• Do not use dynamic exception specifications

!
C++ 2003

136

136

Swapperator Examples
struct BigInt {!

! …!

!void swap(BigInt&); // No Throw!

// swap bases, then members!

! …
};!

namespace std {!

template <> void swap<BigInt>(BigInt&a, BigInt&b)!

{a.swap(b);}!

}

!
C++ 2003

137

137

Swapperator Examples
template <typename T>!
struct CircularBuffer {!
! …!
! void swap(CircularBuffer<T>&); // No Throw!
! // Implementation will swap bases then members.!
! …!
};!
// not in namespace std!
template <typename T>!
void swap(CircularBuffer<T>&a, CircularBuffer<T>&b)
{a.swap(b);}

!
C++ 2003

138

138

Why No-Throw?
• That is the whole point!

• std::swap<>() is always an option!

• But it doesn’t promise No-Throw!

• It does three copies–Copies can fail!!

• Our custom swaps can be No Throw!

• Don’t use non-swapping base/member classes!

• Don’t use const or reference data members!

• These are not swappable

!
C++ 2003

139

139

• Create swapperator for value classes.!

• Must deliver the No-Throw guarantee.

Guideline

!
C++ 2003

140

140

• Swappertor new and improved for C++11!

• std::swap() now with moves!!

• can be noexcept...!

• for objects with noexcept move opertions

The Swapperator

!
C++ 2011

141

141

• To define swap() or not to define swap()!

• Not needed for exception-safety!

• noexcept move operators are enough!

• May be wanted for performance!

• If defined, declared as noexcept

The Swapperator

!
C++ 2011

142

142

• New rules for move operations

• Kind of based on Rule of Three

• If we create copy operations we must
create our own move operations

• How to know we’ve done it right?

The Swapperator

!
C++ 2011

143

143-1

• New rules for move operations

• Kind of based on Rule of Three

• If we create copy operations we must
create our own move operations

• How to know we’ve done it right?

• Call Jon!

The Swapperator

!
C++ 2011

143

143-2

• New rules for move operations

• Kind of based on Rule of Three

• If we create copy operations we must
create our own move operations

• How to know we’ve done it right?

• Call Jon!

• (925) 890...

The Swapperator

!
C++ 2011

143

143-3

The Swapperator

!
C++ 2011

esc::check_swap() will verify at compile time that
its argument's swapperator is declared noexcept!
!
#include "esc.hpp"!

!
template <typename T>!

void check_swap(T* = 0);!

!

(Safe, but useless, in C++ 2003)
144

144

The Swapperator

!
C++ 2011

#include "esc.hpp"!

!

{!

 std::string a;!

! esc::check_swap(&a);!

! esc::check_swap<std::vector<int>>();!

}

145

145

The Swapperator

!
C++ 2011

#include "esc.hpp"!

struct MyType…!

{!

! …!

! void AnyMember() {esc::check_swap(this); …}!

! …!

}

146

146

The Swapperator

!
C++ 2011

template <typename T> void check_swap(T* const t = 0)!

{!

 static_assert(noexcept(delete t), "msg...");!

 static_assert(noexcept(T(std::move(*t))), "msg...");!

 static_assert(noexcept(*t = std::move(*t)), "msg...");!

 using std::swap;!

 static_assert(noexcept(swap(*t, *t)), "msg...");!

}
147

147

The Swapperator

!
C++ 2011

template <typename T> void check_swap(T* const t = 0)!

{!

 ...!

 static_assert(!

std::is_nothrow_move_constructible<T>::value, "msg...");!

 static_assert(!

std::is_nothrow_move_assignable<T>::value, "msg...");!

 ...!

}
148

148

Calling swap in a template

template…!

{!

! …!

! using std::swap;!

! swap(a, b);!

! …!

}
149

149

#include "boost/swap.hpp"!

boost::swap(a, b);

Calling swap in a template  
(alternative)

150

150

• Create swapperator for value classes.!

• Must deliver the No-Throw guarantee.

Guideline

!
C++ 2003

151

151

• Create swapperator for value classes.!

• Must deliver the No-Throw guarantee.

Guideline

!
C++ 2003

152

152

• Support swapperator for value classes.!

• Must deliver the No-Throw guarantee.

Guideline

!
C++ 2003

!
C++ 2011

153

153

• Support swapperator for value classes.!

• Must deliver the No-Throw guarantee.

Guideline

154

154

• Do not use dynamic exception specifications.

Guideline

!
C++ 2003

!
C++ 2011

155

155-1

• Do not use dynamic exception specifications.

• Do use noexcept.

Guideline

!
C++ 2003

!
C++ 2011

155

155-2

• Do not use dynamic exception specifications.

• Do use noexcept.

• Cleanup

• Destructors are noexcept by default

• Move/swap

• Where else?

Guideline

!
C++ 2003

!
C++ 2011

155

155-3

• Do not use dynamic exception specifications.

• Do use noexcept.

• Cleanup

• Destructors are noexcept by default

• Move/swap

• Where else?

• Wherever we can?

Guideline

!
C++ 2003

!
C++ 2011

155

155-4

• Do not use dynamic exception specifications.!

• Do use noexcept.!

• Cleanup!

• Destructors are noexcept by default!

• Move/swap!

• Where else?!

• Wherever it is “natural” and free?

Guideline

!
C++ 2003

!
C++ 2011

156

156

• Do not use dynamic exception specifications.!

• Do use noexcept.!

• Cleanup!

• Destructors are noexcept by default!

• Move/swap!

• Where else?!

• No where!

Guideline

!
C++ 2003

!
C++ 2011

157

157

• Implementing the Strong Guarantee!

• Deferring the commit until success is
guaranteed

The Critical Line

158

158

struct ResourceOwner!
{!
! ! // …!
! ! ResourceOwner& operator=(ResourceOwner const&rhs)!
! ! {!
! ! ! delete mResource;!
! ! ! mResource = new Resource(*rhs.mResource);!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

159

159

struct ResourceOwner!
{!
! ! // …!
! ! ResourceOwner& operator=(ResourceOwner const&rhs)!
! ! {!
! ! ! if (this != &rhs)!
! ! ! {!
! ! ! ! delete mResource;!
! ! ! ! mResource = new Resource(*rhs.mResource);!
! ! ! }!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

160

160

struct ResourceOwner!
{!
! ! // …!
! ! ResourceOwner& operator=(ResourceOwner const&rhs)!
! ! {!
! ! ! if (this != &rhs)!
! ! ! {!
! ! ! ! Resource temp(*rhs.mResource);!
! ! ! ! temp.swap(*mResource);!
! ! ! }!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

161

161

struct ResourceOwner!
{!
! ! // …!
! ! ResourceOwner& operator=(ResourceOwner const&rhs)!
! ! {!
! ! ! Resource temp(*rhs.mResource);!
! ! ! temp.swap(*mResource);!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

162

162

void FunctionWithStrongGuarantee()!
{!
! // Code That Can Fail!
!
! ObjectsThatNeedToBeModified.MakeCopies(OriginalObjects);!
! ObjectsThatNeedToBeModified.Modify();!
! ! !
The Critical Line!
! !
! // Code That Cannot Fail (Has a No-Throw Guarantee)!
! !
! ObjectsThatNeedToBeModified.swap(OriginalObjects);!
}

163

163

struct ResourceOwner!
{!
! ! // …!
! ! ResourceOwner& operator=(ResourceOwner const&rhs)!
! ! {!
! ! ! Resource temp(*rhs.mResource);!

The Critical Line!

! ! ! temp.swap(*mResource);!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

164

164

struct ResourceOwner!
{!
! ! // …!
! ! void swap(ResourceOwner&); // No Throw!
! ! ResourceOwner& operator=(ResourceOwner rhs)!
! ! {!
! ! ! swap(rhs);!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

165

165

struct ResourceOwner!
{!
! ! // …!
! ! void swap(ResourceOwner&); // No Throw!
! ! ResourceOwner& operator=(ResourceOwner rhs)!
! ! {!
! ! ! swap(rhs);!
! ! ! return *this;!
! ! }!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

!
C++ 2003

166

166

struct ResourceOwner!
{!
! ! // …!
! ! void swap(ResourceOwner&) noexcept;!
! ! ResourceOwner& operator=(ResourceOwner rhs);!
! ! ResourceOwner& operator=(ResourceOwner&& rhs) noexcept;!
!
!
!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

!
C++ 2011

167

167

struct ResourceOwner!
{!
! ! // …!
! ! void swap(ResourceOwner&) noexcept;!
! ! ResourceOwner& operator=(ResourceOwner const&rhs);!
! ! ResourceOwner& operator=(ResourceOwner&& rhs) noexcept;!
!
!
!
! ! // …!
! private:!
! ! // …!
! ! Resource* mResource;!
};

!
C++ 2011

168

168

struct ResourceOwner!
{!
! ! // …!
! ! void swap(ResourceOwner&) noexcept;!
! ! ResourceOwner& operator=(ResourceOwner const&rhs)!
! ! {!
! ! ! ResourceOwner temp(rhs);!
! ! ! swap(temp);!
! ! ! return *this;!
! ! }!
! private:!
! ! // …!
! ! Resource* mResource;!
};

!
C++ 2011

169

169

• Use “Critical Lines” for Strong Guarantees.

Guideline

170

170

The Cargill Widget
Example

171

171-1

!
Widget& Widget::operator=(Widget const& rhs) {!
 T1 tempT1(rhs.t1_);!
 T2 tempT2(rhs.t2_);!
 t1_.swap(tempT1);!
 t2_.swap(tempT2);!
}!

The Cargill Widget
Example

171

171-2

!
Widget& Widget::operator=(Widget const& rhs) {!
 T1 tempT1(rhs.t1_);!
 T2 tempT2(rhs.t1_);!
 The Critical Line!
 t1_.swap(tempT1);!
 t2_.swap(tempT2);!
}!
!
// Strong Guarantee achieved!!

The Cargill Widget
Example

172

172

• The Force is strong in this one. — Yoda

swap()

173

173

• Switch!

• Strategy!

• Some success

Where to try/catch

174

174

• Anywhere that we need to switch our
method of error reporting.

Switch

175

175

• Anywhere that we support the No-Throw
Guarantee!

• Destructors & Cleanup!

• Swapperator & Moves!

• C-API!

• OS Callbacks!

• UI Reporting!

• Converting to other exception types!

• Threads

Switch Cases

176

176

• Anywhere that we have a way of dealing
with an error such as an alternative or
fallback method.

Strategy

177

177

• Anywhere that partial failure is
acceptable.

Some Success

178

178

• Know where to catch.!
• Switch!
• Strategy!
• Some Success

Guideline

179

179

• Scott Meyers Known for C++ Advice!

• Universal Design Principle!

• Not controversial

“Most Important
Design Guideline”

180

180

Make interfaces easy to
use correctly and hard to
use incorrectly.

“Most Important
Design Guideline”

181

181

ErrorCode SomeCall(...);!

void SomeCall(...); // throws

“Most Important
Design Guideline”

182

182

• Prefer Exceptions to Error Codes

Guideline

183

183

• Throwing exceptions should be mostly about
resource availability !

• When possible, provide defined behavior
and/or use strong pre-conditions instead of
failure cases!

• Don't use exceptions for general flow control!

• Exceptions getting thrown during normal
execution is usually an indication of a
design flaw

Prefer Exceptions to
Error Codes

184

184

• Throw by value. Catch by reference.!

• No dynamic exception specifications. Use noexcept.!

• Destructors that throw are evil.!

• Use RAII. (Every responsibility is an object. One per.)!

• All cleanup code called from a destructor!

• Support swapperator (With No-Throw Guarantee)!

• Draw “Critical Lines” for the Strong Guarantee!

• Know where to catch (Switch/Strategy/Some Success)!

• Prefer exceptions to error codes.

Exception-Safety
Guidelines

185

185

• on_scope_exit!

• Lippincott Functions!

• boost::exception!

• Transitioning from legacy code!

• Before and After

Implementation
Techniques

186

186

• Creating a struct just to do one-off
cleanup can be tedious.!

!

• That is why we have on_scope_exit.

on_scope_exit

187

187

void CTableLabelBase::TrackMove(...)! // This function!
! // needs to set the cursor to the grab hand while it!
{!
! //! executes and set it back to the open hand afterwards.!
! ...!
!
! esc::on_scope_exit handRestore(&UCursor::SetOpenHandCursor);!
!
! UCursor::SetGrabHandCursor();!
! ...!
}

188

188

void JoelsFunction()!
{!
! dosomething();!

cleanup();!

}

189

189

190

void JoelsFunction()!
{!
! esc::on_scope_exit clean(cleanup);!

dosomething();!

}

190

struct on_scope_exit !
{!
 typedef function<void(void)> exit_action_t;!
!
 on_scope_exit(exit_action_t action): action_(action) {}!
 ~on_scope_exit() {if (action_) action_();}!
! ! void set_action(exit_action_t action = 0) {action_ = action;}!
! ! void release() {set_action();}!
!
 private:!
 on_scope_exit();!
 on_scope_exit(on_scope_exit const&);!
 on_scope_exit& operator=(on_scope_exit const&rhs);!
 exit_action_t action_;!
};

191

191

• Source for esc namespace code
(check_swap and on_scope_exit) is
available at
http://exceptionsafecode.com

on_scope_exit source

192

192

• A technique for factoring exception
handling code.!

• Example in The C++ Standard Library
2nd Ed. by Nicolai M. Josuttis page 50

Lippincott Functions

193

193

C_APIStatus C_APIFunctionCall()!
{!
! C_APIStatus result(kC_APINoError);!
! try!
! {!
! ! CodeThatMightThrow();!
! }!
! catch (FrameworkException const& ex)!
! {result = ex.GetErrorCode();}!
! catch (Util::OSStatusException const&ex)!
! {result = ex.GetStatus();}!
! catch (std::exception const&)!
! {result = kC_APIUnknownError;}!
! catch (...)!
! {result = kC_APIUnknownError;}!
! return result;!
}

194

194

C_APIStatus C_APIFunctionCall()!
{!
! C_APIStatus result(kC_APINoError);!
! try!
! {!
! ! CodeThatMightThrow();!
! }!
! catch (…)!
! {!
! ! result = ErrorFromException();!
! }!
! return result;!
}

195

195

C_APIStatus ErrorFromException()!

{!

! C_APIStatus result(kC_APIUnknownError);!

! try!

! { throw; }!// rethrows the exception caught in the caller’s catch block.!

! catch (FrameworkException const& ex)!

! { result = ex.GetErrorCode(); }!

! catch (Util::OSStatusException const&ex)!

! { result = ex.GetStatus(); }!

! catch (std::exception const&) { /* already kC_APIUnknownError */ }!

! catch (...) { /* already kC_APIUnknownError */ }!

! if (result == noErr) { result = kC_APIUnknownError; }!

! return result;!

}
196

196

• An interesting implementation to support
enhanced trouble-shooting.!

• Error detecting code may not have enough
information for good error reporting.!

• boost::exception supports layers adding
information to an exception and re-throwing!

• An exception to Switch/Strategy/Some Success?

boost::exception

197

197

• Transitioning from pre-exception/exception-
unsafe legacy code!

• Does not handle code path disruption
gracefully!

• Sean Parent’s Iron Law of Legacy Refactoring!

• Existing contracts cannot be broken!

Legacy Code

198

198

1.All new code is written to be exception safe!

2.Any new interfaces are free to throw an
exception!

3.When working on existing code, the interface
to that code must be followed - if it wasn't
throwing exceptions before, it can't start now

Sean’s Rules

199

a. Consider implementing a parallel call and
re-implementing the old in terms of the new

199

Refactoring Steps

200

a. Consider implementing a parallel call and
re-implementing the old in terms of the new

200

1.Implement a parallel call following exception
safety guidelines!

2.Legacy call now calls new function wrapped
in try/catch (...)!

a.Legacy API unchanged / doesn’t throw!

3.New code can always safely call throwing
code!

4.Retire wrapper functions as appropriate

Refactoring Steps

201

201

• Moving an large legacy code base still a big
chore!

• Can be done in small bites!

• Part of regular maintenance!

• No need to swallow an elephant!

• Can move forward with confidence!

• Code base is never at risk!

Refactoring Steps

202

202

• First example I found!

• Apple's FSCreateFileAndOpenForkUnicode
sample code!

• CreateReadOnlyForCurrentUserACL()!

• “mbr_” and “acl_” APIs return non-zero
error codes on error

Example Code

203

203

static acl_t CreateReadOnlyForCurrentUserACL(void)!
{!
 acl_t theACL = NULL;!
 uuid_t theUUID;!
 int result;!!
 result = mbr_uid_to_uuid(geteuid(), theUUID); // need the uuid for the ACE!
 if (result == 0)!
 {!
 theACL = acl_init(1); // create an empty ACL!
 if (theACL)!
 {!
 Boolean freeACL = true;!
 acl_entry_t newEntry;!
 acl_permset_t newPermSet;!!
 result = acl_create_entry_np(&theACL, &newEntry, ACL_FIRST_ENTRY);!
 if (result == 0)!
 { // allow!
 result = acl_set_tag_type(newEntry, ACL_EXTENDED_ALLOW);!
 if (result == 0)!
 { // the current user!
 result = acl_set_qualifier(newEntry, (const void *)theUUID);!
 if (result == 0)!
 {!
 result = acl_get_permset(newEntry, &newPermSet);!
 if (result == 0)!
 { // to read data!
 result = acl_add_perm(newPermSet, ACL_READ_DATA);!
 if (result == 0)!
 {!
 result = acl_set_permset(newEntry, newPermSet);!
 if (result == 0)!
 freeACL = false; // all set up and ready to go!
 }!
 }!
 }!
 }!
 }!
 if (freeACL)!
 {!
 acl_free(theACL);!
 theACL = NULL;!
 }!
 }!
 }!
 return theACL;!
}

204

204

• Rewrite Assumptions!

• All “mbr_” and “acl_” APIs throw!

• acl_t RAII Wrapper Class

Example Code

205

205

• Two versions of re-writes!

• intermediate.cpp!

• Does not throw!

• after.cpp!

• throws instead of returning a code

Example Rewrite

206

206

static acl_t CreateReadOnlyForCurrentUserACL()!
{!
 acl_t result(0);!
 try!
 {!
 ACL theACL(1);!
 acl_entry_t newEntry;!
 acl_create_entry_np(&theACL.get(), &newEntry, ACL_FIRST_ENTRY);!
!
 // allow!
 acl_set_tag_type(newEntry, ACL_EXTENDED_ALLOW);!
!
 // the current user!
 uuid_t theUUID;!
 mbr_uid_to_uuid(geteuid(), theUUID); // need the uuid for the ACE!
 acl_set_qualifier(newEntry, (const void *)theUUID);!
 acl_permset_t newPermSet;!
 acl_get_permset(newEntry, &newPermSet);!
!
 // to read data!
 acl_add_perm(newPermSet, ACL_READ_DATA);!
 acl_set_permset(newEntry, newPermSet);!
!
 // all set up and ready to go!
 result = theACL.release();!
 }!
 catch (...) {}!
 return result;!
} 207

207

static acl_t CreateReadOnlyForCurrentUserACL()!
{!
 ACL theACL(1);!
 acl_entry_t newEntry;!
 acl_create_entry_np(&theACL.get(), &newEntry, ACL_FIRST_ENTRY);!
!
 // allow!
 acl_set_tag_type(newEntry, ACL_EXTENDED_ALLOW);!
!
 // the current user!
 uuid_t theUUID;!
 mbr_uid_to_uuid(geteuid(), theUUID); // need the uuid for the ACE!
 acl_set_qualifier(newEntry, (const void *)theUUID);!
 acl_permset_t newPermSet;!
 acl_get_permset(newEntry, &newPermSet);!
!
 // to read data!
 acl_add_perm(newPermSet, ACL_READ_DATA);!
 acl_set_permset(newEntry, newPermSet);!
!
 // all set up and ready to go!
 return theACL.release();!
}!

208

208

• Advantages!

• More white space!

• 50% fewer lines!

• 100% fewer braces!

• 100% fewer control structures!

• Easier to write and read, faster, and 100%
robust

Before & After Example

209

209

• There is no “try.” — Yoda

What does Exception-
Safe Code look like?

210

210

• Writing code without dealing with failure.

The Coder’s Fantasy

211

211

• The power of the Exception-Safe coding
guidelines is the focus on the success path.

The Success Path

212

212

static acl_t CreateReadOnlyForCurrentUserACL()!
{!
 ACL theACL(1);!
 acl_entry_t newEntry;!
 acl_create_entry_np(&theACL.get(), &newEntry, ACL_FIRST_ENTRY);!
!
 // allow!
 acl_set_tag_type(newEntry, ACL_EXTENDED_ALLOW);!
!
 // the current user!
 uuid_t theUUID;!
 mbr_uid_to_uuid(geteuid(), theUUID); // need the uuid for the ACE!
 acl_set_qualifier(newEntry, (const void *)theUUID);!
 acl_permset_t newPermSet;!
 acl_get_permset(newEntry, &newPermSet);!
!
 // to read data!
 acl_add_perm(newPermSet, ACL_READ_DATA);!
 acl_set_permset(newEntry, newPermSet);!
!
 // all set up and ready to go!
 return theACL.release();!
}!

213

213

• Easier to Read!

Easier to Understand and Maintain!

• Easier to Write !

• No time penalty!

• 100% Robust

The Promise

214

214

• Why easier to read and write?!

• Many fewer lines of code!

• No error propagation code!

• Focus on the success path only

The Promise

215

215

• Why no time penalty?!

• As fast as if errors handling is ignored!!

• No return code checking!

• Compiler knows error handling code!

• catch blocks can be appropriately
(de)optimitized

The Promise

216

216

• Why 100% robust?!

• Errors are never ignored!

• Errors do not leave us in bad states!

• No leaks

The Promise

217

217

• Visit:!

http://exceptionsafecode.com!

• Send me hate mail or good reviews:!

jon@exceptionsafecode.com !

• Please follow me on Twitter / Google +:!

@_JonKalb / Jon Kalb!

• Send me your résumé:!

jonkalb@a9.com

Thank you

218

Jon Kalb (jon@kalbweb.com)

Questions?

Exception-Safe Coding

219

